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Abstract: Machine learning analyses within the realm of oral cancer outcomes are relatively under-
explored compared to other cancer types. This study aimed to assess the performance of machine
learning algorithms in identifying oral cancer patients, utilizing microRNA expression data. In this
study, we implemented this approach using a panel of oral cancer-associated microRNAs sourced
from standard incisional biopsy specimens to identify cases of oral squamous cell carcinomas (OSCC).
For the model development process, we used a dataset comprising 30 OSCC and 30 histologically
normal epithelium (HNE) cases. We initially trained a logistic regression prediction model using
70 percent of the dataset, while reserving the remaining 30 percent for testing. Subsequently, the model
underwent hyperparameter tuning resulting in enhanced performance metrics. The hyperparameter-
tuned model exhibited high accuracy (0.894) and ROC AUC (0.898) in predicting OSCC. Testing
the model on cases of potentially malignant disorders (OPMDs) revealed that leukoplakia with
mild dysplasia was predicted as having a high risk of progressing to OSCC, emphasizing machine
learning’s advantage over histopathology in detecting early molecular changes. These findings
underscore the necessity for further refinement, incorporating a broader set of variables to enhance
the model’s predictive capabilities in assessing the risk of oral potentially malignant disorders.

Keywords: oral squamous cell carcinoma; oral potentially malignant disorders; early detection;
machine learning; lichen planus; leukoplakia; artificial intelligence; biomarker

1. Introduction

The term oral potentially malignant disorders refers to any type of mucosal abnormal-
ity associated with an increased risk of developing oral squamous cell carcinoma (OSCC) [1].
Among these conditions are oral leukoplakia, oral lichen planus (OLP), oral submucous
fibrosis (OSF), oral lichenoid lesions and oral erythroleukoplakia (OEL) [1]. According to
Iocca [2], carcinogenesis rates across all types of OPMDs are 7.9%. In the individual OPMD
groups, cancer rates range from 1.4% for OLPs, 9.5% for leucoplakias, 3.8% for OLLs, to
5.2% for oral submucous fibrosis. Patients with OSCC have an overall survival rate of less
than 60% after 5 years, which adversely affects their mental health and quality of life [3].
Hence, early detection is the key.

The natural history of OSCC is not fully understood; some OPMDs progress to trans-
form into malignant tumours, some remain stable, and others return to health [4]. Moreover,
OSCC can develop from lesions that have no history of epithelial dysplasia [5] or from
mucosa that appears normal but contains significant molecular abnormalities [6,7]. In the
past decades, the effectiveness of OSCC detection has not much improved [8].

While histopathology is widely regarded as the gold standard for cancer detection, it
is not without its drawbacks. One significant limitation lies in its inability to distinguish
between dysplastic and nondysplastic lesions with any reliable precision. Subtle variations
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in epithelial changes may pose challenges, potentially leading to misinterpretation or
oversight of lesions carrying a risk of malignancy. Moreover, the process of obtaining tissue
samples through biopsy is invasive and may not always capture the entirety of the lesion,
resulting in sampling errors. Additionally, histopathological evaluations are dependent on
the expertise of the pathologist, and variations in interpretation may occur. There is a lack
of awareness among clinicians and sometimes they may also miss clinical signs [1]. These
drawbacks highlight the need for supplementary diagnostic tools that can address these
limitations, offering a more comprehensive and accurate approach to cancer detection. It is
crucial to identify OSCC at a molecular level before there are evident clinical and histologic
changes [9].

MicroRNAs (miRNAs) have emerged as markers in the field of cancer, significantly
contributing to our understanding of the molecular aspects of the disease. miRNAs play a
role in regulating genes after they are transcribed, influencing various cellular processes [10].
In oncogenesis, microRNAs contribute to the modulation of key oncogenic and tumour
suppressor proteins [11]. Exploring miRNAs as markers not only has the potential to
enhance early detection but also opens up possibilities for tailored therapeutic options
that aim to improve overall prognosis for those affected by this condition. The markers
selected for our study encompass a carefully chosen set of microRNAs, including miR-21,
miR-100, let-7c, miR-24, miR-99, and miR-125b, which have been shown in the literature to
be dysregulated in OSCC [9,12–17].

Machine learning, a subset of artificial intelligence (AI), empowers computers to
learn from data and make predictions [18]. Within the realm of machine learning, logistic
regression stands out as a statistical model utilizing the logistic function to model binary
dependent variables [19]. Logistic regression is a form of machine learning employed
in various fields, including oncology, where it proves valuable for predicting diagnoses,
recurrence, metastasis, and prognosis [20]. In this study, we utilized logistic regression,
showcasing its efficacy as a type of machine learning technique in our investigation of oral
squamous cell carcinoma risk prediction.

The integration of histopathological insights with PCR assessment of microRNA ex-
pression from FFPE samples serves as a powerful tool for advancing cancer prediction and
diagnosis. By combining the strengths of tissue morphology and molecular signatures, this
integrated approach provides a comprehensive understanding of underlying biological
mechanisms. Moreover, the incorporation of machine learning, specifically logistic model
analysis, transforms this combination into an advanced diagnostic tool, enhancing predic-
tive accuracy and diagnostic precision. This tool offers a promising avenue for researchers
and clinicians, providing a robust framework to overcome the limitations associated with
individual methods and significantly improving the effectiveness of cancer diagnostics.
Such a tool could ensure appropriate treatments for patients and potentially prevent the
progression of these disorders into malignancy.

The primary objective of this study involves the application of machine learning mod-
els to assess the risk of OSCC based on microRNA analysis from standard care incisional
biopsy specimens. Specifically, the study aims to develop logistic regression prediction
models by training them on microRNA expression data obtained from HNE and OSCC
incisional biopsy samples. The primary objective of this research was to develop a robust
machine learning model for the accurate identification of oral squamous cell carcinoma
(OSCC). Through the utilization of hyperparameter-tuning techniques, our aim was to
enhance the model’s performance and refine its analysis of microRNAs derived from stan-
dard care diagnostic specimens. Subsequently, we extended the application of this model to
54 specimens of oral potentially malignant disorders (OPMDs) to assess its effectiveness in
OPMD risk assessment. The limitation posed by the relatively small dataset utilized in the
present study should be acknowledged. This limited sample size presents challenges in gen-
eralizing the findings and necessitates cautious interpretation of the results. Nevertheless,
clinically, the decision to biopsy or follow up on clinically abnormal lesions is challenging,
and our study sought to contribute to early detection and effective management in this
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context. Additionally, we aimed to evaluate the miRNAs that were identified as most
important to the logistic regression model in the process.

2. Materials and Methods
2.1. Data Acquisition and Ethical Approval

In this study, microRNA expression patterns were investigated through quantitative
polymerase chain reaction (qPCR). Two distinct sets of samples were utilized: 30 OSCC and
30 HNE FFPE samples for model development, and a set of 54 unseen OPMD FFPE samples.
The OPMD dataset comprised 7 cases of leukoplakia with dysplasia (3 mild, 4 severe),
12 cases of leukoplakia without dysplasia, 13 cases of oral lichenoid lesions, and 22 cases
of oral lichen planus. Among the oral lichenoid lesions (OLL), instances were observed
to be clinically or histopathologically similar to OLP, but not consistently both. The use of
archived FFPE blocks and the entire research protocol received approval from the Human
Research Ethics Committee of the University of Melbourne (Ethics ID: 2021-21262-16948-2).

2.2. RNA Extraction and Quantification

RNA from 114 FFPE sections were extracted using the Recover All™ Nucleic Acid
Isolation Kit by ThermoFisher Scientific. Subsequent RNA quantification using a nanodrop
spectrophotometer (ThermoFisher Scientific, Scoresby, Australia) ensured consistency,
with precisely 100 ng of RNA utilized for each multiplexed cDNA reaction, according to
previously published procedures [9].

2.3. cDNA Synthesis and RT-qPCR Analysis

cDNA synthesis reactions were carried out using the Surecycler from Agilent Tech-
nologies, implementing a custom multiplex 2-step RT qPCR protocol. MiRXES miRNA
select assays facilitated the capture of nuanced expression profiles. Reverse transcription
quantitative PCR (RT-qPCR) involved duplicate reactions using the Aria Mx PCR machine
(Agilent technology). Cycling conditions included an initial denaturation at 95 ◦C for
10 min, followed by 40 cycles of denaturation at 95 ◦C for 15 s and annealing/extension
at 60 ◦C for 30 s. Real-time monitoring through SYBR Green fluorescence measured by
the Aria Mx software determined threshold cycles (Ct). miRNAs quantified in this study
include miR-21, miR-100, let-7c, miR-24, miR-99, and miR-125b. As controls, a no-template
control (NTC) was included to assess for any potential contamination or background signal,
and a positive control comprised of fibroepithelial polyp tissue was incorporated to validate
the assay performance and ensure the reliability and accuracy of the RT-qPCR results.

2.4. Data Analysis and Logistic Regression Model Implementation

Raw data were compiled in Microsoft excel and read into Python 3.8. (Python Soft-
ware Foundation, https://www.python.org (accessed on 1 October 2022)) as the primary
programming language for implementing logistic regression models, leveraging various
software packages (Python 3.8) to facilitate data analysis and model development. The
core libraries employed for our logistic regression models include scikit-learn, a versatile
machine learning library in Python, and NumPy, a fundamental package for scientific com-
puting. The logistic regression models were implemented using the Logistic Regression
class from scikit-learn, allowing for seamless integration of logistic regression into our
analysis pipeline (Figure 1).

Additionally, we utilized other essential Python libraries, such as Matplotlib for data
visualization and creating insightful figures, and pandas for efficient data manipulation and
handling. The scientific computing capabilities of NumPy were instrumental in managing
numerical data arrays effectively. The code for these implementations can be found on
GitHub (https://github.com/npruthiunimelb/Python-Code-) (accessed on 2 April 2024).

https://www.python.org
https://github.com/npruthiunimelb/Python-Code-
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Figure 1. Comparison of performance metrics: (a) initial logistic model, (b) hyperparameter-tuned
logistic model with 10,000 iterations.

The hyperparameter-tuning process was facilitated by scikit-learn’s GridSearchCV
and RandomizedSearchCV modules, enabling systematic exploration of model hyperpa-
rameters to optimize predictive performance. These tools contributed to the meticulous
optimization of regularization strength, penalty type, and solver algorithms for our logistic
regression models.

Moreover, Jupiter Notebooks were employed as an interactive computing environ-
ment, providing a user-friendly interface for code development, experimentation, and
result visualization.

2.5. Data Preprocessing

In the data preprocessing for our logistic regression model, we scaled all numerical
features to a uniform scale. This step is essential to bring variables with different units or
scales onto a comparable level, preventing any single feature from dominating the model
training process. Variables used in logistic regression model were PCR expression levels of
6 microRNAs (miR-21, miR-100, let-7c, miR-24, miR-99, and miR-125b).

2.6. Development of Prediction Models

Logistic regression served as the algorithm for risk prediction models. An initial
set for model development (30 OSCC, 30 HNE) was divided into training (70%) and test
(30%) data. This data was subjected to 10,000 random iterations to ensure robustness
during training, optimizing key performance metrics. The decision to use 10,000 itera-
tions in model training strikes a balance between computational efficiency and achieving
convergence in logistic regression. This choice ensures stability, allowing the algorithm
to explore diverse parameter configurations, adapt to the complexity of the dataset, and
improve generalization.

The logistic regression model, developed through a 70:30 split, yielded coefficients for
each variable. In machine learning terms, these coefficients represent the learned weights
assigned to each feature in the model and indicate the contribution and direction (positive
or negative) of each variable’s impact on the predicted outcome. The resulting equation,
built from these coefficients, forms the core of the logistic regression model. This equation
is then employed by the machine to test the model on diverse datasets, including cases of
oral potentially malignant disorders (OPMDs), ensuring a versatile and insightful tool for
risk assessment in oral cancer. Key performance metrics, including accuracy, ROC AUC,
precision, and recall, were calculated for each iteration. Precision, representing the accuracy
of positive predictions, and recall, measuring the model’s ability to capture all positive
instances, serve as critical metrics in evaluating the model’s performance. It is noteworthy
that the diagnostic categorization of cancer and non-cancer FFPE samples was determined
by applying a threshold cutoff of 0.5 for logistic probability values (Table 1).
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Table 1. Methodological workflow summary for developing logistic regression models and extending
them to OPMDs.

Workflow Description

1. Data acquisition and ethical approval.
Obtained FFPE tissue samples for OSCC and
HNE (n = 30 each) and OPMDs (n = 54),
ensuring ethical approval.

2. RNA extraction and quantification.
Extract RNA using a commercial kit,
standardize input, and quantify
RNA concentration.

3. cDNA synthesis and RT-qPCR analysis.
Perform cDNA synthesis and RT-qPCR using
custom protocols, including controls for
quality assurance.

4. Data analysis and logistic regression model
implementation.

Analyze data in Python, implement logistic
regression models with
hyperparameter tuning.

5. Data preprocessing. Standardize numerical features and select
miRNA markers for logistic regression.

6. Development of prediction models. Partition dataset, train logistic regression
models, and evaluate performance metrics.

7. Hyperparameter tuning.
Fine-tune model parameters using grid search
and compare model efficacy with and
without tuning.

8. Evaluation of prediction models. Summarize findings and interpret results using
visual aids and analysis of model coefficients.

9. Model extension to OPMDs.
Apply optimized models to OPMD dataset,
categorize samples, and incorporate
histopathological context.

2.7. Hyperparameter Tuning

To optimise model performance, we employed hyperparameter tuning through a grid
search approach. This comprehensive tuning process involved fine-tuning key parameters,
including the regularization strength (C), penalty type (L1 or L2), and solver algorithms.
The overarching goal was to enhance the model’s robustness and reliability through a
methodical exploration of hyperparameter space.

Specifically, we conducted two parallel model developments using logistic regression,
one with hyperparameter tuning and the other without. For the model with hyperpa-
rameter tuning, we systematically varied the regularization strength, penalty type, and
solver algorithms across a predefined grid of values. This iterative process spanned
10,000 iterations at each stage, ensuring a thorough exploration of potential configurations.

Concurrently, the initial logistic model, without hyperparameter tuning, served as
a baseline for comparison. This model used default settings for regularization strength,
penalty type, and solver algorithms. By comparing the performance of these two models on
the training data, we aimed to assess the impact of hyperparameter tuning on the logistic
regression model’s effectiveness in capturing underlying patterns and relationships within
the data. This approach allowed us to ascertain the added value of the fine-tuning process
in optimizing the model’s predictive capabilities.

2.8. Evaluation of Prediction Models

Finally, we summarized our findings from developing the logistic regression models,
to highlight its effectiveness in identifying OSCC. To enhance result interpretation, we
used visualizations, like ROC-AUC curves and confusion matrices. These visual aids help
provide an understanding of our results. Furthermore, our exploration extended to the
examination of logistic regression model coefficients.



Biomolecules 2024, 14, 458 6 of 11

2.9. Model Extension to OPMDs

After refining the regression model with optimized hyperparameters, we extended
its application on the unseen data, which now included the microRNA expression data of
54 OPMD-FFPE samples. These samples were assessed using the parameters established
by the trained model, categorizing them into ‘low’ and ‘high’ risk of oral squamous cell
carcinoma (OSCC).

3. Results
3.1. Model Performance on Training Data

By comparing the initial logistic model and the hyperparameter-tuned model, it be-
came evident that the hyperparameter-tuned model performed better. The hyperparameter-
tuned logistic model with 10,000 iterations clearly surpassed the initial logistic model
with 10,000 iterations, no tuning in terms of accuracy and ROC AUC, as depicted in
Figure 2a,b. The initial logistic model demonstrated an avg. accuracy 0.859 and avg. ROC
AUC = 0.864, in comparison to the tuned logistic model with an avg. accuracy = 0.894, avg.
ROC AUC = 0.898.
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Analysing the confusion matrices of the initial logistic regression model and its
hyperparameter-tuned version provided valuable insights, especially when focusing on
18 (30%) randomly chosen samples out of a total of 60 set aside for thorough testing
(Figure 3a).

The implementation of hyperparameter tuning in our machine learning model yielded
substantial improvements in misclassification rates, signifying the efficacy of optimizing
model parameters. Particularly noteworthy was the heightened accuracy in identifying
cancer cases, as evidenced by a precision of 0.892 and recall of 0.912. In contrast, the
initial model demonstrated lower precision and recall values of 0.853 and 0.885, respec-
tively. These findings underscore the importance of hyperparameter tuning in refining the
model’s predictive capabilities, with implications for enhancing its clinical utility in cancer
identification, with only one out of the eight actual cancer instances being misclassified as
normal (Figure 3b). This improvement highlights the significant impact of hyperparameter
tuning in adjusting the logistic regression model, especially in its ability to accurately
identify cancer cases—an essential aspect in diagnostic applications.
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as OSCC (300×).

3.2. Deciphering the Significance of Individual miRNAs

Let-7c exhibited the highest positive coefficient (3.155), indicating a robust positive
impact on the likelihood of the predicted event. miR-100, with the second-highest positive
coefficient (2.188), positively influenced the model’s predictions. Conversely, miR-21,
characterized by the lowest negative coefficient (−2.624), displayed a significant negative
impact on the predicted outcome. miR-24 (0.651) positively influenced the predicted
outcome, miR-99a (−0.552) exhibited a moderate negative impact, and miR-125b (−2.146)
had a substantial negative effect, with higher Cq values indicating an increased likelihood of
the predicted event. This analysis provides valuable insights into the associations between
miRNA expression levels, represented by Cq values, and their contributions to the logistic
regression model’s predictions.

3.3. Model Performance on Test Data

The investigation into the performance of the hyperparameter-tuned logistic regression
model, initially trained on 30 OSCC and 30 HNE samples obtained from formalin-fixed,
paraffin-embedded (FFPE) tissues, revealed a notable enhancement over the untuned
counterpart. Building on this, the hyperparameter-tuned model was applied to an unseen
test dataset of 54 OPMD- FFPE samples.

The analyses of 54 OPMD FFPE samples demonstrated notable high-risk predic-
tions, particularly in the category of Leukoplakia with dysplasia. Within this subgroup,
three cases were identified as high risk, encompassing two instances with mild and severe
dysplasia, and one with carcinoma in situ. Furthermore, Leukoplakia without dysplasia
exhibited five cases classified as high risk. Similarly, in the groups of oral lichenoid lesions
and oral lichen planus, four and nine cases, respectively, were identified as high risk. These
findings underscore the model’s efficacy in discerning high-risk lesions, particularly in
the context of mild dysplasia, providing valuable insights for targeted monitoring and
intervention strategies within the domain of OPMD (Table 2).
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Table 2. Hyperparameter-tuned model predictions on unseen dataset across various mucosal abnor-
malities.

Fifty-Four OPMD FFPE Samples Number Deemed at Low Risk Number Deemed at High Risk Total

Leukoplakia with dysplasia
4
(2 mild dysplasia,
2 severe dysplasia)

3
(1 mild dysplasia,
2 severe dysplasia)

7

Leukoplakia no dysplasia 7 5 12

Oral lichenoid lesions 9 4 13

Oral lichen planus 13 9 22

It is imperative to acknowledge that the absence of follow-up data precludes the
validation of these OPMD predictions against actual long-term outcomes. Nevertheless,
this analysis of OPMDs has unveiled compelling insights.

Taken together, the results of our study demonstrated that hyperparameter tuning sub-
stantially enhanced the logistic regression model’s accuracy in identifying oral squamous
cell carcinoma (OSCC) compared to the initial model. Additionally, the hyperparameter-
tuned model shows promise in effectively stratifying the risk of malignancy in oral poten-
tially malignant disorders (OPMDs), underscoring its potential clinical utility.

4. Discussion

The investigation presented in this study yielded significant insights into the per-
formance and impact of hyperparameter tuning on a logistic regression model for the
identification of OSCC. In comparing the initial logistic model with its hyperparameter-
tuned counterpart, it was evident that the latter exhibited superior performance in terms
of accuracy and ROC AUC. The study demonstrated substantial improvements in the
misclassification rates of OSCC, emphasizing the efficacy of optimizing model parameters.
Our study aligns with prior research, affirming the effectiveness of logistic regression
in predicting oral squamous cell carcinoma outcomes, reinforcing its significance in the
field [21,22]. A recent meta-analysis of healthcare literature found that logistic regression
typically performs as well as other machine learning algorithms [23,24].

Analysis of the variable efficiency of the machine learning models provides some
considerations for improving predictions in future. In the logistic regression model,
three key miRNA variables played a critical role in shaping the predicted outcome. Let-7c
demonstrated the highest positive coefficient (3.155), signifying a robust positive influence
on the likelihood of the predicted event. Higher cycle quantification (Cq) values for let-7c,
indicating lower expression levels, were associated with an augmented likelihood of the
predicted outcome. These observations align with the findings of Yap et al. [9]. Likewise,
miR-100, boasting the second-highest positive coefficient (2.188), positively contributed to
the model’s predictions, and the elevated Cq values for miR-100 enhanced the likelihood
of the predicted event. The diminished expression of miR-125b and miR-100 identified
by Henson et al. aligns with our study’s emphasis on the role of miRNA dysregulation,
particularly let-7c, in refining risk stratification within the oral potentially malignant disor-
ders (OPMD) category [15]. Conversely, miR-21, marked by the lowest negative coefficient
(−2.624), exerted a substantial negative impact on the predicted outcome. Elevated Cq
values for miR-21, reflecting reduced expression levels, were linked to a diminished like-
lihood of the predicted event. The meta-analysis findings by Dioguardi et al. highlight
the potential of miR-21 as a prognostic biomarker in oral cancer, shedding light on its
role in influencing the overall survival outcomes for patients with oral squamous cell
carcinoma [25]. This examination provides valuable insights into the intricate connections
between miRNA expression levels, as denoted by Cq values, and their roles in influencing
the logistic regression model’s predictions.
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The risk stratification within the various OPMD subtypes assessed the model’s ef-
fectiveness in identifying high-risk lesions. In the context of the OPMD category, one
case diagnosed with mild dysplasia was predicted to be at high risk in the logistic regres-
sion model. Potentially these molecular insights, specifically miRNA data, with machine
learning techniques may be able to augment traditional histopathological assessments.
While conventional histopathology categorized this lesion with mild dysplasia as low risk,
these molecular changes might indicate early changes not apparent histopathologically. It
may well be that molecular analyses provide a complimentary understanding of changes
occurring within tissues and align with recent studies [26] emphasizing the synergistic
value of combining machine learning with traditional histopathological methods.

It is noteworthy that our model presented limitations, as evidenced by two cases
of severe dysplasia being diagnosed as low risk. The identification of cases with severe
dysplasia being misclassified as low risk by the logistic regression model sheds light on
the model’s current limitations. Despite the model’s overall effectiveness, these instances
indicate the need for a more thorough understanding of the molecular and histopathological
interactions within OPMDs. It is important to note that the OPMD dataset provides cross-
sectional information, and we do not possess longitudinal data to determine which cases
eventually transformed into malignancy. The absence of long-term follow-up data limited
our ability to track the progression of OPMD subtypes over time.

This discrepancy emphasizes the importance of continuous refinement and updates
to the model, incorporating a more extensive dataset and possibly exploring additional
molecular markers. Limitations include the model being trained on a relatively small
dataset, the absence of longitudinal follow-up data, and the constraints imposed by a
limited set of variables. Addressing these limitations is crucial for advancing the model’s
accuracy and reliability in predicting the risk of progression in OPMDs. Finally, the
significance of long-term follow-up for these lesions is paramount. Tracking the progression
or regression of lesions over time provides critical insights into the dynamic nature of
OPMD [27]. Future iterations of the model could benefit from a more extensive dataset
that includes a diverse range of cases, allowing for a more accurate prediction of risk
within OPMDs.

5. Conclusions

In conclusion, our study highlights the promising performance of the developed lo-
gistic regression model in accurately identifying cases of oral squamous cell carcinoma
(OSCC). However, to extend its utility to the broader spectrum of oral potentially malignant
disorders (OPMDs), several key considerations must be addressed. The integration of
molecular data, using machine learning techniques, incorporating long-term follow-up
data, and subjecting the model to external validation emerge as critical steps in refining
risk assessment and enhancing predictive outcomes within the OPMD spectrum. This
holistic and integrated approach holds immense potential for improving diagnostic accu-
racy and tailoring personalized management strategies for patients presenting with oral
mucosal potentially malignant lesions, particularly in the context of risk prediction. Further
refinements and validations are essential for unlocking the full potential of our model in
addressing the complexities inherent in OPMDs.
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