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Abstract: In pulpitis, dentinal restorative processes are considerably associated with undifferen-
tiated mesenchymal cells in the pulp. This study aimed to investigate strategies to improve the
odonto/osteogenic differentiation of dental pulp stem cells (DPSCs) in an inflammatory environ-
ment. After pretreatment of DPSCs with 20 ng/mL tumor necrosis factor-induced protein-6 (TSG-6),
DPSCs were cultured in an inflammation-inducing solution. Real-time polymerase chain reaction
and Western blotting were performed to measure the expression levels of nuclear factor kappa
B (NF-κB) and odonto/osteogenic differentiation markers, respectively. Cell Counting Kit-8 and
5-ethynyl-2′-deoxyuridine assays were used to assess cell proliferation and activity. Subcutaneous
ectopic osteogenesis and mandibular bone cultures were performed to assess the effects of TSG-
6 in vivo. The expression levels of odonto/osteogenic markers were higher in TSG-6-pre-treated
DPSCs than nontreated DPSCs, whereas NF-κB-related proteins were lower after the induction of
inflammation. An anti-CD44 antibody counteracted the rescue effect of TSG-6 on DPSC activity
and mineralization in an inflammatory environment. Exogenous administration of TSG-6 enhanced
the anti-inflammatory properties of DPSCs and partially restored their mineralization function by
inhibiting NF-κB signaling. The mechanism of action of TSG-6 was attributed to its interaction with
CD44. These findings reveal novel mechanisms by which DPSCs counter inflammation and provide
a basis for the treatment of pulpitis.

Keywords: NF-κB signal pathway; dental pulp stem cells; inflammation; tumor necrosis factor-
inducible protein 6

1. Background

Pulpitis is a type of inflammation of the loose connective tissue inside the hard tissue
of the teeth. Pulpitis is caused by decay, trauma, or other stimulating factors, and is usually
accompanied by pain and a deficiency of dental tissue [1–3]. The main treatment for
irreversible pulpitis is root canal therapy [4]. However, the loss of vascular nerve tissue
in the teeth causes a lack of nutritional supply, and the hard tissue is easily fractured
and discolored [5]. Dental pulp stem cells (DPSCs) are present in the pulp tissue and can
proliferate and differentiate into odontoblasts to repair defects when stimulated by an
external source [6].

DPSCs are derived from ectodermal mesenchyme and can undergo multidirectional
differentiation [7]. Extensive research has been conducted on the use of DPSCs for treating
immune diseases and combining them with materials to repair tissue defects [8]. In addition,
inflammation could cause oxidative and metabolic disorders to impair the function of
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mesenchymal stem cells [9]. In vitro, low concentrations of inflammatory factors could
promote the proliferation and differentiation of DPSCs, but high concentrations of them
could cause a decrease in the mineralization ability of DPSCs [10]. This is consistent
with the pathological process of pulpitis: if pulpitis is extensively aggressive and exceeds
the damage repair potential of the DPSCs, dentin destruction becomes extremely rapid,
exceeding the DPSCs’ repair capacity [1]. This can result in severe tooth deterioration,
pulpal inflammation, and pulpal exposure. DPSCs can be used for the restorative treatment
of pulpitis. Therefore, improving DPSCs’ repair capacity under inflammatory conditions is
a promising treatment strategy.

Tooth development is associated with many signaling pathways, including the Wnt,
Notch, and bone morphogenetic protein (BMP) signaling pathways [11]. The nuclear
factor kappa B (NF-κB) pathway is a molecular pathway classically associated with in-
flammation and related to tissue mineralization, and NF-κB shows high expression levels
in inflamed pulp tissue [12]. Similar to mesenchymal stem cells (MSCs), DPSCs express
NF-κB-signaling-pathway-related molecules in an inflammatory environment [13]. Activa-
tion of the NF-κB signaling pathway also inhibits the mineralization capacity of DPSCs [14].
Exogenous supplementation with tumor-necrosis-factor-induced protein-6 (TSG-6) can
inhibit the NF-κB signaling pathway through CD44 on the cell membrane [15].

TSG-6 is mainly expressed by MSCs and stimulated by tumor necrosis factor-alpha
(TNF-α) and interleukin 1 (IL-1) to fight inflammation [16]. TSG-6 is an important compo-
nent of stem cell therapy. The anti-inflammatory properties of TSG-6 can be exploited to
treat autoimmune diseases, such as systemic lupus erythematosus and peritonitis [17,18].
The expression level of TSG-6 decreases with the differentiation of MSCs [19]. In addition,
TSG-6 affects mineralization-related diseases. The anti-inflammatory activity of TSG-6 is
thought to underlie its cartilage-protective effects in rheumatoid arthritis (RA) models, and
the application of TSG-6 protein or its overexpression significantly attenuates joint damage
in RA models [20,21].

Furthermore, TSG-6 reduces cytokine expression by downregulating the NF-κB signal-
ing pathway and promoting macrophage polarization toward the M2 (anti-inflammatory)
phenotype [22]. TSG-6 interacts with different BMPs and RANKL, affecting osteogenesis
and bone destruction. TSG-6 inhibits the BMP-2-mediated osteoblast differentiation of
MSCs [23]. A previous study reported that the bone density of TSG-6/− mice was notably
higher than that of the control mice; this suggests that TSG-6 plays a role in bone homeosta-
sis [24]. TSG-6 exerts different effects on mineralization under different conditions.

Thus, TSG-6 appears to inhibit odontogenic bone resorption. Overexpression of
TSG-6 in rat iPSC-derived MSCs inhibits inflammation in experimental periodontitis and
decreases alveolar bone resorption [25]. However, whether exogenous supplementation
with TSG-6 rescues the odonto/osteogenic differentiation of DPSCs in an inflammatory
environment has not yet been investigated. The cell membranes of MSCs stably express
CD44, suggesting that exogenous TSG-6 may also act on DPSCs.

This study aimed to explore approaches aimed at protecting dental pulp tissue from
inflammation and restoring the mineralization capacity of DPSCs in an inflammatory
environment. The findings of this study contribute to the development of new strategies
for the treatment of pulpitis.

2. Methods
2.1. Cell Culture and Identification

Human DPSCs were isolated from the third molars of healthy patients aged 18–22 years,
without caries, cysts, or periodontal and periapical diseases. Informed consent was
obtained from all patients. The pulp tissue samples were placed in Dulbecco’s modi-
fied Eagle’s medium (DMEM; HyClone Laboratories, Logan, UT, USA) containing 10%
penicillin–streptomycin (Solarbio, Beijing, China) for 1 h. They were then rinsed three
times with phosphate-buffered saline (PBS; Solarbio). The pulp tissue was removed from
the tooth crown using a clean pulp extraction needle and placed in PBS containing 1%
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penicillin–streptomycin. The removed pulp tissue was cut into 1 mm × 1 mm × 1 mm
blocks. The tissues were digested with 3 mg/mL type I collagenase (Invitrogen, Waltham,
MA, USA) for 40 min at 37 ◦C. The resulting DPSCs were cultured in DMEM supplemented
with 20% fetal bovine serum (FBS; Gibco, Billings, MT, USA), and the solution was changed
every 2 days. After culturing, the fusion rate was 80%, and cell passages were performed.
P3-generation DPSCs were used in the experiments.

Osteogenesis induction [26]: DPSCs were inoculated into six-well plates and induced
with an osteogenic-inducing solution (10 mmol/L β-glycerophosphate; Sigma-Aldrich,
St. Louis, MO, USA; 10−8 mol/L dexamethasone, Sigma Aldrich; 50 µg/mL ascorbic acid,
Sigma Aldrich; 0.01 µmol/L 1,25-dihydroxy vitamin D3, Solarbio) when they reached a
70% fusion rate. After 21 days, the DPSCs were fixed with 4% paraformaldehyde (Solarbio),
stained with 0.1% chymotrypsin (Solarbio), and washed three times. The mineralized
nodules were observed under a light microscope.

Adipogenesis induction [26]: The pretreatment of the cells was the same as that used
for osteogenesis induction. DPSCs were cultured in lipogenic medium (Cyagen Biosciences,
Suzhou, China) for 18 days, fixed with 4% paraformaldehyde, and stained with 0.3% Oil
Red O. Lipid droplet formation was observed under a light microscope.

Flow cytometry analysis: DPSCs were digested with trypsin into single-cell suspen-
sions and incubated with phycoerythrin-conjugated CD3 (1:100 dilution), CD34 (1:100
dilution), or CD31 (1:100 dilution); fluorescein isothiocyanate (FITC)-conjugated CD90
(1:100 dilution); or allophycocyanin-conjugated CD73 (1:200 dilution) antibodies. These
suspensions were then used to determine the expression levels of cell-surface molecules.
All antibodies were purchased from BD Biosciences (San Jose, CA, USA). Flow cytometry
was performed using a fluorescence-activated cell sorting flow cytometer (BD Biosciences).

Cell-surface molecule identification: DPSCs were inoculated into six-well plates and
fixed with 4% paraformaldehyde for 20 min. The cells were then permeabilized in 0.1%
Triton-100 (Solarbio) for 10 min, washed thrice with PBS, and washed with 10% goat
serum (Solarbio). They were blocked at 37 ◦C for 1 h and then incubated with primary
antibodies (anti-vimentin, 1:200 dilution, Abcam, Cambridge, UK; anti-cytokeratin 14,
1:200 dilution, Millipore Sigma, St. Louis, MO, USA; anti-STRO-1, 1:100 dilution, Santa
Cruz Biotechnology, Dallas, TX, USA) overnight at 4 ◦C. This was followed by incubation
with secondary antibodies (cy-3-conjugated goat anti-mouse, 1:500 dilution; Beyotime
Biotechnology Co., Ltd., Shanghai, China; FITC-conjugated goat anti-rabbit, 1:500 dilution;
Beyotime Biotechnology) for 1 h at room temperature in the dark. Finally, 4’,6-diamidino-
2-phenylindole (DAPI; Solarbio) was added for 10 min at room temperature to stain the
cell nuclei.

2.2. Cell Induction

Cells in the normal group were incubated in normal complete medium (DMEM
containing 5% FBS). Cells in the odonto/osteogenic-induction group were cultured with
edentulous odonto/osteogenic-inducing solution (mineralization-inducing solution) com-
prising 5% FBS, 10 mmol/L sodium β-glycerophosphate, 10−7 mol/L dexamethasone, and
50 ng/mL ascorbic acid. Cells in the inflammation group (TNF-α group) were incubated
with a mineralization-inducing solution containing 50 ng/mL TNF-α. Cells in the TSG-6
group were incubated in normal complete medium containing 20 ng/mL TSG-6 (R&D Sys-
tems Inc., Minneapolis, MN, USA). The cells were incubated for 48 h and then transferred
to an inflammation-inducing solution. Cells in the neutralizing antibody group (anti-CD44
group) were incubated with TSG-6 and an anti-CD44 antibody (Bio X Cell, Lebanon, NH,
USA) for 48 h, and then transferred to an inflammation-inducing solution.

2.3. Real-Time Polymerase Chain Reaction

DPSCs were cultured in normal medium, mineralization-inducing solution,
inflammation-inducing solution, or TSG-6-inducing solution for 7 days. Total mRNA
was extracted using TRIzol reagent (Takara, Shiga, Japan). Reverse transcription was per-
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formed by Takara Bio (Shiga, Japan). cDNA was amplified using a fluorescent quantitative
polymerase chain reaction (PCR) kit (Takara) and an Applied Biosystems 7300 Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA). GAPDH, ALP, RUNX2, DSPP,
and DMP-1 expression levels were determined. The primer sequences were obtained from
the literature [19,27,28]. The PCR program was as follows: 95 ◦C for 30 s; 40 cycles of 95 ◦C
for 5 s and 60 ◦C for 34 s; 95 ◦C for 15 s; and 60 ◦C for 1 min. All experimental steps were
performed according to the manufacturer’s instructions, and the relative expression levels
were calculated using the 2−∆∆Ct method.

2.4. P65 Nuclear Transfer Assay

DPSCs were cultured in normal medium, mineralization-inducing solution,
inflammation-inducing solution, or TSG-6-inducing solution for 48 h. DPSCs were fixed
with 4% paraformaldehyde for 30 min and cell permeability was promoted using 0.1%
TritonX-100. Each group of DPSCs was washed thrice in PBS and blocked with 5% BSA at
room temperature for 1 h, followed by incubation with the primary and secondary antibod-
ies. All procedures were performed using a reagent kit (Beyotime Biotechnology). Finally,
DAPI was applied and the cells were observed under an inverted fluorescence microscope.

2.5. Cell Counting Kit-8

Each group of cells was cultured for seven days with several induction solutions, and
the optical density (OD) was measured on days 1, 3, 5, and 7. Cell Counting Kit-8 (CCK-8)
reagent (Beyotime Biotechnology) was prepared at a concentration of 10% prior to the assay.
DMEM alone was used to prepare the CCK-8 assay solution. The cells were incubated in
CCK-8 assay solution at 37 ◦C for 2 h in the dark. The OD values were recorded at 450 nm.

2.6. Determination of Alkaline Phosphatase Activity

DPSCs were inoculated into six-well plates and cultured for 3 days. Alkaline phos-
phatase (ALP) assay reagent (Beyotime Biotechnology) was prepared according to the
manufacturer’s protocol. The cells were observed under an inverted fluorescence micro-
scope. Quantitative analysis was performed using ImageJ software (Institutes of Health,
Bethesda, MD, USA).

2.7. 5-Ethynyl-2’-deoxyuridine Cell Activity Assay

DPSCs were induced for 48 h. A 5-ethynyl-2’-deoxyuridine (EdU) staining solution
(RiboBio Co., Ltd., Guangzhou, China) was diluted 1:1000 in complete medium. After
induction with the staining solution, the DPSCs were cultured at 37 ◦C for 2 h, washed
three times with PBS, and observed under a fluorescence microscope.

2.8. Western Blotting Analysis

Total protein was extracted using radioimmunoprecipitation assay lysis buffer (Be-
yotime Biotechnology) containing phosphatase inhibitors. Nuclear and plastid proteins
were extracted using a Nuclear Protein Extraction Kit (SolarBio). The expression lev-
els of NF-κB-signaling-pathway-related proteins, including the nuclear proteins p65 and
phospho-p65 (p-p65) and the plastid proteins p-IκB and IκB, were measured after 48 h
of induction. In addition, the expression levels of odonto/osteogenesis-related proteins,
including DMP-1, DSPP, and RUNX2, were determined after seven days. Proteins in each
group were separated on polyacrylamide gels, transferred to polyvinylidene fluoride mem-
branes (Millipore Sigma), and blocked with 5% BSA (Solarbio) at room temperature for 2 h.
The membranes were then incubated overnight at 4 ◦C with primary antibodies, including
anti-p65 (1:1000 dilution; Cell Signaling Technology, Danvers, MA, USA), anti-p-p65 (1:2000
dilution; Abcam, Cambridge, UK), anti-p-IκB (1:1000 dilution; Cell Signaling Technology),
anti-IκB (1:1000 dilution; Cell Signaling Technology), anti-DSPP (1:1000 dilution; Bioworld,
Nanjing, China), anti-DMP-1 (1:100 dilution; Thermo Fisher Scientific, Waltham, MA, USA),
anti-RUNX2 (1:1000 dilution; Abway, Beijing, China), anti-GAPDH (1:10,000 dilution; Zen-
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Bio, Chengdu, China), and anti-lamin B1 (1:1000 dilution; Santa Cruz Biotechnology).
Membranes were then incubated with horseradish-peroxidase-conjugated anti-rabbit or
anti-mouse IgG secondary antibodies (Biyuntian Biotechnology Co., Ltd., Shanghai, China)
at room temperature for 1 h. The labeled proteins were visualized using an Imager 600
instrument (GE Amersham, Amersham, UK), and ImageJ software was used to quantify
the results. Protein levels were quantified relative to GAPDH or lamin B1 levels.

2.9. Subcutaneous Transplantation

The animal experiments were approved by the Ethics Committee of West China Hospi-
tal, Sichuan University. The animals were divided into three groups to compare the effects
of exogenous TSG-6 on the odonto/osteogenesis of DPSCs in an inflammatory environment.
DPSCs were cultured in mineralization-inducing solution or inflammation-inducing solu-
tion for seven days. TSG-6-pretreatment DPSCs were cultured in inflammation-inducing
solution for seven days. The cells and culture solutions were then mixed with Corning
PuraMatrix peptide hydrogel (Corning Life Sciences, Corning, NY, USA) and injected into
the backs of immunodeficient mice (BALB/c-nu; 6-week-old, males, n ≥ 3 per group) at a
density of 1 × 106 cells/injection. The volume ratio of cell culture medium to hydrogel was
2:1. The mixtures were left at room temperature for 5 min and then injected subcutaneously
into the nude mice. The immunodeficient mice were purchased from Chengdu Collective
Pharmacology Biotechnology Co., Ltd. (Chengdu, China). After six weeks, subcutaneous
tissue samples were collected, fixed overnight in 4% paraformaldehyde, and embedded
in paraffin wax. Paraffin sections were prepared and stained with hematoxylin and eosin
(HE), Masson’s trichrome, and immunohistochemical stains. Histological staining (HE and
Masson’s) and immunohistochemical staining methods refer to the previous literature [29].

The antibodies used for immunohistochemistry were anti-DMP-1 (1:100 dilution), anti-
DSPP (1:100), anti-COL-1 (1:300 dilution; Wuhan Servicebio Technology, Co., Ltd., Wuhan,
China), and anti-RUNX2 (1:500 dilution) antibodies. Secondary antibodies were visualized
using a 3,3′-diaminobenzidine color development kit (Zhongshan Jinqiao Biotechnology
Co., Ltd., Beijing, China). Positive signals from the immunohistochemical images were
measured using ImageJ software.

2.10. Rat Mandibular Bone Culture

Two-day-old rats were sacrificed under isoflurane anesthesia and their mandibles
were removed. Gelatin sponges were placed in six-well plates and the mandibles were
cultured for 10 days in a solution containing dimethyl sulfoxide, mineralization-inducing
solution, inflammation-inducing solution, or TSG-6-inducing solution (the TSG-6 group
was treated with normal medium containing 20 ng/mL TSG-6 for 48 h and then placed
in the inflammation-inducing solution). They were fixed in 4% paraformaldehyde and
demineralized using EDTA. HE and Masson’s trichrome staining were used to evaluate the
mineralization capacity of each group.

2.11. Statistical Analysis

All data are expressed as the mean ± standard deviation. Statistical differences were
analyzed using SPSS version 21.0 software (IBM Corp., Armonk, NY, USA). Corrected
paired Student’s t-tests and one-way analysis of variance with Tukey’s post hoc test were
used to calculate the level of significance. Statistical significance was set at p < 0.05.

3. Results
3.1. Isolation, Culture, and Identification of DPSCs

DPSCs were observed under a light microscope (Figure 1A). These cells did not
express the epithelial marker CK-14 (Figure 1(Ba)), indicating that they were not epithelial
cells. Immunofluorescence staining showed that the cells expressed vimentin and STRO-1
(Figure 1(Bb,Bc)), indicating that they were of mesenchymal origin. The cells produced
mineralized nodules 21 days after osteogenic induction (Figure 1(Bd)) and lipid droplets
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18 days after lipogenic induction (Figure 1(Be)), indicating that they had multidirectional
differentiation potential and stem cell properties. In addition, flow cytometry showed that
the cells expressed MSC surface markers, including CD73 and CD90, but not endothelial
cell surface markers, such as CD31 and CD34, or the T cell surface marker CD3 (Figure 1C).
These results suggested that the cells were DPSCs.
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 Figure 1. Culture and identification of dental pulp stem cells. Isolated cells were subjected to marker
identification, multidirectional induction, and surface molecule identification. (A) Cell morphology
was observed by light microscopy. (B) Cellular immunofluorescence analysis was performed to
determine CK-14 (Ba), vimentin (Bb), and STRO-1 (Bc) protein expression levels. (Bd,Be) Mineralized
nodules and lipid droplets were observed after 21 days of osteogenic induction and after 18 days of
lipogenic induction. (C) Flow cytometry was performed to observe mesenchymal stem cell (MSC)
surface markers. Scale bars = 20 µm.
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3.1.1. Exogenous TSG-6 Inhibited the NF-κB Signaling Pathway and Partially Rescued the
Suppressed Mineralization of DPSCs in an Inflammatory Environment

The mineralization-inducing solution promoted the odontogenic/osteogenic differ-
entiation of the DPSCs, as evidenced by the increased expression levels of ALP, RUNX2,
DMP-1, and DSPP at the mRNA level (Figure 2A). However, 50 ng/mL of TNF-α led to
decreased levels of odontogenic/osteogenic-related gene expression, indicating that this
concentration inhibited DPSC differentiation in vitro. Pretreatment of the DPSCs with
TSG-6 partially restored their mineralization ability in the inflammation-inducing solution
(Figure 2A). We observed NF-κB signaling pathway-related markers and found an increase
in p65 nuclear translocation under inflammation-inducing conditions, indicating activation
of the NF-κB signaling pathway. However, after TSG-6 pretreatment, the DPSCs no longer
showed NF-κB signaling activation during inflammation, as p65 nuclear translocation was
significantly inhibited (Figure 2B).

A CCK-8 assay was used to observe changes in the proliferative capacity of the DPSCs
(Figure 2C). From day 0 to 3, none of the groups showed significant differences in mineral
content. On day 3, the inflammatory group showed a lower proliferation rate than the
mineralized group. On day 5, the TSG-6 group exhibited a higher proliferation rate than
the inflammatory group. These results suggested that the inflammatory environment was
not conducive to the proliferation of the DPSCs and that TSG-6 treatment enhanced the
proliferation of the DPSCs during inflammation.

ALP activity is an important indicator of the odonto/osteogenic differentiation of
DPSCs. In the inflammation-inducing solution, the ALP activity of the DPSCs was signifi-
cantly reduced (Figure 2D). However, the DPSCs in the TSG-6 group exhibited significantly
higher ALP activity than those in the inflammatory group, which was consistent with the
real-time PCR results. We then observed the cellular activity of the DPSCs in each group
using an EdU assay (Figure 3A). The mineralization-induced group exhibited the highest
cellular activity, followed by the TSG-6 group, which had lower cellular activity than the
other two groups, indicating that inflammation not only reduced the proliferative capacity
of the DPSCs, but also inhibited their activity. This suggested that TSG-6 pre-treatment
partially alleviated the inhibition of mineralization in an inflammatory environment.

3.1.2. Exogenous TSG-6 Treatment Promoted the Mineralization of DPSCs by Inhibiting the
NF-κB Signaling Pathway

TNF-α is a recognized agonist of the NF-κB signaling pathway. After induction for
48 h, Western blotting was performed to detect the expression levels of NF-κB pathway
proteins in each DPSC group. Among the nuclear proteins, p65 and p-p65 expression
levels increased in the inflammatory group, and p65 and p-p65 expression levels were not
significantly different between the mineralized and TSG-6 groups and the normal group
(Figure 3B), suggesting that the DPSCs did not exhibit excessive inflammatory signals
after TSG-6 pretreatment. Among the cytoplasmic proteins, p-IκB expression levels were
significantly higher in the inflammatory group, whereas no significant difference was seen
in the remaining three groups (Figure 3B).

Because IκB is phosphorylated after inflammatory stimulation, the p65-IκB com-
plex disassociates and p65 enters the nucleus to activate downstream target genes. Af-
ter 7 d of induction, Western blotting was performed to detect the expression levels of
odonto/osteogenic-related proteins in each DPSC group (Figure 3B). RUNX2, DMP-1, and
DSPP were used as indicators of mineralization. Compared to the normal group, only the
mineralized and TSG-6 groups exhibited enhanced expression levels of mineralization-
related proteins, suggesting that activation of the NF-κB signaling pathway reduced the
odonto/osteogenic differentiation ability of the DPSCs. The TSG-6 group exhibited sig-
nificantly higher levels of mineralization-related proteins than the inflammatory group,
indicating that TSG-6 pretreatment enhanced the odonto/osteogenic differentiation of
DPSCs in an inflammatory environment by inhibiting the NF-κB signaling pathway.
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Figure 2. TSG-6 upregulated the mineralization ability of dental pulp stem cells in an inflammatory
environment. Cells in the normal group were incubated in normal complete medium. Cells in the
odonto/osteogenic-induction group were cultured with mineralization-inducing solution. Cells in
the inflammation group (TNF-α group) were incubated with a mineralization-inducting solution
containing 50 ng/mL TNF-α. Cells in the TSG-6 group were incubated in normal complete medium
containing 20 ng/mL TSG-6 for 48 h, then were transferred into inflammation induction medium.
(A) Odonto/osteoblast-related gene expression at the mRNA level. (B) The change in p65 nuclear
translocation in each group. (C) Optical density (OD) assay was performed on days 1, 3, 5, and 7.
(D) Alkaline phosphatase (ALP) assays were performed 3 days after induction. (* p < 0.05, ** p < 0.01,
compared with the normal group; # p < 0.05, ## p < 0.01, compared with the inflammation-induced
group; * p < 0.05, ** p < 0.01, compared with the mineralization-induced group).
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ing the nuclear factor kappa B signaling pathway. Dental pulp stem cells (DPSCs) were induced
in different media as indicated. (A) 5-Ethynyl-2’-deoxyuridine (EdU) staining. (B) Expression
levels of NF-κB pathway-related proteins, including p65, phosphorylated (p)-p65, IκB, and P-IκB,
and odonto/osteogenic-related proteins RUNX2, DMP-1, and DSPP (1. Normal; 2. Mineraliza-
tion; 3. Mineralization+TNF-α; 4. Mineralization+TNF-α+TSG-6). Original images can be found in
Figure S1. (C,D) Statistical analysis results. (** p < 0.01, **** p < 0.0001, compared to the normal group;
## p < 0.01, compared to the inflammation-induced group). Scale bars = 20 µm.
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3.1.3. CD44 was the “Switch” Whereby TSG-6 Inhibited the NF-κB Signaling Pathway and
Enhanced the Mineralization of DPSCs

We added an anti-CD44 antibody to DPSCs treated with TSG-6 to observe the changes
in the NF-κB signaling pathway and odontogenic/osteogenic-related proteins. We first
examined the changes in ALP activity in each group (Figure 4A). After the addition of the
anti-CD44 antibody, the ability of TSG-6 to counteract the effects of inflammation was lost.
Compared with the TSG-6 group, the anti-CD44 antibody group exhibited significantly
lower ALP activity. Cellular immunofluorescence analysis revealed significantly higher
levels of p65 and p-p65 nuclear translocation in the anti-CD44 antibody group (Figure 4B),
indicating activation of the NF-κB signaling pathway in this group, and the inhibition
of TSG-6 downregulated this signaling pathway. Subsequently, Western blotting was
performed to detect the expression levels of NF-κB-pathway- and odontogenic/osteogenic-
related proteins in each group (Figure 4C). Among the nuclear proteins, the inflammation
and anti-CD44 antibody groups showed higher p65 expression levels. Among the plastid
proteins, higher levels of p-IκB were observed in the inflammatory and anti-CD44 antibody
groups, indicating that the inflammatory pathway was activated at the protein level. Levels
of the mineralization marker proteins RUNX2, DMP-1, and DSPP were reduced in the anti-
CD44 antibody group relative to their levels in the TSG-6 group, suggesting that CD44 is
the switch for TSG-6 to counteract the effect of inflammation, and that TSG-6 interacts with
CD44 on the cell membrane of DPSCs to affect the NF-κB signaling pathway, ultimately
enhancing the odonto/osteogenic ability of DPSCs in an inflammatory environment.

3.1.4. TSG-6 Was Beneficial for Subcutaneous Osteogenesis and Mandibular Bone Culture
in an Inflammatory Environment

Sprague-Dawley (SD) rats were anesthetized and sacrificed at two days old using
isoflurane. The mandibles of the newborn rats were removed for in vitro culture (Figure 5A).
Predentin appeared light pink upon HE staining and light blue upon Masson’s trichrome
staining (Figure 5B). After 10 d, more predentin was deposited in the mineralized group
than in the normal group. Dental embryos in the TSG-6 group showed a greater amount
of predentin deposition than those in the inflammatory group, suggesting that TSG-6
treatment promotes dentin formation in mandibular culture experiments.

DPSCs in the mineralized, inflammatory, and TSG-6 groups were induced in vitro for
seven days, implanted into the backs of nude mice, and the grafts were collected after six
weeks. No significant changes were observed in the grafts of any group upon visual inspec-
tion (Figure 5C). HE and Masson’s trichrome staining were used to observe the structure
and morphology of the grafts. The grafts in the mineralized group possessed more collagen
fibers, which are the main components of pre-existing bone tissue (Figure 5D). After TSG-6
pretreatment, the grafts generated more collagen fibers in the inflammatory environment,
indicating a greater propensity for osteogenesis. Immunohistochemical staining was used
to assess the expression of odonto/osteogenesis-related proteins, including DMP-1, DSPP,
RUNX2, and collagen I, in the grafts (Figure 5E). Grafts in the mineralized group exhibited
higher levels of mineralization-related markers, while those in the inflammatory group
exhibited lower expression levels of these markers. These results suggested that TSG-6
partially rescued the osteogenic differentiation of DPSCs in vivo and counteracted the
effects of inflammation.
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Figure 4. TSG-6 inhibited the nuclear factor kappa B signaling pathway in dental pulp stem cells via
CD44. Cells in the odonto/osteogenic-induction group were cultured with mineralization-inducing
solution. Cells in the TNF-α group were incubated with a mineralization-inducing solution containing
50 ng/mL TNF-α. Cells in the TSG-6 group were incubated in inflammation induction solution
with TSG-6 pre-treatment. Cells in the anti-CD44 antibody group were incubated in inflammation
induction solution with TSG-6 and anti-CD44 antibody pre-treatment. (A) ALP activity in each group.
(B) p65 nuclear translocation. (C) Expression levels of NF-κB pathway-related proteins, including
p65, p-p65, IκB, and P-IκB, and odonto/osteogenic-related proteins RUNX2, DMP-1, and DSPP.
(** p < 0.01, compared to the odonto/osteogenic-induction group; ## p < 0.01, compared to the TSG-6
group). Original images can be found in Figure S2. Scale bars = 20 µm.



Biomolecules 2024, 14, 368 13 of 18

Biomolecules 2024, 14, x 13 of 18 
 

solution. Cells in the TNF-α group were incubated with a mineralization-inducing solution contain-

ing 50 ng/mL TNF-α. Cells in the TSG-6 group were incubated in inflammation induction solution 

with TSG-6 pre-treatment. Cells in the anti-CD44 antibody group were incubated in inflammation 

induction solution with TSG-6 and anti-CD44 antibody pre-treatment. (A) ALP activity in each 

group. (B) p65 nuclear translocation. (C) Expression levels of NF-κB pathway-related proteins, in-

cluding p65, p-p65, IκB, and P-IκB, and odonto/osteogenic-related proteins RUNX2, DMP-1, and 

DSPP. (** p < 0.01, compared to the odonto/osteogenic-induction group; ## p < 0.01, compared to the 

TSG-6 group). Original images can be found in Figure S2. Scale bars = 20 μm. 

 

Figure 5. TSG-6 promoted the mineralization ability of dental pulp stem cells in an inflammatory 

environment in vivo. Sprague-Dawley (SD) rats were anesthetized and executed by isoflurane at the 

age of 2 days. The mandibles of the newborn rats were removed for in vitro culture for 10 days. 

DPSCs in the mineralized, inflammatory, and TSG-6 groups were induced in vitro for 7 days and 

then implanted into the backs of nude mice. The grafts were collected after 6 weeks. (A) A gross 

view of the rat mandibles. (B) Hematoxylin and eosin (HE) and Masson’s trichrome staining of the 

mandibles. (C) A gross view of the grafts. (D) HE and Masson’s trichrome staining of the grafts. 

Immunohistochemical staining results (E) and the bar graph (F) show odonto/osteogenic-related 

marker expression levels in the grafts. (** p < 0.01, compared with the inflammation-induced group). 

Scale bars = 20 μm. 

Figure 5. TSG-6 promoted the mineralization ability of dental pulp stem cells in an inflammatory
environment in vivo. Sprague-Dawley (SD) rats were anesthetized and executed by isoflurane at
the age of 2 days. The mandibles of the newborn rats were removed for in vitro culture for 10 days.
DPSCs in the mineralized, inflammatory, and TSG-6 groups were induced in vitro for 7 days and
then implanted into the backs of nude mice. The grafts were collected after 6 weeks. (A) A gross
view of the rat mandibles. (B) Hematoxylin and eosin (HE) and Masson’s trichrome staining of the
mandibles. (C) A gross view of the grafts. (D) HE and Masson’s trichrome staining of the grafts.
Immunohistochemical staining results (E) and the bar graph (F) show odonto/osteogenic-related
marker expression levels in the grafts. (** p < 0.01, compared with the inflammation-induced group).
Scale bars = 20 µm.



Biomolecules 2024, 14, 368 14 of 18

4. Discussion

Previous studies have shown that DPSCs play an important role in the treatment of
endodontic diseases [30,31]. Due to the high prevalence of caries and pulpitis among dental
patients, tooth repair and regeneration have significant clinical importance [32]. Severe
tooth injury penetrates the enamel and dentin and stimulates the pulp to produce a limited
natural repair process, resulting in the formation of new dentin-forming cells that give rise
to new dentin [33]. The repair process is facilitated by the presence of undifferentiated cells
in the dental pulp. The tooth has limited ability to repair damage; however, DPSCs can act
as seed cells to replace damaged cells and promote their repair [34]. In addition, DPSCs can
be easily obtained from a wide variety of sources and are used to restore vital pulp tissue
removed by infection, rebuild periodontal ligaments lost due to periodontal disease, and
generate complete or partial tooth structures to form biological implants [35].

Our findings confirmed that DPSCs are among the most potent seed cells for the treat-
ment of endodontic diseases. By investigating methods to improve the odonto/osteogenic
differentiation of DPSCs in an inflammatory environment, we found that exogenous admin-
istration of TSG-6 promoted the anti-inflammatory effects of DPSCs and partially restored
their restorative function. We also determined that the mechanism of action of TSG-6 was
attributable to its interaction with CD44 (Figure 6). We also demonstrated that TSG-6 inhib-
ited the NF-κB signaling pathway in DPSCs. These findings revealed novel mechanisms by
which DPSCs counteract the effects of inflammation.
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Figure 6. Summary. Pre-treatment of dental pulp stem cells (DPSCs) with tumor necrosis factor
induced protein-6 (TSG-6) overcomes the differentiation inhibition induced by high concentrations of
tumor necrosis factor-alpha (TNF-α). TSG-6 inhibits the nuclear factor kappa B (NF-κB) signaling
pathway by binding to CD44 and drives the odonto/osteogenic differentiation of DPSCs.

Notably, the mineralization ability of MSCs is inhibited in a strongly inflammatory
environment [36], and our experimental results, which involved simulating an inflamma-
tory environment using TNF-α, supported this conclusion. In our study, the ability of
DPSCs to differentiate into odontoblasts and produce restorative dentin was reduced in an
inflammatory environment. However, pre-induction with exogenous TSG-6 promoted the
mineralization of DPSCs, even in an inflammatory environment.

TSG-6 is composed primarily of two modules, ∆CUB and ∆HA [37]. TSG-6 has
multiple functions, including controlling stromal organization and the association of stro-
mal molecules with cell surface receptors and extracellular signaling factors, such as
chemokines [38]. A groundbreaking discovery regarding TSG-6 in the last few years is that



Biomolecules 2024, 14, 368 15 of 18

it can mediate the immunomodulatory and tissue-protective properties of MSCs to some
extent [39]. And mRNA expression of TSG-6 in cultured MSCs is significantly upregulated
after TNF-α treatment.

TSG-6 production is induced in response to inflammatory mediators such as IL-1,
lipopolysaccharide, transforming growth factor beta (TGF-β), and TNF-α [40]. TSG-6
has also been studied in mineralized tissue and found to be associated with arthritis in
humans and is produced by chondrocytes and synovial cells [41]. TSG-6 is produced in
large quantities in the synovial fluid of patients with rheumatoid arthritis, osteoarthritis,
and other arthritic conditions [42]. However, it is unclear whether TSG-6 production is
beneficial in musculoskeletal pathology.

DPSCs also secrete a certain amount of TSG-6 upon inflammatory stimulation; how-
ever, their odonto/osteogenic differentiation capacity is reduced. The reason for this finding
remains unclear. We speculate that local secretion is insufficient or that TSG-6 does not act
directly on DPSCs. In this study, the “rescue function” of TSG-6 was lost after an anti-CD44
antibody was added. Moreover, sustained induction of TSG-6 did not play a role in promot-
ing DPSC mineralization, and the effects of an inflammatory environment were reversed
only when DPSCs were pretreated with TSG-6. Although the detailed mechanism is still
unclear, one possible explanation is that TSG-6 acting alone can cause the down-regulation
of NF-κB; therefore, it does not cause the inhibition of downstream-related differentiation
pathways when DPSCs are subjected to inflammatory stimulation.

CD44 also plays an important role in the differentiation of dental embryos and is associ-
ated with hyaluronic acid, which is the structural basis of its interaction with TSG-6 [43,44].
We found that pre-administration of TSG-6 reduced the inhibition of odonto/osteogenic
processes induced by high concentrations of TNF-α. In conjunction with the results of
experiments in nude mice and mandible culture experiments, our findings support the
potential of TSG-6 for the treatment of pulpitis. In addition, we demonstrated that the effect
of TSG-6 depends on inhibition of the NF-κB signaling pathway in DPSCs.

These results are consistent with those reported previously. Both physiological and
pathological remodeling of skeletal homeostasis are associated with NF-κB signaling, and
the over-activation of NF-κB leads to osteoporosis and inflammatory bone loss [45,46].
In addition, NF-κB is involved in osteoclast activation. NF-κB is also involved in the
resorption of dental hard tissues and the inhibition of odontoblast differentiation. However,
our research still has some limitations. Using TNF- α only cannot fully reproduce the
pulpitis microenvironment. Further evidence is needed to verify the clinical therapeutic
effect of TSG-6 on pulpitis. In addition, further research is needed to provide methods for
the local application of TSG-6.

In conclusion, we found that pre-treatment with TSG-6 rescued the differentiation
inhibition of DPSCs induced by high concentrations of TNF-α. TSG-6 inhibited the NF-κB
signaling pathway by binding to CD44 and induced the odonto/osteogenic differentia-
tion of DPSCs. These findings have implications for the development of new therapeu-
tic methods using DPSCs and offer additional possibilities for pulpitis treatment and
tooth regeneration.
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www.mdpi.com/article/10.3390/biom14030368/s1, Figure S1: Original western blots for Figure 3;
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