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Abstract: Predicting whether a compound can cause drug-induced liver injury (DILI) is difficult due
to the complexity of drug mechanism. The cysteine trapping assay is a method for detecting reactive
metabolites that bind to microsomes covalently. However, it is cumbersome to use 35S isotope-labeled
cysteine for this assay. Therefore, we constructed an in silico classification model for predicting a
positive/negative outcome in the cysteine trapping assay. We collected 475 compounds (436 in-house
compounds and 39 publicly available drugs) based on experimental data performed in this study,
and the composition of the results showed 248 positives and 227 negatives. Using a Message Passing
Neural Network (MPNN) and Random Forest (RF) with extended connectivity fingerprint (ECFP) 4,
we built machine learning models to predict the covalent binding risk of compounds. In the time-split
dataset, AUC-ROC of MPNN and RF were 0.625 and 0.559 in the hold-out test, restrictively. This
result suggests that the MPNN model has a higher predictivity than RF in the time-split dataset.
Hence, we conclude that the in silico MPNN classification model for the cysteine trapping assay has
a better predictive power. Furthermore, most of the substructures that contributed positively to the
cysteine trapping assay were consistent with previous results.

Keywords: cysteine trapping assay; drug-induced liver injury (DILI); idiosyncratic DILI; hepatotoxicity;
message passing neural network; random forest; substructures; QSAR; toxicity; reactive metabolite

1. Introduction

The success rate of new drug development is low, and one of the major causes of
failure in clinical trials is toxicity [1]. Hepatotoxicity or cardiotoxicity accounts for most
of these failures [2]. Since clinical drug development is very expensive, it is important
for pharmaceutical companies to predict the toxicity of candidate compounds in the early
stages of drug discovery to exclude compounds with risks.

Hepatotoxicity, namely drug-induced liver injury (DILI), in clinical trials includes
intrinsic DILI and idiosyncratic DILI. Intrinsic DILI is dose-dependent and can often be
avoided with dose adjustment [3]. In contrast, idiosyncratic DILI is dose-independent
and depends on the patient’s genetic background, so its incidence is rare [4–6], and thus
it is extremely difficult to predict its occurrence. In some instances, idiosyncratic DILI
is discovered after a product is already on the market, leading to drug withdrawal [7].
Recently, there was a case of fasiglifam-induced liver damage in the late clinical stage,
leading to discontinuation of the clinical trial [8].

Based on the mechanism, idiosyncratic DILI is classified into hepatocellular, cholesta-
sis, and mixed types. Although the detailed molecular mechanisms of these are still largely
unknown, in hepatocellular injury, reactive metabolites covalently bind to proteins, which
are then processed by antigen-presenting cells, leading to abnormal compound-specific
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T-cells. The derived “hapten concept” is well known [9]. In the cholestatic form, drugs
can inhibit the bile salt export pump (BSEP), leading to the accumulation of bile acids in
hepatocytes, resulting in toxicity [10,11]. In addition, the generation of reactive oxygen
species (ROS) and mitochondrial disorders are intricately intertwined [12]. By screening
compounds in the early stages of drug discovery based on these mechanisms that have
been recently clarified, we can avoid fatal outcomes in the late stages of marketing and
clinical trials.

To experimentally evaluate idiosyncratic DILI during the nonclinical stage, a method
was developed in the 2000s to measure the amount of covalent binding to microsomal or
hepatocyte proteins in vitro using radiolabeled compounds. This method uses the amount
of covalent binding as a quantitative index of reactive metabolites, and also examines the
relationship with the clinical dose [13–15]. In addition, it was also shown that quantification
was improved by incorporating multifaceted indicators, such as transporter inhibitory
activity of proteins like BSEP and mitochondrial damage [16]. An assay for quantitatively
estimating the covalent bonding ability of this compound to a protein requires the use of a
radiolabeled compound, which is difficult to handle in the initial stages of drug discovery
due to costs incurred and convenience. Glutathione (GSH) systems using fluorescence
have also been proposed [17], but at present, tests using radiolabeled substrates (such
as [35S] cysteine or [14C] cyanide) are conducted due to their high sensitivity [18,19]. By
using such experimental systems, it is possible to evaluate idiosyncratic DILI in the early
stages of drug discovery, although it is limited to the hepatocellular disorder type. For
the cholestasis type, an experimental system using a sandwich culture method that forms
bile ducts in vitro has been established [20], although it has not yet attained a predictive
power suitable for screening in the early stages of drug discovery due to the difficulty
of the experiment and costs. Hence, to improve our ability to forecast the possibility of
various forms of hepatotoxicity at an early stage, prediction by computational methods
would be ideal.

A consortium of pharmaceutical companies is currently developing DILI-Sim®, which
is a computational prediction method for DILI [21]. However, although DILI-Sim is excel-
lent for prediction in the late clinical stage and for already-marketed products [overdosed
acetaminophen [22], ubrogepant comparing with telecagepant and MK-3207 [23], a sub-
lingual formulation of riluzole [24], tolvaptan and its metabolite [25], the amount of input
information required is too large to apply it at the drug discovery stage. In contrast, in
silico models using various machine learning algorithms have been developed for DILI
prediction in the early stages of drug discovery. Until now, the development of predic-
tion methods based on classical methods using the structure of compounds has been
vigorously pursued [26–29]; however, there are also many multimodal methods being
developed that combine various explanatory variables such as calculated values (target
protein prediction) [30] or experimental values (gene expression, protein expression, imag-
ing data, etc.) [29,31,32]. It should be noted that the dataset used (called LTKB) was labeled
with clinical information (casualty, incidence, severity from trials, literature surveys, and
reports [33]. Considering the difficulty of predicting DILI in clinics [34], intrinsic DILI
and idiosyncratic DILI might overlap, making the task of predicting DILI much more
difficult. Furthermore, recently, various machine learning approaches have been proposed
for searching for optimal models by combining multiple algorithms and multiple descrip-
tors [35], converting complex toxicity information into integrated descriptors [36], and
precise prediction by multi-binary classification models [37].

In this study, we decided not to create a direct prediction model for DILI, considering
that the mechanism of DILI is diverse. Instead, we focused on predicting the formation of
reactive metabolites that can predict idiosyncratic DILI with high probability. It is possible
to find a machine learning model for predicting the site of GSH conjugates [38]. Here,
to achieve quantitative prediction, specifically, using the 35S-cysteine trapping data ac-
quired in-house, we created an in silico binary classification model using machine learning.
Although it is not possible to directly predict DILI, this model can predict the presence
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or absence of reactive metabolites, which are a crucial predictor of idiosyncratic DILI. In
addition, to make a more practical contribution to drug discovery, we also estimated the
substructures that cause the generation of reactive metabolites.

2. Materials and Methods
2.1. Experimental Method
2.1.1. Sample Preparation

The reagents for making the reaction solution were phosphate buffer (pH 7.4; 100 mM),
ethylenediaminetetraacetic acid (EDTA; 1 mM) (Tokyo Kasei, Tokyo, Japan), MgCl2 hexahy-
drate (Fuji Film Wako Co., Ltd., Osaka, Japan, reagent special grade; 3 mM), glucose-
6-phosphate (G6P; 5 mM) (Roche, Basel, Switzerland), G6P dehydrogenase (G6PDH;
1 IU) (Oriental Yeast Co., Ltd., Tokyo, Japan), human liver microsome solution (Xenotech,
Kansas City, MO, USA; 2 mg/mL), and L-[35S]-Cysteine (PerkinElmer Japan Co., Ltd.,
Kanagawa, Japan; 3.7 MBq/mL), which were prepared using ultrapure water. The evalua-
tion compound was dissolved in dimethyl sulfoxide (DMSO) and its concentration was
adjusted to 4 mM. This was used as a substrate solution.

2.1.2. Reaction in Microsome

On ice, 239 µL of the reaction solution was dispensed into a glass tube and then 1.25 µL
of the substrate solution was added, mixed, and placed in a water bath (PERSONAL-
11, Taitec Co., Ltd., Saitama, Japan) at 37 ◦C. After pre-incubation for 5 min, 10 µL of
25 mM nicotinamide adenine dinucleotide phosphate (NADPH) (Roche, Basel, Switzerland)
solution was added and mixed to a final concentration of 20 µM to initiate a metabolic
reaction and incubated in a water bath at 37 ◦C for 2 h. After incubation, 500 µL of
acetonitrile was added and mixed, and the tube was chilled on ice to deproteinize, after
which 50 µL of 250 mM GSH solution was added and mixed to stop the reaction, and
centrifuged (approximately 1500× g, 4◦C, 10 min, CF16RXII, Hitachi, Ltd., Tokyo, Japan).
After centrifugation, 750 µL of the supernatant was transferred to a new glass tube and
concentrated by vacufugation (VC-96N, Taitec Co., Ltd., Saitama, Japan) for 2 h. After
concentrating the solution, we added 100 µL of the redissolving solution (40% methanol
solution), mixed it with a vortex (IS-MBI minimixer, Ikeda Rika Co., Ltd., Tokyo, Japan) to
redissolve, and then the sample was placed in a filter tube [Merck Millipore, Darmstadt,
Germany] and centrifuged (approximately 5000× g, room temperature, 10 min).

2.1.3. Measurement by HPLC with Radiomatic Detector

Both High Performance Liquid Chromatography (HPLC) (Nexera XR, Shimadzu
Corporation, Kyoto, Japan) and a radiomatic detector (Radiomatic 610TR, PerkinElmer
Japan Co., Ltd.) were used to analyze the prepared samples. The 35S content was detected
by running the separated sample via the 45-min analytical method through a radiomatic
detector. The mobile phase was composed of a gradient of 0.1% (v/v) formic acid/water and
0.1% (v/v) formic acid/acetonitrile, and the chromatographic separation was performed
using a column (Synergi 4 µm Hydro-RP 80A 150 × 3.00 mm, Phenomenex, Torrance,
CA, USA).

2.2. Compound Preparation

Cysteine trapping compound data (475 compounds) were used; 436 in-house com-
pounds and 39 available marketed drugs were used. The composition of the experimental
results showed 248 positives and 227 negatives, all of the result of (RI) integrated area is
shown in Table S1. For in-house compounds, we used compound structures registered in
the Teijin database. Structural information for known compounds was obtained as 2D SDF
files using ChEMBL33 [39]. It can be seen from Figure S1 that the compounds used in this
study mostly meet with the rule of five criteria for molecular weight (MW) and LogP [40];
and the values of polar surface area (PSA) are mostly similar to drugs which has good
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absorption into human body [41]. Our compounds are seemed to be drug-like and those
are suitable for the dataset of this predictive model.

2.3. Compound Standardization through SMILES Representation

The above structural information was loaded into Maestro (Schrödinger suite 10.3) [42]
and converted to canonical simplified molecular-input line-entry system (SMILES) without
considering isomerization. These SMILES were used to calculate the molecular weight,
polar surface area, and logP in Insight for excel [43]. These are shown as a frequency
distribution graph in a Supplementary Materials (Figure S1).

2.4. Classification of Data by Principal Component Analysis (PCA) Plot

To confirm that the training and test compound structures used in the random and
time-split analyses were sampled from the same compound space, PCA was performed us-
ing DataWarrior (Version 5.5.0) ([44]). In DataWarrior, the compound structure in canonical
SMILES format was read as input, and then FragFP was calculated as a fingerprint. Using
the values of this FragFP, PCA was performed with two components.

2.5. Model Building with Machine Learning
2.5.1. Overall Workflow

The construction of the machine learning model followed the steps depicted in
Figure 1.
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Figure 1. Workflow for building the cysteine trapping QSAR prediction model. (i) Structural
information and RI (Radio Isotope) integrated area, which is counted as the radiochromatographic
peaks of 475 compounds, including 436 in-house and 39 known compounds, were used for the dataset.
Of the 475 compounds, 1/6 or 79 compounds were randomly extracted and used as an external
dataset, and the remaining 396 compounds were used as a training dataset. (ii) Next, machine
learning was performed on 396 compounds, 5-fold cross-validation (CV) was performed to calculate
the validation score of the prediction model, and a hold-out test was performed on the external
dataset to calculate the test score. (iii) The 475 compounds were rearranged in chronological order,
and the most recent 79 compounds were extracted and used as an external dataset. (iv) Similar to
(iii), machine learning was performed with 396 compounds on the time-split dataset, 5-fold CV was
performed to calculate the validation score of the prediction model, hold-out test was performed on
the external dataset, and the test score was calculated. (v) Using the dataset of 396 compounds from
random splitting, we estimated the substructure used for positive determination.
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2.5.2. Chemical Structure Fingerprints

For machine learning modeling, chemical fingerprintss and chemical structure as
graphs were used. ECFP4 (2048 bit, radius: 2) [45] was calculated using the python RD-
kit (2020.09.01) [46] in Chem function and AllChem, and for chemical graphs, canonical
SMILES were used. Regarding chemical fingerprints, ECFP4 is a well-known fingerprint
that can represent compounds better than the other fingerprints, especially for drug can-
didates [47]; therefore, considering its practical usage in the drug discovery process, we
decided to use it.

2.5.3. Objective Variable (Cysteine Trapping Posi/Nega Classification)

It has been reported that there is a correlation between the total radio isotope (RI)
integrated area (unit; count) in cysteine trapping and the amount of covalent binding
in microsomes (unit; pmol/g) in in vitro covalent binding tests, and there is a risk of
idiosyncratic DILI at 50 pmol/g or more [18]. Considering this, the amount of covalent
binding in microsomes in the in vitro covalent binding test of 50 pmol/g or more was
judged as a risk. The threshold of the total RI integrated area in cysteine trapping at that
time was about 1000 counts. Therefore, we labeled compounds with more than 1000 counts
of RI integrated area as positive, and those with less than 1000 counts as negative.

2.5.4. Machine Learning Models

We utilized the following models: Random Forests (RF) [48] using chemical finger-
prints as input, and Message Passing Neural Network (MPNN) [49] using graphs as input.
We used RF because it is a stable machine learning model that has already been used
in various published articles [50–52]. MPNN was also used because excellent predictive
MPNN models have been proposed in recent years [53–55]. The Python (version 3.7.10)
scikit-learn (version 0.24.2) and the Python (version 3.7.10) Chemprop (version 1.3.1) library
chemprop function were used for RF and MPNN, respectively. The parameters were set to
their defaults [56].

2.5.5. Model Validation

To demonstrate the validity of the model, we divided the data set using two methods
for hold-out tests (random selected and time-split) and performed 5-fold cross-validation
(CV). First, in random-split, 5/6 of the total data set was randomly selected as a training
dataset, and the remaining 1/6 was selected as a hold-out test. Next, in time-split, the
in-house compounds were sorted in the order of synthesis date, and 5/6 of the total data
from the earliest was selected as a training dataset, and the remaining 1/6 of total data
from the latest was selected as a hold-out test (Figure 1i–iv).

2.5.6. Estimation of Important Substructures

We estimated the important substructures of the cysteine trapping assay using the
MPNN model built in this study by the Monte Carlo Tree search under Chemprop frame-
work (Figure 1v) [57]. Regarding the Monte Carlo Tree search, chemprop.interpret.py in
the Python (version 3.7.10) Chemprop (version 1.3.1) was used, and the parameters were
set to their defaults (Input: smiles, Number of message passing steps: 3, Batch size: 50.
Number of epochs to run: 30, Learning rate: 0.001) we currently restricted the rationale to
have maximum 20 atoms and minimum 8 atoms [56].

2.5.7. Metrics to Compare Each In Silico Model

In the 5-fold CV, AUC-ROC and accuracy were calculated to grasp the trend of model
accuracy. In the hold-out test, in addition to AUC-ROC and accuracy, the following indices
(1) to (8) were calculated from the confusion matrix to examine the extrapolation of the
model in detail.
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TN: True Negative, FP: False Positive, FN: False Negative, TP: True Positive, MCC:
Matthews Correlation Coefficient

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

Youden′s index = Sensitivity + Specificity − 1 (5)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

False rate =
FN + FP

(TP + FP + TN + FN)
(7)

F − measure =
2 × Precision × Sensitivity

Precision + Sensitivity
(8)

3. Results and Discussion
3.1. PCA Distribution of Training and Test Dataset

First, a random selection of 79 compounds was performed from the total pool of
475 compounds to assess the distribution of training and test dataset. These 79 compounds
were used as an external dataset in a random-split. Additionally, the most recent 79 com-
pounds were extracted for an external dataset as a time-split approach. PCA using FragFP
was performed for the random-split and time-split to investigate the chemical space of
the training and test dataset, respectively. In the random-split, the compound distribution
of the training and test sets matched and was evenly distributed (Figure 2a). A bias was
observed in the distribution of the test set in the time-split, likely due to recently syn-
thesized compounds having similar targets and compound structures (Figure 2b). These
findings indicate evident differences in the data selection processes between the random-
split and time-split approaches, highlighting the importance of model evaluation in the
time-split [58]. Furthermore, it was confirmed that the appropriate test/train selection
was performed to construct a model in which the compound space remained consistent,
even in the time-split, as some training compounds matched the compound distribution
of the test dataset. However, it should be noted that all the compounds in the dataset are
pharmaceuticals. Additionally, PCA analysis is also performed using ECFP4 as descriptor
and is shown in Figure S2. (Although the conclusion was the same of FragFP, we do not
discuss it due to its low contribution ratio in PC1 and PC2.)
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3.2. Evaluation with Random-Split

To evaluate the models under the random-split, 5-fold CV was performed on both
the MPNN and RF models. Table 1 shows that the ROC-AUC and accuracy of the MPNN
model were 0.698 ± 0.08 and 0.668 ± 0.08, whereas those of the RF model were 0.811 ± 0.03
and 0.752 ± 0.02, respectively. Table 2 and Figure 3a,b show the prediction results for
the 79 randomly extracted compounds that were included in the external dataset for each
model. The ROC-AUC and accuracy of the MPNN model were 0.742 and 0.696, whereas
those of the RF model were 0.819 and 0.734, respectively. Notably, the precision of the
RF model was 0.789, whereas that of the MPNN model was 0.732. Both models had the
same sensitivity value of 0.698. With both models surpassing an ROC-AUC of 0.70 and
exhibiting favorable metrics, including sensitivity, the MPNN and RF models showed the
ability to effectively predict the risk of cysteine trapping using only compound structural
information. This indicates that time and cost can be reduced because experimental data
are not required [49].

Table 1. Metrics calculation for 5-fold cross validation in Message Passing Neural Network (MPNN)
and Random Forest (RF) models.

Metrics Metrics
Models

MPNN RF

Random-split ROC-AUC 0.698 ± 0.08 0.811 ± 0.03
Accuracy 0.668 ± 0.08 0.752 ± 0.02

Time-Split
ROC-AUC 0.729 ± 0.05 0.617 ± 0.17

Accuracy 0.668 ± 0.10 0.556 ± 0.09

Mean value ± Standard
deviation
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Figure 3. Confusion matrix of prediction with external dataset in random-split and time-split.
(a) Prediction result of hold-out test by MPNN model at random-split, (b) Prediction result of hold-
out test by RF model at random-split, (c) Prediction result of hold-out test by MPNN model at
time-split, (d) Prediction result of hold-out test by RF model at time-split.
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Table 2. Metrics calculation for predicting external dataset of Message Passing Neural Network
(MPNN) and Random Forest (RF) Models.

Dataset Models ROC-
AUC Accuracy Precision Sensitivity Specificity Youden’s

Index MCC False
Rate

F-
Measure

Random-
split

MPNN 0.742 0.696 0.732 0.698 0.694 0.392 0.391 0.304 0.714
RF 0.819 0.734 0.789 0.698 0.778 0.475 0.474 0.266 0.741

Time-
split

MPNN 0.625 0.759 0.500 0.368 0.883 0.252 0.282 0.241 0.424

RF 0.559 0.671 0.111 0.053 0.867 −0.081 −0.109 0.329 0.071

3.3. Evaluation with Time-Split

The time-split approach was used in this study because it is a more legitimate method
for evaluating models than the random-split approach, which has been used in many
studies recently [59–61]. To validate the predictive performance considering the practical
aspects, a dataset of 79 recently synthesized compounds was selected as an external dataset,
whereas the remaining 396 compounds were used for a 5-fold CV. The MPNN and RF
models were investigated. Table 1 shows that the ROC-AUC and accuracy of the MPNN
model were 0.729 ± 0.05 and 0.668 ± 0.10, while those of the RF model were 0.617 ± 0.17
and 0.556 ± 0.09 respectively, illustrating the superior accuracy of the MPNN model. The
prediction results for the external dataset using the 79 chronologically extracted compounds
are shown in Table 2 and Figure 3c,d. The ROC-AUC and accuracy of the MPNN model
were 0.625 and 0.759, whereas those of the RF model were 0.559 and 0.671, respectively.
These results indicate the higher accuracy of the MPNN model, particularly when the
objective variable is imbalanced. Furthermore, the RF model exhibited a low sensitivity
of 0.053, whereas the MPNN model demonstrated a higher value of 0.368, indicating that
the MPNN model had an improved prediction accuracy for the compounds at a risk of
generating reactive metabolites. Moreover, when evaluating the time-split dataset, the
F-measure values were 0.424 and 0.071 for the MPNN and RF models, respectively, which
were lower than those from the evaluation of the random-split dataset (0.714 and 0.741).
However, as the F-measure is influenced by the imbalance between positive and negative
objective variables in the dataset, it is assumed that this difference is due to bias of the
time-split dataset (Table 3). Conversely, the MCC scores, which are independent of dataset
bias, were 0.282 and −0.109 for the MPNN and RF models, respectively. The higher MCC
value for the MPNN model, close to the score 0.391, indicates that the graph information
captured by the MPNN model effectively extracts compound structure features without
relying on dataset bias, in contrast to ECFP4. These findings align with previous research
supporting the advantages of the MPNN model [53,54].

Table 3. Composition in each positive and negative dataset.

Dataset Positive Negative

Random
Train 205 (52%) 191 (48%)
Test 43 (54%) 36 (46%)

Time
Train 229 (58%) 167 (42%)
Test 19 (24%) 60 (76%)

3.4. Estimation of Important Substructures

We determined that the MPNN model exhibited superior prediction accuracy and
used it to estimate the substructures contributing to positive classification. Among the
396 compounds in the random-split training dataset, 33 market compounds were included,
of which 12 yielded positive results. The MPNN model classified 6 compounds as positive
correctly, of which 5 were associated with substructures reported to be involved in reactive
metabolite formation. The estimated substructures of 3 compounds aligned with the
literature references, whereas 2 compounds had novel substructures. In Figure 4, the
structures of market drugs and putative substructures in MPNN of these five compounds
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are shown, along with the putative structures contributing to positive classification and the
substructures reported in the literature for reactive metabolite formation.
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3.4.1. Propranolol

Propranolol is metabolized by CYP2D in rat liver microsomes and leads to the formation
of 4-hydroxypropranolol (4-OH-PL), which is further metabolized to 1,4-naphthoquinone
(1,4-NQ) [62]. The ethoxybenzene and 4-OH-PL structures inferred in this study overlapped
with the structures reported in the literature.

3.4.2. Verapamil

A putative substructure containing a cyano group, 2-phenylacetonitrile, was proposed
for verapamil. Cyano groups generate adducts non-enzymatically, independent of the
attached structure [63]. Thus, the cyano group in the estimated substructure aligns with
the reported substructure.

3.4.3. Imipramine

Imipramine is metabolized by CYP2D in rat liver microsomes to form 2-hydroxy
imipramine, which undergoes an arene-oxide intermediate formation, and covalently
binds to the CYP2D protein as a reactive metabolite [64,65]. The MPNN model classi-
fies imipramine as positive, with a putative substructure of 5-methyl-10,11-dihydro-5H-
dibenzo[b,f]azepine. This substructure inferred in this study overlap with the structure
reported in the literature.

3.4.4. Rosiglitazone

Rosiglitazone belongs to the thiazolidinedione class of antidiabetic drugs, along with
troglitazone and pioglitazone. Troglitazone, the first therapeutic drug for insulin-resistant
diabetes, was discontinued due to an idiosyncratic drug toxicity (IDT) associated with
reactive metabolites. Several substructures of troglitazone, such as isocyanate-type metabo-
lites, trigger IDT [66]. Initially, we hypothesized that the thiazolidinedione ring, which is a
common structure among thiazolidinedione antidiabetic drugs, contributed to the reactive
metabolites of rosiglitazone [67–69]. However, the MPNN model deduced a unique struc-
ture of N-ethylpyridin-2-amine, which differs from the thiazolidinedione ring. Although
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these three compounds exhibit covalent binding amounts of pmol/g in covalent binding
assay reports [14], troglitazone and pioglitazone tested negative in the cysteine trapping
assay due to the threshold area being less than 1000. In addition to the previously reported
thiazolidione ring, the newly estimated N-ethylpyridin-2-amine may also contribute to the
production of reactive metabolites.

3.4.5. Ibrutinib

Ibrutinib, a first-in-class inhibitor of Bruton’s tyrosine kinase (BTK), irreversibly binds
to cysteine 481 in the active site of BTK. 1-(Piperidin-1-yl) prop-2-en-1-one is the covalent
binding site for BTK. However, the deduced structure in this study, the pyrazolopyrimidine
ring, is in a different position. This difference in estimated structure arises from the fact
that this model only predicts cysteine trapping scores and estimates the contributing
structures [70]. As the system involves covalent bonding to BTK and differs from the
experimental system of the cysteine trapping assay in this study, the pyrazolopyrimidine
ring suggested here may contribute to the formation of new reactive metabolites.

4. Conclusions

The success rate of new drug development remains low, and DILI is often cited as
a significant contributor to clinical trial failures, particularly the challenging task of pre-
dicting idiosyncratic DILI risks in the early stages of drug discovery. In this study, we
focused on the cysteine trapping assay as a method for detecting reactive metabolites and
developed a in silico binary classification model using in-house cysteine trapping data. To
evaluate the model’s accuracy, we employed two different dataset splitting approaches:
a random-split for prediction accuracy using the MPNN prediction model and the RF
model, and a more practical time-split. The MPNN model exhibited strong prediction
accuracy in both the random-split and time-split scenarios, indicating its ability to extract
graph-based structural information even when faced with dataset biases commonly en-
countered in real-world drug discovery settings. Furthermore, concerning the identified
substructures used for the classification of known compounds, we discovered consistent
findings with substructures reported in the literature known to carry a risk of generating
reactive metabolites. However, the size of dataset used in this study is relatively small
for machine learning in drug discovery, raising concerns about the model’s generalizabil-
ity and robustness. Expanding the dataset with more diverse chemical structures could
improve the predictive performance and reliability. Nevertheless, this can contribute to
the drug discovery process in a fit-for-purpose situations; for example, in the very early
stage, thousands of compounds as the idea of medicinal chemists should be evaluated by
this model instead of real experiments. Furthermore, this novel in silico model enables
the extraction of the covalent binding risk, which is one of the factors for idiosyncratic
DILI solely derived from structural information, offering potential applications in the early
stages of drug discovery without the need for experimental data acquisition.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom14050535/s1, Table S1. Dataset for cysteine trapping assay
(475 compounds), Figure S1. Distribution of physicochemical parameters, Figure S2. PCA plot of
training and test dataset using Extended Connectivity FingerPrint 4 (a: Random-split b: Time-split).
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