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Abstract: Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer mem-
brane protein that plays a crucial role in regulating cellular energy metabolism and apop-
tosis by mediating the exchange of ions and metabolites between mitochondria and the
cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegen-
erative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane
permeability, regulating calcium balance, and facilitating programmed cell death pathways,
position it as a key determinant in the delicate balance between neuronal viability and
degeneration. Accordingly, increasing evidence suggests that VDAC1 is implicated in
the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and others. This review
summarizes the current findings on the contribution of VDAC1 to neurodegeneration,
focusing on its interactions with disease-specific proteins, such as amyloid-β, α-synuclein,
and mutant SOD1. By unraveling the complex involvement of VDAC1 in neurodegen-
erative processes, this review highlights potential avenues for future research and drug
development aimed at alleviating mitochondrial-related neurodegeneration.
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1. The Role of VDAC1 in Mitochondrial Function, and Its Relevance to
Neurodegenerative Diseases

Mitochondria are vital organelles that play a primary role in ATP production, thus
powering cellular functions [1]. Additionally, they play a crucial role in cellular signaling,
cell division, and apoptosis [2]. The complex architecture of the mitochondrion is essential
for its proper and efficient function. Mitochondria are characterized by two distinct mem-
branes: the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane
(IMM), which are divided by the intermembrane space (IMS) [3]. The central line for the
transit of metabolites and nucleotides across the OMM is the voltage-dependent anion
channel (VDAC), also referred to as mitochondrial porin.

Three isoforms of VDAC in mammals—VDAC1, VDAC2, and VDAC3—have been
identified, all of which share several functional and structural characteristics. VDACs,
as β-barrel proteins composed of antiparallel amphipathic β-strands, form hydrophilic
pores in the mitochondrial outer membrane [4]. These isoforms create selective, voltage-
dependent ion channels that mediate the transport of nucleotides (ATP, ADP, AMP, NADH),
ionic metabolites (pyruvate, glutamate, succinate, malate), and lipids, and allow for the
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passage of inorganic ions (K+, Na+, Ca2+, Cl−) and certain organic ions. Beyond their
role in regulating the exchange of ions and metabolites between mitochondria and the
cytosol, VDACs also influence a wide array of intracellular processes [5–7]. VDAC1 is
a key mediator of mitochondria-driven apoptosis, while VDAC2, conversely, serves an
anti-apoptotic function. It is likely that these two proteins, by co-localizing within specific
subcompartments of the OMM, jointly regulate the balance between pro-apoptotic and anti-
apoptotic signals in the cell. Although the role of VDAC3 in apoptosis initiation remains
unclear, this isoform has been implicated in the regulation of reactive oxygen species (ROS)
production and mitochondrial quality control [8].

Mitochondrial dysfunction is widely recognized as a significant contributor to vari-
ous neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), etc. [9]. A primary
mechanism by which mitochondria contribute to neurodegeneration is through the ex-
cessive production of ROS, leading to oxidative stress—a common pathological feature
underlying these disorders [10]. Elevated ROS levels can also directly damage mitochon-
drial components, particularly mitochondrial DNA (mtDNA) [11], further exacerbating
the neurodegenerative process. While mitochondria are primarily known for their role
in energy production and cellular metabolism, they also serve as crucial regulators of
apoptosis [12], which is crucial for maintaining cellular homeostasis. Dysregulation of
apoptosis, whether through excessive or insufficient activation, has been implicated in
various neuropathological conditions [13,14].

At the intersection of these critical mitochondrial functions lies the VDAC1 channel,
the most abundant and extensively studied isoform. This protein has emerged as a key
mediator in the complex interplay between mitochondrial function, oxidative stress, and
apoptosis regulation in the context of neurodegenerative diseases [4] and, thus, will be the
focus of this review.

VDAC1 is a multifunctional channel that is located in the OMM (Figure 1), regulating
the metabolic and energetic crosstalk between mitochondria and the rest of the cell, which
plays a role in mitochondria-mediated apoptosis [15]. VDAC1, which possesses Ca2+

and Ruthenium Red binding sites [16,17], is also involved in cholesterol transportation,
regulating lipid metabolism, mediating ion channels, regulating Ca2+ signaling between
mitochondria and the endoplasmic reticulum (ER), and regulating the redox status of
mitochondria and the cytoplasm [18].

The atomic-resolution structure of VDAC1 reveals a β-barrel composed of 19 trans-
membrane β-strands, with strands β1 and β19 in parallel conformation. The 25-residue N-
terminal region resides inside the pore and is proposed to translocate from the internal pore
to the channel surface, modulating the conductance of ions and metabolites [19,20]. The
pore diameter is estimated between 3 and 3.8 nm, narrowing to approximately 1.5 nm when
the N-terminal α-helix occupies the pore. A glycine-rich motif (21GlyTyrGlyPheGly25)
connects the N-terminal domain to β-strand 1, providing the flexibility necessary for
N-terminal translocation [21]. This N-terminal mobility is implicated in channel gating,
VDAC1 dimerization, interactions with anti-apoptotic proteins, and binding to apoptosis-
regulating proteins from the Bcl-2 family (e.g., Bax, Bcl-2, Bcl-xL) and hexokinase [22].

This review aims to elucidate the specific roles of VDAC1 in the pathogenesis of AD,
PD, ALS, and HD, exploring its potential as both a therapeutic target and a biomarker for
these disorders.
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Figure 1. VDAC1 as a key modulator of mitochondrial metabolism, apoptosis, and quality control.
The mitochondrion contains an outer and inner membrane, with an intermembrane space between
them. The outer membrane includes VDAC1 channels that allow for the passage of ions (K+, Na+,
Ca2+, Cl−) and metabolites (such as ATP, ADP, AMP, NADH, malate, citrate, glucose, pyruvate,
succinate, and glutamate). Bcl-2 and HK are associated with VDAC1, regulating cellular apoptosis
and glucose metabolism. Proteins such as PINK and Parkin are involved in mitochondrial quality
control, specifically in mitophagy and apoptosis. VDAC1 serves as a substrate for Parkin-mediated
ubiquitination where monoubiquitination inhibits apoptosis, while polyubiquitination promotes
mitophagy. The mitochondrial permeability transition pore (mPTP) facilitates the release of Ca2+ and
cytochrome c, which are critical for initiating apoptosis. Within the inner membrane, complexes I-IV
of the electron transport chain generate a proton gradient (H+) across the membrane. ATP synthase
uses this gradient to synthesize ATP from ADP and inorganic phosphate (Pi). Mitochondrial DNA
(mtDNA) is also shown, illustrating its role in encoding essential proteins for mitochondrial function.

2. VDAC1 in Alzheimer’s Disease
Alzheimer’s disease (AD), the most prevalent neurodegenerative disease and most

common form of dementia, is characterized by a gradual, age-related deterioration of
brain function that leads to impaired memory, cognitive decline, and alterations in behav-
ior [23,24]. This disease represents a growing global health challenge, with 50 million cases
reported in 2018 and projected to triple by 2050 [25]. The pathological hallmarks of AD
include extracellular amyloid plaques composed primarily of aggregated amyloid-beta
(Aβ) peptides, intracellular neurofibrillary tangles consisting of hyperphosphorylated tau
protein, and significant neuronal loss [26]. While genetic mutations in amyloid precursor
protein (APP), presenilin 1 (PS1) and presenilin 2 (PS2) genes cause less than 2% of all AD
cases, the majority are late-onset sporadic cases, suggesting a complex interplay between ge-
netic and environmental factors [27,28]. AD pathogenesis involves multiple molecular and
cellular events, including synaptic dysfunction, synaptic loss [29,30], and mitochondrial
abnormalities [31,32].

Mitochondrial dysfunction is considered an early event in AD pathogenesis, with
several physiological events noted in AD brains, such as changes in mitochondrial DNA
(mtDNA), decreased mitochondrial enzyme activity, abnormal mitochondrial gene expres-
sion, increased mitochondrial fragmentation, decreased mitochondrial fusion, reduced
metabolism, disruption of Ca2+ homeostasis, increased production of ROS, lipid peroxida-
tion, and apoptosis [29,33–39]. Compelling evidence for the critical role of mitochondria in
AD pathology has been obtained by applying cytoplasmic hybrid (‘cybrid’) technology. In
these experiments, researchers created hybrid cells by replacing the endogenous mitochon-
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dria of healthy cells with mitochondria derived from AD patients. The resulting cybrid
cells manifested numerous pathological hallmarks typical of AD [40].

Recent research has implicated VDAC1 as the key mitochondrial gatekeeper in AD
pathogenesis. Quantitative real-time-PCR and immunoblotting analyses of postmortem
AD brains and APP transgenic mice revealed significantly increased VDAC1 mRNA and
protein levels, correlating with disease progression and age [41]. Mechanistic insights from
in vitro studies showed that Aβ peptides and oligomers induce mitochondrial damage and
VDAC1 upregulation (Figure 2) [42]. Notably, AβPP transgenic mice exhibited increased
levels of phosphorylated VDAC1 in hippocampal extracts [43], while AD brains showed
elevated nitrated VDAC1, indicating oxidative damage (Figure 2) [44].
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Figure 2. Proposed model for VDAC1 involvement in mitochondrial dysfunction in Alzheimer’s
disease. In AD, the expression of VDAC1 is altered, and the channel conductance is increased. Aβ

oligomers interact with VDAC1 at the plasma membrane through its N-terminal domain, leading
to the formation of a VDAC1-Aβ heterooligomer that facilitates Aβ entry into the cell. Once in the
cytosol, Aβ interacts with mitochondrial VDAC1, causing VDAC1 oligomerization [45]. Moreover,
VDAC1 directly interacts with phosphorylated tau (pTau), further contributing to mitochondrial
dysfunction. Finally, increased activity of GSK3β promotes its translocation to the mitochondria, and
the phosphorylation of VDAC1 at threonine 51 (Thr51). This phosphorylation causes the detachment
of HK from VDAC1, triggering cytochrome c release and promoting apoptotic cell death.

In addition to the elevated VDAC1 levels observed in AD cases, studies have demon-
strated that VDAC1 directly interacts with Aβ and phosphorylated tau, impairing the
opening and closing of mitochondrial pores, ultimately leading to mitochondrial dysfunc-
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tion [41]. Immunoprecipitation analysis using cortical protein lysates from AD postmortem
brains and transgenic APP and APP/PS1 mice revealed a 4 kDa Aβ and 100 kDa full-
length APP in VDAC1 immunoprecipitants [41]. Moreover, monomeric and oligomeric
Aβ from cortical protein lysates were detected in association with VDAC1 in severe AD
patients and older APP/APP/PS1 mice [24,41]. Smilansky and colleagues demonstrated a
direct interaction between Aβ and VDAC1 by surface plasmon resonance and microscale
thermophoresis. By assessing VDAC1 channel conductance using a planar lipid bilayer
system, it was shown that Aβ caused a twofold increase in channel conductance (Figure 2).
Additionally, it was found that a VDAC1 N-terminal peptide (VDAC1-N-Ter) inhibited Aβ

cell penetration and prevented Aβ-induced cell death [45]. The interaction between Aβ

and VDAC1 is likely driven by electrostatic forces, with negative charges on Aβ, positive
charges on the VDAC1 N-terminal domain, and hydrophobic interactions. Aβ contains
three GXXXG motifs, while VDAC1 has one at its N-terminus. These motifs are thought to
facilitate the interaction between the N-terminus of VDAC1 and the C-terminal region of
Aβ in AD neurons. Interestingly, VDAC1-interacting proteins like Bcl-xL and Bcl-2 also pos-
sess GXXXG motifs, suggesting a more comprehensive role for this motif in protein–protein
interactions [46]. Finally, a model was proposed for Aβ-induced, mitochondria-mediated
cell death. In this model, plasma membrane-localized VDAC1 (pl-VDAC1) interacts with
Aβ oligomers via its N-terminal domain, forming a pl-VDAC1-Aβ hetero-oligomer that
facilitates Aβ entry into the cell (Figure 2). Once in the cytosol, Aβ binds to the N-terminal
domain of mitochondrial VDAC1, promoting its oligomerization and, thus, leading to
cytochrome c release and apoptotic cell death (Figure 2) [14].

The interaction between abnormal, phosphorylated tau and VDAC1 was also shown
by immunoprecipitation using cortical protein lysates from AD patients and transgenic
APP/PS1, 3xTg.AD mice. VDAC1 was detected in phosphorylated tau immunoprecipita-
tion elutes and phosphorylated tau was observed in VDAC1 immunoprecipitants from the
brains of AD patients and transgenic mice. These results, confirmed by immunofluorescence
analysis, suggest a direct interaction between phosphorylated tau and VDAC1 [24,41].

As mentioned before, VDAC1 contributes to apoptosis in AD. One example of this
is the increased activity of glycogen synthase kinase 3 (GSK3β) that was observed in AD
resulting in increased Aβ production, and hyperphosphorylation of tau (Figure 2) [47].
GSK3β phosphorylates VDAC1, resulting in the detachment of hexokinase II (HKII) from
VDAC1 and disrupting cellular metabolism (Figure 2) [48]. When HK is associated with
VDAC1 in the OMM, it has direct access to ATP produced by the mitochondria, which
provides protection against apoptosis [49,50]. However, once HKII detaches from VDAC1,
it loses access to mitochondrial ATP, thereby decreasing the ATP available for glycolysis and
glucose metabolism, which increases the cells’ susceptibility to apoptosis. Moreover, Aβ

has been shown to induce HK detachment, initiating VDAC1 oligomerization, cytochrome
c release, and subsequent apoptosis [14].

To inhibit VDAC1 oligomerization, pro-apoptotic protein release, ROS production,
and increased intracellular Ca2+, Shoshan-Barmatz and colleagues developed two VDAC1-
interacting compounds, VBIT-4 and VBIT-12 [51]. These compounds have been shown to
prevent mitochondrial dysfunction and apoptosis in various mouse models with VDAC1
overexpressed, including type 2 diabetes [52], lupus [53], and colitis (Table 1) [54]. Addi-
tionally, it was found that VBIT-4 mitigated AD-related pathophysiological changes, such
as neuronal loss, neuroinflammation, and metabolic dysfunction. Targeting overexpressed
VDAC1 in AD prevents its oligomerization at an early stage of apoptosis and ameliorates
all tested AD-associated pathways [55].
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Table 1. Potential therapeutic agents for neurodegenerative diseases targeting mitochondrial function
via VDAC1.

Disease Potential Therapeutic
Agent Agent Structure Agent Description and Mechanism of

Action

AD, ALS VBIT-4
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Table 1. Cont.

Disease Potential Therapeutic
Agent Agent Structure Agent Description and Mechanism of

Action

ALS (10-20)N-Ter-Antp
peptide LGKSARDVFTK

VDAC1-N-terminal-derived peptide [13].
Binds mutant SOD1 and prevents its
association with VDAC1, thus inhibiting
its adverse effect on channels’ function
and, subsequently, reducing
mitochondrial dysfunction [62].

ALS NHK1 IAAQLLAYYFT

A synthetic peptide corresponding to the
first 11 amino acids of human HK1 [14].
Impairs the interaction between VDAC1
and SOD1G93A, improving mitochondrial
function and cell viability [63,64].

Moreover, a recent study suggests that reducing VDAC1 expression may alleviate
mitochondrial dysfunction in AD. In transgenic tau mice, partial reduction of VDAC1
decreased mitochondrial fission proteins and increased fusion proteins, along with elevated
mitochondrial protein biogenesis. These findings indicate that reducing VDAC1 expression
protects against tau-induced mitochondrial toxicity, offering potential therapeutic insights
for AD [65].

In summary, research has established VDAC1 as a key player in AD pathogenesis. Its
increased expression correlates with disease progression and aging, while its interactions
with Aβ and phosphorylated tau contribute to mitochondrial dysfunction and neuronal
death. The role of VDAC1 in apoptosis and energy metabolism further underscores its
importance in AD pathology. Recent studies targeting VDAC1 have shown promise in
mitigating AD-related symptoms in various models, highlighting its potential as both a
biomarker and a therapeutic target. Future research should focus on developing targeted
interventions to modulate VDAC1 function, potentially opening new avenues for AD
treatment and prevention.

3. VDAC1 in Parkinson’s Disease
Parkinson’s disease (PD) is a prevalent neurodegenerative disorder that leads to

significant disability and contributes to a growing global public health challenge, affecting
motor, non-motor, and cognitive functions [66]. PD impacts around 2–3% of individuals
over 65 years of age, with the number of cases increased from 2.5 million in 1990 to
6.2 million in 2015, and is expected to reach 12.9 million cases by 2040 [67]. About 25% of
individuals with PD have a disease onset before 65, and 5–10% before 50. The term “young
onset” refers to cases in which the disease starts before age 40 and possibly extends to
those under 50 [68]. Men are 1.5 times more likely to have PD than women [69]. Most PD
cases are sporadic, with only about 10% of patients indicating a family history [70]. Among
the six genes associated with heritable, monogenic PD, mutations in the genes SNCA
(PARK1) and LRRK2 (PARK8) are linked to autosomal-dominant forms, while mutations in
Parkin (PARK2), PINK1 (PARK6), DJ-1 (PARK7), and ATP13A2 (PARK9) are associated with
autosomal recessive inheritance [71]. Moreover, mutations in the glucocerebrosidase (GBA)
gene, which codes for a lysosomal enzyme implicated in Gaucher’s disease, have emerged
as a prominent risk factor for PD [72]. However, even the broadest estimates suggest that
the narrow-sense heritability of PD is approximately 27% [73], indicating that the risk of PD
is still primarily affected by environmental factors. The hallmark neuropathological feature
of PD is the progressive loss and degeneration of dopamine-producing neurons within the
substantia nigra (SN) [69]. These dying dopaminergic neurons contain Lewy bodies and
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Lewy neurites, which represent the final stage of a cellular process, beginning with small
α-synuclein aggregates observed in the neuron’s cytoplasm that then merge into diffused
pale bodies [74]. This merging leads to the formation of an aggregation seed, causing
diffused α-synuclein to aggregate into filaments that trap organelles such as mitochondria
and lysosomes [75–77]. Pathogenic mutations in α-synuclein accelerate the formation of
these aggregates, suggesting that α-synuclein dysfunction is an early event in both familial
and likely sporadic PD [78].

Both genetic and environmental factors are implicated in mitochondrial dysfunc-
tion in the pathogenesis of PD [79]. Epidemiological studies consistently demonstrate
an association between pesticide exposure and increased risk of PD, alongside reports of
drug-induced parkinsonism linked to methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
toxicity, indicating that specific toxins contribute to nigral damage through inhibition of
mitochondrial complex I. Furthermore, the application of neurotoxins to inhibit mitochon-
drial complex I in animal models has yielded mechanistic evidence supporting the link
between mitochondrial dysfunction and PD [79,80]. Complex I defects are a major cause of
apoptosis in neurons and are also thought to be one of the main causes of PD [81].

The relationship between mitochondrial dysfunction and PD also involves VDAC1,
which plays a role in regulating apoptosis and autophagy, as well as interacting with the
hallmark protein of the disease, α-synuclein [82]. Importantly, VDAC1 was found to be a
critical component for the PINK1–Parkin pathway [83]. In this process, PINK1 facilitates
Parkin recruitment to the mitochondria, initiating mitochondrial autophagy [84]. Parkin,
functioning as an E3 ubiquitin ligase, mediates the degradation of misfolded proteins [85].
A study by Ham and colleagues revealed that VDAC1 is a critical substrate of Parkin.
According to their research, Parkin can induce two distinct ubiquitination patterns on
VDAC1: monoubiquitination, which suppresses apoptotic pathways, and polyubiquitina-
tion, which facilitates mitophagy [83]. Notably, the Parkin T415N mutation, observed in PD
patients, fails to induce VDAC1 monoubiquitination in HEK-293T and mouse embryonic
fibroblasts (Figure 3) [83]. Crucially, VDAC1 monoubiquitination deficiency enhances
calcium influx via the mitochondrial calcium uniporter (MCU), consequently triggering
apoptotic pathways [83]. Additionally, flies expressing a Parkin mutant T433N (analogous
to the human T415N mutation) failed to prevent apoptosis, mirroring the cell culture find-
ings. These flies exhibited decreased locomotor activity, altered mitochondrial morphology,
and degeneration of dopaminergic neurons, similar to the symptoms observed in PD [83].
Moreover, transgenic flies expressing a VDAC1 mutant deficient in monoubiquitination
(corresponding to human VDAC1K274R) displayed PD-like symptoms, including impaired
movement, loss of dopaminergic neurons, and increased muscle apoptosis [83]. Thus,
this study emphasizes the critical role of closely regulating VDAC1-mediated apoptosis
in the pathogenesis of PD. In addition, VDAC1, by acting as a ROS sensor, modulates
apoptosis through the regulation of the mitochondrial permeability transition pore (mPTP),
a complex located in the inner and outer mitochondrial membrane whose opening is crucial
for initiating cell death pathways [86].

In addition, VDAC1 serves as a crucial constituent of the IP3R3-Grp75-VDAC1 com-
plex, which localizes to mitochondria-associated membranes (MAM) [87]. These specialized
subcellular domains represent critical crosstalk points between the ER and mitochon-
dria [88]. Notably, depletion of DJ-1 results in the destabilization of this macromolecular
complex, consequently impairing ER–mitochondria communication (Figure 3). This dis-
ruption leads to compromised mitochondrial calcium homeostasis, specifically manifesting
as reduced calcium uptake into the mitochondrial matrix, ultimately culminating in mito-
chondrial dysfunction [87].
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Figure 3. Proposed model for VDAC1 involvement in mitochondrial dysfunction in Parkinson’s
disease. In PD, VDAC1 altered expression and its interactions with α-synuclein (α-syn) disrupt
mitochondrial function. This interaction enables α-synuclein translocation and accumulation to
the mitochondria, modulating VDAC1 permeability and increasing selective calcium flux through
the VDAC1 channel, leading to mitochondrial calcium overload, dysfunction, and subsequent cell
death. Additionally, VDAC1 is involved in the IP3R3-Grp75-VDAC1 complex at mitochondria-
associated membranes (MAM), which mediates calcium transfer from the endoplasmic reticulum
(ER) to mitochondria. This complex is destabilized by the loss of DJ-1, impairing ER–mitochondria
calcium homeostasis. Mutations in Parkin inhibit VDAC1 monoubiquitination, leading to increased
mitochondrial calcium influx and apoptosis, reflecting PD pathology. HK detachment from VDAC1
results in cytochrome c release, amplifying apoptotic signaling. In addition, defects in complex I of
the electron transport chain are a major cause of mitochondrial malfunction in PD.

In neurons, α-synuclein has been shown to bind all three VDAC isoforms [82] with
the highest affinity to VDAC1 [89]. Also, single-channel electrophysiology experiments
show that monomeric α-synuclein can transiently block and translocate through all VDAC
isoforms [82]. Previous studies have demonstrated a direct interaction between VDAC1
and α-synuclein, suggesting that this interaction enables α-synuclein to translocate into the
mitochondria (Figure 3) [90]. Furthermore, overexpression of α-synuclein in the SN of rats
can lead to the degeneration of dopaminergic neurons by triggering an interaction between
α-synuclein and VDAC1, causing changes in the mPTP, resulting in cell death [91]. It has
been demonstrated that α-synuclein binding modulates VDAC1 permeability by increasing
its selectivity for calcium. This results in an enhanced flux of Ca2+ through the channel,
leading to mitochondrial dysfunction and cell death (Figure 3) [92].

Interestingly, while alterations in VDAC1 protein levels are well documented in var-
ious neurodegenerative disorders [43], findings specific to PD remain inconsistent. For
example, Chu and colleagues found that VDAC1 expression was significantly reduced in
nigral neurons of PD patients and in rat models overexpressing the mutant α-synuclein
A30P [93]. Supporting these findings, a different study reported a marked decrease in
VDAC1 and VDAC2 levels in SNpc samples from PD patients and in SH-SY5Y neuroblas-
toma cells treated with dopamine [94]. In contrast, treatment with rotenone or 1-methyl-4-
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phenylpyridinium (MPP+), increased VDAC1 and VDAC2 protein levels by approximately
50% in SH-SY5Y cells [94,95]. Additionally, elevated VDAC1 expression has been ob-
served in the striatum and cortex of Parkin knockout mice [96], as well as in extracts from
6-hydroxydopamine lesions (Figure 3) [97].

Given the pivotal function of VDAC1 in regulating metabolic exchange across the
OMM and its critical role in the cell apoptotic cascade, this protein represents a promising
therapeutic target for various pathological conditions, including PD. For instance, ole-
soxime, a compound that interacts with the VDAC1 β-barrel at the lipid-protein interface,
hinders the translocation of α-synuclein through the VDAC1 pore, thereby preventing
mitochondrial dysfunction and the production of ROS associated with α-synuclein accu-
mulation in mitochondria (Table 1) [58]. In addition, 4-Phenylbutyrate (4-PBA) [60] was
examined as a possible therapeutic agent in a rotenone-induced PD rat model. Notably,
4-PBA prevented VDAC1 upregulation and subsequent cytochrome c release, thereby
preserving mitochondrial function and preventing neuronal apoptosis (Table 1) [61]. This
molecule significantly ameliorated motor deficits, reduced α-synuclein accumulation, and
restored dopamine levels in the nigrostriatal pathway. Similarly, resveratrol, a potent antioxi-
dant and neuroprotective agent, was found by Feng and colleagues to have neuroprotective
effects in α-synuclein A53T transgenic mice through VDAC1 regulation. In their study,
resveratrol treatment improved motor and cognitive function while reducing VDAC1 expres-
sion and its interaction with α-synuclein (Table 1). This reduction in VDAC1-α-synuclein
co-localization prevented mitochondrial dysfunction by decreasing mPTP opening, oxida-
tive stress, and α-synuclein aggregation [98]. Finally, these findings implicate VDAC1 as a
promising therapeutic target for PD via modulation of mitochondrial pathways.

4. VDAC1 in Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal late-onset neurodegenerative disease,

characterized by the loss of upper and lower motor neurons (MNs) in the brain and spinal
cord. MN degeneration causes progressive denervation of skeletal muscles, resulting in
muscle weakness, atrophy, and paralysis, which eventually leads to death from respiratory
failure within 2–5 years after disease onset [99,100]. Most ALS cases, roughly 90%, are
classified as sporadic (sALS), with no apparent family history of the disease, while the
remaining 10% are categorized as familial cases (fALS) [101], attributed to mutations in
more than 40 different genes [102]; among them are superoxide dismutase 1 (SOD1), chromo-
some 9 open reading frame 72 (C9orf72), and TAR DNA-binding protein 43 (TDP-43) [99,102].
Multiple cellular deficits are implicated in both sporadic and familial ALS, including im-
paired proteostasis and protein aggregation [103–105], increased oxidative stress [106,107],
excitotoxicity [108], and neuroinflammation [109–111].

Altered mitochondrial function [99,112–115], structural abnormalities of the mito-
chondria [115–117], and disruption of mitochondrial axonal transport [115,118], have also
been reported as ALS-associated mechanisms. These manifest predominantly as energy
production impairments, disruption of calcium homeostasis, and activation of apopto-
sis [99,119]. Recent studies, utilizing fibroblasts from ALS patients and iPSC-derived MNs,
have reported impairments in the mitochondrial respiratory chain function and ATP pro-
duction [120], as well as elevated levels of oxidative stress [121]. Furthermore, aberrant
proteins involved in ALS pathogenesis were shown to interact with the mitochondria,
causing mitochondrial dysfunction [117,121–123].

Both dismutase active and inactive SOD1 mutants were found to selectively interact
with VDAC1 in the spinal cord, but not the brain or liver mitochondria of symptomatic
SOD1G93A or SOD1H46R rats (Figure 4) [123]. This interaction, through the N-terminal
domain of VDAC1 [62] with 28–61 residues in SOD1 [56], reduces VDAC1 channel conduc-
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tance, as demonstrated using reconstituted VDAC1 into a planar lipid bilayer [63,123], and
suppresses ADP transport across the OMM, suggesting a reduction in energy supply to
the spinal MNs [123]. Importantly, reducing VDAC1 activity by targeted gene disruption
was shown to accelerate disease onset and diminish the survival of mutant SOD1G37R

mice [123]. Moreover, VDAC1 is the receptor for Hexokinase I (HKI) enzyme, which is
important for energy production [124], and its interaction with VDAC1 has a protective
effect against apoptotic cell death [125–127]. Mutant SOD1G93A competes with HKI for its
VDAC1 binding site, suggesting that the SOD1-VDAC1 association docks mitochondria
and promotes its dysfunction (Figure 4) [63]. Decreased flux of metabolites through VDAC1
and the competition between SOD1 and HKI, likely reduce energy production and regulate
apoptotic intrinsic pathways, leading to mitochondrial dysfunction [63,123].

Biomolecules 2025, 15, x FOR PEER REVIEW 11 of 22 
 

are classified as sporadic (sALS), with no apparent family history of the disease, while the 
remaining 10% are categorized as familial cases (fALS) [101], attributed to mutations in 
more than 40 different genes [102]; among them are superoxide dismutase 1 (SOD1), chro-
mosome 9 open reading frame 72 (C9orf72), and TAR DNA-binding protein 43 (TDP-43) 
[99,102]. Multiple cellular deficits are implicated in both sporadic and familial ALS, in-
cluding impaired proteostasis and protein aggregation [103–105], increased oxidative 
stress [106,107], excitotoxicity [108], and neuroinflammation [109–111]. 

Altered mitochondrial function [99,112–115], structural abnormalities of the mito-
chondria [115–117], and disruption of mitochondrial axonal transport [115,118], have also 
been reported as ALS-associated mechanisms. These manifest predominantly as energy 
production impairments, disruption of calcium homeostasis, and activation of apoptosis 
[99,119]. Recent studies, utilizing fibroblasts from ALS patients and iPSC-derived MNs, 
have reported impairments in the mitochondrial respiratory chain function and ATP pro-
duction [120], as well as elevated levels of oxidative stress [121]. Furthermore, aberrant 
proteins involved in ALS pathogenesis were shown to interact with the mitochondria, 
causing mitochondrial dysfunction [117,121–123]. 

Both dismutase active and inactive SOD1 mutants were found to selectively interact 
with VDAC1 in the spinal cord, but not the brain or liver mitochondria of symptomatic 
SOD1G93A or SOD1H46R rats (Figure 4) [123]. This interaction, through the N-terminal do-
main of VDAC1 [62] with 28–61 residues in SOD1 [56], reduces VDAC1 channel conduct-
ance, as demonstrated using reconstituted VDAC1 into a planar lipid bilayer [63,123], and 
suppresses ADP transport across the OMM, suggesting a reduction in energy supply to 
the spinal MNs [123]. Importantly, reducing VDAC1 activity by targeted gene disruption 
was shown to accelerate disease onset and diminish the survival of mutant SOD1G37R mice 
[123]. Moreover, VDAC1 is the receptor for Hexokinase I (HKI) enzyme, which is im-
portant for energy production [124], and its interaction with VDAC1 has a protective effect 
against apoptotic cell death [125–127]. Mutant SOD1G93A competes with HKI for its 
VDAC1 binding site, suggesting that the SOD1-VDAC1 association docks mitochondria 
and promotes its dysfunction (Figure 4) [63]. Decreased flux of metabolites through 
VDAC1 and the competition between SOD1 and HKI, likely reduce energy production 
and regulate apoptotic intrinsic pathways, leading to mitochondrial dysfunction [63,123]. 

 

Figure 4. Proposed model for VDAC1 involvement in mitochondrial dysfunction in ALS. In ALS, 
mutant SOD1 interacts with VDAC1 through its N-terminal domain, leading to the detachment of 
HK1 from the channel. In addition, the association between mutant SOD1 and Bcl-2 disrupts the 

Figure 4. Proposed model for VDAC1 involvement in mitochondrial dysfunction in ALS. In ALS,
mutant SOD1 interacts with VDAC1 through its N-terminal domain, leading to the detachment
of HK1 from the channel. In addition, the association between mutant SOD1 and Bcl-2 disrupts
the association between Bcl-2 and VDAC1. Moreover, VDAC1 oligomerization levels are elevated,
channel conductance is reduced, and VDAC1 undergoes specific Asn207 deamidation and Met155

oxidation. In TDP-43-related ALS, TDP-43 mislocalizes into the mitochondria and interacts with
VDAC1, resulting in aberrant mtDNA release to the cytosol.

To better understand mutant SOD1–VDAC1 interaction, post-translational modifica-
tions in VDAC1 were recently analyzed by using high-resolution mass spectrometry [128].
VDAC1 was shown to undergo specific oxidations and deamidations (Figure 4), exclusively
in NSC-34-SOD1G93A cells, changing the channel’s structure. These alternations affect
VDAC1 physiological function, which, in turn, promotes mitochondrial dysfunction and,
presumably, tags mitochondria with deaminated VDAC1 for mitophagy [128].

Nevertheless, it was proposed that VDAC1 is a downstream target for the association
between mutant SOD1 and Bcl-2 [129], an ordinarily pro-survival mitochondrial protein that
interacts with VDAC1. Co-immunoprecipitation experiments [129,130] in HEK293T cells,
which do not express endogenous Bcl-2 [131], revealed that as Bcl-2 expression increases,
the amount of mutant SOD1 pulled down with VDAC1 decreases, suggesting that SOD1
and VDAC1 compete for Bcl-2 binding [129]. In addition, knocking down VDAC1 with
siRNAs did not affect SOD1/Bcl-2 interaction in those cells. Another interesting finding
was that in cells expressing SOD1G93A and VDAC1, but not Bcl-2, VDAC1 conductance
was not significantly reduced, whereas co-expression of SOD1G93A and Bcl-2 reduced
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channel conductance by about 40% [129]. Moreover, VDAC1-Bcl-2 binding increased as
the disease progressed in SOD1G93A mice due to disease-driven conformational changes in
Bcl-2 structure, induced by mutant SOD1/Bcl-2 association [129,131]. Taken together, these
results imply that mutant SOD1 targets VDAC1 through aberrant interaction with Bcl-2
(Figure 4) and that mutant SOD1 requires Bcl-2 to influence VDAC1 gating properties [129].

Understating mutant SOD1–VDAC1 interaction paves the way to new avenues for the
development of novel therapeutic strategies. Indeed, synthetic cell-penetrating VDAC1-N-
terminal-derived peptides were tested for their potential to prevent mutant SOD1-mediated
toxicity in vitro [62]. Specifically, (10-20)N-Ter-Antp peptide significantly reduced apoptosis
and increased cell viability of SOD1G93A or SOD1G37R expressing NSC-34 cells. Moreover,
in SH-SY5Y neuronal-like cells, the co-localization of misfolded SOD1 with VDAC1 was
extensively reduced after (10-20)N-Ter-Antp incubation. Likewise, SOD1G93A-expressing
mESC-derived MNs incubated with (10-20)N-Ter-Antp peptide presented significantly
increased MN neurite outgrow, improved MN density, and extended survival (Table 1) [62].

Another two VDAC1-specific small molecules, VBIT-4 and VBIT-12, were recently
tested as therapeutic targets for ALS, both in vitro and in vivo (Table 1) [56]. The two
molecules were previously reported to prevent VDAC1 oligomerization, a process result-
ing in the release of pro-apoptotic proteins, leading to cell death [51]. In fact, VDAC1
oligomeric levels were elevated in mitochondria isolated from SOD1G93A mice and rats’
spinal cord [56]. Incubating mitochondria isolated from SOD1G93A mice with VBIT-4 in-
hibited the oligomerization of VDAC1. Additionally, in SOD1G93A-expressing NSC-34
cells, VBIT-12 incubation partially prevented mutant SOD1 cell toxicity. However, treating
SOD1G93A mice with VBIT-4 or VBIT-12 administered to their drinking water had no effect
on disease onset or survival, even though some improvement in muscle endurance was
observed in mice treated with VBIT-12. Although intraperitoneal (IP) administration of
VBIT-12 showed a positive, but not significant, tendency in delaying disease onset and
survival of SOD1G93A mice, the treated mice retained their limb muscle strength for a
significantly extended period of time [56].

Although VDAC1 levels were found to be significantly higher in pre-symptomatic
and symptomatic SOD1G93A mice, specifically in spinal MNs [56], upregulation of VDAC1
was recently tested as a therapeutic approach for mutant SOD1 mice [132]. VDAC1 overex-
pression by AAV2/5 vector, directly injected into the spinal cord of neonatal pups, restored
mitochondrial respiratory profile, probably by affecting the function of complex I enzymes,
mitochondrial sirtuins, and the receptor subunit of the translocase of the outer membrane
(TOM) complex, Tom20 [132]. The influence of VDAC1 upregulation on disease onset,
progression, and mice survival was not indicated.

NHK1, a synthetic peptide corresponding to the first 11 amino acids of human HK1,
was also proposed as a tool to impair the formation of VDAC1-SOD1G93A complexes [63,64].
NHK1 peptide interacts with VDAC1 [63,64] and restores mitochondrial dysfunction by
modulating channel conductance [63] and improving the respiratory profile of the mitochon-
dria, specifically by increasing the ATP-linked oxygen flows [64] and partially recovering
mitochondrial potential variation [63]. The ability of NHK1 to impair VDAC1-SOD1G93A

interaction reduces the accumulation of toxic SOD1G93A mitochondrial aggregates [63,64],
increases VDAC1 protein levels, and recovers cell viability (Table 1) [64].

Furthermore, the cholesterol-like compound, olesoxime (TRO19622), which interacts
with VDAC showed positive outcomes when tested both in vitro and in vivo [59]. Ole-
soxime presented a neuroprotective effect on the survival of rat embryonic MNs and it
accelerated the regenerative processes followed by lesions of the sciatic nerve in adult mice.
This neuroprotective effect might be related to its ability to slow down neuromuscular junc-
tion (NMJ) denervation, as well as astrogliosis and microgliosis activation (Table 1) [133].
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Based on the above findings, olesoxime treatment was further tested in SOD1G93A mice.
Olesoxime administration successfully delayed the onset of body weight decline and motor
function and significantly increased mice’s life span by 10% [59]; however, it failed to
significantly improve the symptoms or survival of ALS patients [134].

Notably, VDAC1 was recently linked to other forms of fALS. First, Yu and colleagues
used iPSC-derived MNs from patients carrying TDP-43 mutations and showed that in-
hibiting VDAC1 oligomerization with VBIT-4 treatment prevents leakage of mtDNA into
the cytosol [57]. Moreover, in mouse embryonic fibroblasts (MEFs) overexpressing TDP-
43, VDAC1 knockout prevented the expression of Ifnb1 and Tnf, innate immune-related
factors [57]. In HEK293T cells, TDP-43 was found to interact with several mitochondrial
proteins, including VDAC1 [135]. These observations suggest that in ALS pathogenesis,
TDP-43 can mislocalize into the mitochondria, interact with VDAC1, and cause cytosolic
accumulation of mtDNA (Figure 4) [57,135]. Furthermore, VDAC1 is known to be involved
in the crosstalk between the mitochondria and ER. Specifically, glucose-related protein
75 (GRP75) mediates the interaction between VDAC1 and IP3R, directly promoting mito-
chondria Ca2+ uptake [136]. In a recent study that investigated early ER stress-induced
adaptive mechanisms, 2-week-old iPSC-derived MNs from C9orf72-ALS/FTD patients had
elevated GRP75 transcripts, accompanied by elevated VDAC1 transcripts and increased
IP3R-VDAC1 interaction [137]. Interestingly, in spinal cord of C9-500 mice, IP3R-VDAC1
association was increased at P125, followed by a decrease at P240, coinciding with GRP75
expression levels. Sustaining high GRP75 expression in C9-500 mice by AAV6-GRP75 injec-
tion prevented ER stress, normalized mitochondrial function, and enhanced IP3R-VDAC1
interaction [137]. Supporting these results, another study has recently reported a nonsignif-
icant elevation of VDAC1 levels in skin fibroblasts of C9orf72-ALS/FTD patients; however,
this was connected to increased oxidative stress and mitochondrial dysfunction [138]. Taken
together, these observations strengthen the notion that neurons in C9orf72-ALS/FTD are
susceptible to ER–mitochondrial dysfunction and that GRP75 serves as a critical endoge-
nous neuroprotective factor by mediating IP3R-VDAC1 interaction [137].

In summary, the involvement of VDAC1 in ALS-related pathogenesis was described
in several types of fALS, but it is mainly mediated through its interaction with mutant
SOD1. This interaction impairs VDAC1 association with other proteins, alters channel
function(s), and, consequently, prompts mitochondrial dysfunction. Elevated expression of
VDAC1 in pre-symptomatic and symptomatic SOD1G93A mice highlights the importance
of VDAC1 in disease development. Importantly, several approaches were suggested to
interfere with aberrant VDAC1-SOD1 interaction, thereby restoring mitochondrial function
and improving cellular deficits. Testing those candidates targeting VDAC1 in vivo may
serve as a potential therapeutic strategy in ALS.

5. VDAC1 in Other Neurodegenerative Conditions
VDAC1 has also been associated with the pathological mechanisms involved in other

neurodegenerative diseases, such as Huntington’s disease (HD), a neurodegenerative disorder
caused by repeat expansions in the huntingtin (HTT) gene [139,140]. In HD, the formation
of mutant HTT protein leads to neuronal loss in the striatum, cortex, and hypothalamus,
resulting in involuntary movements, cognitive decline, and psychiatric disturbances [139,140].
VDAC1 channel conductance was found to be reduced in mutant HTT-expressing PC12
cells [141]. In addition, in a rat model of HD, 3-NP disrupts mitochondrial dynamics and
ER–mitochondria crosstalk in the striatum, increases VDAC1 expression [142], and inhibits
VDAC1 conductance, thereby altering mitochondrial Ca2+ influx [143].

As previously discussed regarding ALS, olesoxime which binds VDAC [59,144], was
also tested as a therapeutic strategy for spinal muscular atrophy (SMA), a motor neuron
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disease in which SMN protein deficiency results in NMJ degeneration and loss of spinal
MNs [144]. Following the subcutaneous injection of olesoxime, which significantly in-
creased lifespan in a relevant mouse model, a Phase 2 trial has confirmed human safety and
tolerance [145]. Unfortunately, a long-term follow-up revealed olesoxime was ineffective
in slowing functional decline [146], and the development of olesoxime as a treatment for
SMA has been suspended.

Recently, an age-dependent decrease in VDAC1 protein expression in aged mice brains
was reported, corresponding to hippocampal neurodegeneration and, subsequently, recog-
nition memory impairments during aging [147]. In Batten disease, the most common
autosomal-recessive neurodegenerative childhood disease, VDAC1 showed protein ex-
pression changes in the thalamus of early-symptomatic mice, which correlated with the
initiation of neuronal pathology, suggesting that VDAC1 can be used as an early biomarker
of modified axonal and synaptic vulnerability [148].

6. Conclusions
Finally, VDAC1 plays a pivotal role in mitochondrial dysfunction, as observed across

various neurodegenerative diseases, including AD, PD, ALS, and others. By modulat-
ing mitochondrial permeability and participating in the regulation of apoptosis, VDAC1
significantly impacts neuronal survival under disease conditions. The findings reviewed
here emphasize that targeting VDAC1 interactions, such as those with amyloid-beta, α-
synuclein, mutant SOD1, and TDP-43, can potentially restore mitochondrial health and
cellular energy balance. Moreover, altered VDAC1 expression, increased oligomerization,
and dysregulated calcium flux are common among these diseases, leading to mitochondrial
stress, ROS production, and cell death.

Several VDAC1-targeting compounds, such as VBIT-4, VBIT-12, resveratrol, and
olesoxime, have demonstrated neuroprotective effects by restoring mitochondrial function,
reducing ROS production, and inhibiting pathogenic protein interactions in preclinical
models of AD, PD, and ALS. These therapeutic strategies highlight VDAC1’s potential to
ameliorate mitochondrial dysfunction and neurodegeneration.

Future therapeutic strategies targeting VDAC1 could offer promising solutions for
mitigating mitochondrial dysfunction, thus slowing down the progression of neurode-
generation and paving the way for more effective treatments. Integrating small-molecule
inhibitors, peptide-based therapies, and genetic tool strategies will further expand thera-
peutic options. Moreover, applying advanced drug delivery systems, such as nanoparticles,
could enhance the bioavailability and efficacy of VDAC1-targeted therapies. Continued
research focusing on the interplay between VDAC1 and disease-specific proteins, ER–
mitochondria crosstalk, and mitochondrial quality control pathways will be essential in
uncovering novel mechanisms and refining therapeutic approaches. Together, these pro-
gressions hold significant potential to revolutionize the treatment of neurodegenerative
diseases, offering hope for improved patient outcomes and disease management.
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