RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory
Abstract
:1. Concept of RNA-Mediated Inheritance
Memories of the Species
2. Experimental Evidence
3. Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindsay, S.J.; Rahbari, R.; Kaplanis, J.; Keane, T.; Hurles, M.E. Similarities and differences in patterns of germline mutation between mice and humans. Nat. Commun. 2019, 10, 4053. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Whitelaw, E. Epigenetic germline inheritance. Curr. Opin. Genet. Dev. 2004, 14, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fraticelli, A.E. Tumbling bacteria and non-genetic individuality. Nat. Rev. Genet. 2024, 25, 826. Available online: https://www.nature.com/articles/s41576-024-00779-x (accessed on 11 February 2025). [CrossRef]
- Capovilla, M.; Robichon, A.; Rassoulzadegan, M. A new paramutation-like example at the Delta gene of Drosophila. PLoS ONE 2017, 12, e0172780. [Google Scholar] [CrossRef]
- Brink, R.A. Paramutation. Annu. Rev. Genet. 1973, 7, 129–152. [Google Scholar] [CrossRef]
- Rassoulzadegan, M.; Grandjean, V.; Gounon, P.; Vincent, S.; Gillot, I.; Cuzin, F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006, 441, 469–474. [Google Scholar] [CrossRef]
- Ozkul, Y.; Taheri, S.; Bayram, K.K.; Sener, E.F.; Mehmetbeyoglu, E.; Öztop, D.B.; Aybuga, F.; Tufan, E.; Bayram, A.; Dolu, N.; et al. A heritable profile of six miRNAs in autistic patients and mouse models. Sci. Rep. 2020, 10, 9011. [Google Scholar] [CrossRef] [PubMed]
- Ross, L. From Mendel’s laws to non-Mendelian inheritance. Nat. Rev. Genet. 2024, 25, 677. [Google Scholar]
- Strome, S.; Bhalla, N.; Kamakaka, R.; Sharma, U.; Sullivan, W. Clarifying Mendelian vs non-Mendelian inheritance. Genetics 2024, 227, iyae078. [Google Scholar] [CrossRef]
- Andergassen, D.; Rinn, J.L. From genotype to phenotype: Genetics of mammalian long non-coding RNAs in vivo. Nat. Rev. Genet. 2022, 23, 229–243. [Google Scholar] [CrossRef]
- Mattick, J.S. RNA out of the mist. Trends Genet. 2023, 39, 187–207. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Koonin, E.V. Functional Long Non-coding RNAs Evolve from Junk Transcripts. Cell 2020, 183, 1151–1161. [Google Scholar] [CrossRef]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Kiani, J.; Grandjean, V.; Liebers, R.; Tuorto, F.; Ghanbarian, H.; Lyko, F.; Cuzin, F.; Rassoulzadegan, M. RNA-Mediated Epigenetic Heredity Requires the Cytosine Methyltransferase Dnmt2. PLoS Genet. 2013, 9, e1003498. [Google Scholar] [CrossRef]
- Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science 2018, 361, 1346–1349. [Google Scholar] [CrossRef]
- Rassoulzadegan, M.; Sharifi-Zarchi, A.; Kianmehr, L. DNA-RNA Hybrid (R-Loop): From a Unified Picture of the Mammalian Telomere to the Genome-Wide Profile. Cells 2021, 10, 1556. [Google Scholar] [CrossRef]
- Cao, S.; Wang, L.; Han, T.; Ye, W.; Liu, Y.; Sun, Y.; Moose, S.P.; Song, Q.; Chen, Z.J. Small RNAs mediate transgenerational inheritance of genome-wide trans-acting epialleles in maize Background. Genome Biol. 2021, 23, 1–25. [Google Scholar]
- Sidorenko, L.V.; Chandler, V.L.; Wang, X.; Peterson, T. Transcribed enhancer sequences are required for maize p1 paramutation. Genetics 2024, 226, iyad178. [Google Scholar] [CrossRef] [PubMed]
- Luna, R.; Gómez-González, B.; Aguilera, A. RNA biogenesis and RNA metabolism factors as R-loop suppressors: A hidden role in genome integrity. Genes Dev. 2024, 38, 504–527. [Google Scholar] [CrossRef]
- Struhl, K. The distinction between epigenetics and epigenomics. Trends Genet. 2024, 40, 995–997. [Google Scholar] [CrossRef]
- Darwin, C. The Origin of Species: A Variorum Text; University of Pennsylvania Press: Philadelphia, PA, USA, 1959. [Google Scholar]
- Yilmaz Sukranli, Z.; Bayram, K.K.; Taheri, S.; Cuzin, F.; Ozkul, Y.; Rassoulzadegan, M. Experimentally altering microRNA levels in embryos alters adult phenotypes. Sci. Rep. 2024, 14, 19014. [Google Scholar] [CrossRef] [PubMed]
- Kleaveland, B.; Shi, C.Y.; Stefano, J.; Bartel, D.P. A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain. Cell 2018, 174, 350–362.e17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fan, M.; Zhang, X.; Huang, F.; Wu, K.; Zhang, J.; Liu, J.; Huang, Z.; Luo, H.; Tao, L.; et al. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA 2014, 20, 1878–1889. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.-H.; Peng, H.; Zhang, X.; Zhang, Y.; et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016, 351, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Conine, C.C.; Rando, O.J. Soma-to-germline RNA communication. Nat. Rev. Genet. 2022, 23, 73–88. [Google Scholar] [CrossRef]
- Gapp, K.; van Steenwyk, G.; Germain, P.L.; Matsushima, W.; Rudolph, K.L.M.; Manuella, F.; Roszkowski, M.; Vernaz, G.; Ghosh, T.; Pelczar, P.; et al. Alterations in sperm long RNA contribute to the epigenetic inheritance of the effects of postnatal trauma. Mol. Psychiatry 2018, 25, 2162–2174. [Google Scholar] [CrossRef]
- Grandjean, V.; Fourré, S.; De Abreu, D.A.F.; Derieppe, M.-A.; Remy, J.-J.; Rassoulzadegan, M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 2015, 5, 18193. [Google Scholar] [CrossRef]
- Satir-Basaran, G.; Akbarova, Y.; Korkmaz, K.; Unluhizarci, K.; Cuzin, F.; Kelestimur, F.; Rassoulzadegan, M. Mouse Paternal RNAs Initiate a Pattern of Metabolic Disorders in a Line-Dependent Manner. Front. Genet. 2022, 13, 839841. [Google Scholar] [CrossRef]
- Hinte, L.C.; Castellano-Castillo, D.; Ghosh, A.; Melrose, K.; Gasser, E.; Noé, F.; Massier, L.; Dong, H.; Sun, W.; Hoffmann, A.; et al. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature 2024, 636, 457–465. [Google Scholar] [CrossRef]
- Nätt, D.; Kugelberg, U.; Casas, E.; Nedstrand, E.; Zalavary, S.; Henriksson, P.; Nijm, C.; Jäderquist, J.; Sandborg, J.; Flinke, E.; et al. Human sperm displays rapid responses to diet. PLoS Biol. 2019, 17, e3000559. [Google Scholar] [CrossRef]
- Pang, T.Y.; Short, A.K.; Bredy, T.W.; Hannan, A.J. Transgenerational paternal transmission of acquired traits: Stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr. Opin. Behav. Sci. 2017, 14, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Rassoulzadegan, M.; Grandjean, V.; Gounon, P.; Cuzin, F. Sperm RNA, an “Epigenetic rheostat” of gene expression? Arch. Androl. 2007, 53, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Chandler, V.L.; Eggleston, W.B.; Dorweiler, J.E. Paramutation in maize. Plant Mol. Biol. 2000, 43, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Kawaji, H.; Grandjean, V.; Kiani, J.; Rassoulzadegan, M. Novel Small Noncoding RNAs in Mouse Spermatozoa, Zygotes and Early Embryos. PLoS ONE 2012, 7, e44542. [Google Scholar] [CrossRef]
- Liu, Y. Darwin’s Pangenesis: A Theory of Everything? Adv. Genet. 2018, 101, 1–30. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rassoulzadegan, M. RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory. Biomolecules 2025, 15, 605. https://doi.org/10.3390/biom15040605
Rassoulzadegan M. RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory. Biomolecules. 2025; 15(4):605. https://doi.org/10.3390/biom15040605
Chicago/Turabian StyleRassoulzadegan, Minoo. 2025. "RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory" Biomolecules 15, no. 4: 605. https://doi.org/10.3390/biom15040605
APA StyleRassoulzadegan, M. (2025). RNA-Mediated Non-Mendelian Inheritance in Mice: The Power of Memory. Biomolecules, 15(4), 605. https://doi.org/10.3390/biom15040605