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Abstract: DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome,  
a protein complex involved in the 3' to 5' degradation and processing of both nuclear and 
cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be 
implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is 
recurrently mutated in 11% of multiple myeloma patients. Much work has been done to 
elucidate the structural and biochemical characteristics of DIS3, including the mechanistic 
details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand 
how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the 
function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and 
Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and 
microtubule assembly. DIS3 has also recently been implicated in antibody diversification of 
mouse B-cells. This article aims to review current knowledge of the structure, mechanisms 
and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma 
patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis. 
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1. Introduction 

A fine balance must be achieved between the synthesis and degradation of RNAs in the cell. Mutations 
that cause defects in RNA turnover can have significant consequences on cellular function [1–4]. 
Transcriptional control provides one means by which to regulate gene expression but post-transcriptional 
gene regulation through RNA degradation is also critical. RNA degradation involves a number of 
complex and interconnected pathways that all converge on common mechanisms of decay, through the 
recruitment of ribonucleases. As well as functioning in RNA turnover as a means of gene regulation, 
ribonucleases also function to remove aberrant mRNAs to prevent accumulation of toxic protein 
products. Moreover, the majority of primary transcripts are subject to exo or endonucleolytic processing 
by ribonucleases to produce mature RNAs that have diverse functions within the cell. 

DIS3 is a highly conserved 3' to 5' exoribonuclease that provides catalytic activity to a multi-subunit 
complex, the exosome [5]. A large number of studies have elucidated the biochemical and structural 
characteristics of DIS3 as well as its mechanism of action in various RNA processing pathways.  
DIS3 has a diverse range of functions within RNA metabolism including mRNA quality control [6,7] 
regulation of gene expression [8,9] and small RNA processing [10,11]. Studies using mutant phenotypes 
have also revealed functions of DIS3 at the organismal level such as chromosome segregation [12,13], 
cell-cycle progression [14,15], spindle assembly [16] and even the diversification of antibodies in  
B-cells [17]. Gene expression profiling studies have shown aberrant expression of DIS3 in a small range 
of different cancers [18–24] and recently whole genome/whole exome and amplicon sequencing studies 
have revealed DIS3 to be recurrently mutated in multiple myeloma [25–29]. However, whether DIS3 is an 
oncogene or tumour-suppressor gene remains to be proven by functional investigations. Additionally, 
more genome-sequencing studies may help reveal patterns of mutation exclusivity and/or cooperation 
thus enhancing functional insight into the role of DIS3 mutations in oncogenesis. 

This article aims to review the current knowledge of DIS3. We will discuss the structural and catalytic 
properties of DIS3, as well as its molecular and biological functions, role in disease and common genetic 
patterns observed in patients, in order to provide a basis on which to investigate the role of DIS3 in 
cancer progression. 

2. Conservation, Structure, Mechanistic Functions and Sub-Cellular Localisation of DIS3 

DIS3 was first discovered in S. pombe mutants that were defective in sister chromatid disjoining [12]. 
Orthologues of DIS3 belong to the RNase II/RNR superfamily and exist in most organisms from bacteria 
to humans [30]. Members of this family show very high sequence conservation as well as functional 
conservation as demonstrated by the genetic complementation of mutant yeast Dis3 (Rrp44) with the 
human homologue [10,11]. Some eukaryotes have more than one homologue. The domain architecture 
differs slightly between homologues (Figure 1, see [31] for more detail on domain composition). Human 
DIS3 has an exonucleolytic RNB domain, two cold shock domains (CSDS) and an S1 domain which 
non-specifically bind RNA and an endonucleolytic PIN domain [31–33]. At the N-terminus a CR3 motif 
consisting of three cysteine residues, has an important structural role [34]. Humans also contain two 
further homologues, DIS3L and DIS3L2, which differ in the presence or absence of the PIN domain [31,35]. 
DIS3L does possess a PIN domain but it is rendered inactive by mutations in two important acidic 
residues; whereas the PIN domain is completely absent from DIS3L2. Recent evidence suggests that DIS3L2 
is a paralogue of DIS3 which functions in different pathways, independent from the exosome [36–38]. 
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Figure 1. Domain organisation of members of the RNR/RNase II superfamily. Members of 
this family have a similar modular domain organization. The N-terminal region is variable 
but cold-shock domain 1 and cold-shock domain 2 are present in all members, followed by 
a RNB domain and an S1 domain. At the N-terminus, S. cerevisiae Rrp44/Dis3 and some 
other members also contain a conserved CR3 motif and a catalytic PIN domain. However, 
mutations in human DIS3L render the PIN domain inactive (hatched). Dis3L2 has lost the 
N-terminal extension but contains extended cold shock domains. See text for details of 
domain functions. See reference [31] for more detail on domain compositions. 

Structural analyses and RNase protection experiments have revealed a common model for the 
mechanism of action of DIS3. DIS3 is a highly processive, hydrolytic enzyme with a preference for 
substrates with phosphorylated 5' termini [39]. It hydrolyses single-stranded RNA in a 3' to 5' direction, 
releasing one nucleotide at a time and leaving a product a few nucleotides long [40]. Exonuclease activity 
is dependent on four conserved aspartic acid residues that coordinate two magnesium ions in the catalytic 
centre [41,42]. The RNB active site is buried at the bottom of narrow channel and can only be reached 
by single-stranded RNA at least 7 nt long [40]. DIS3 can unwind substrates with intra- or intermolecular 
secondary structures as long as there is an unstructured region of at least 4–5 nt at the 3' end of the RNA. 
The force of the active site pulling on the 3' end of dsRNA accumulates as elastic tension so that about 
every 4 nt the tension reaches a threshold value and is released in a “burst” to unwind 4 nt of the duplex 
at a time [43]. The endonucleolytic PIN active site consists of four acidic amino acids that coordinate 
two divalent metal cations and is thought to function in releasing natural exosome substrates that are 
stalled at sites of strong secondary structure. The PIN domain cannot cleave double-stranded RNA but 
circular and linear single-stranded RNA are both substrates [33]. 

In mammals, DIS3 functions as one of the three catalytic subunits of the exosome, along with DIS3L 
and Rrp6, a distributive exoribonuclease which belongs to the RNase D family [5,44,45]. The exosome 
is a multi-protein complex composed of nine catalytically inert subunits that make up a two-layered  
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barrel-like structure (Figure 2). The upper layer is composed of a “cap” of three S1 or KH domain RNA 
binding proteins, Rrp40, Csl4 and Rrp4 which rests on a “core” ring of six proteins, Rrp41–46, all with 
homology to RNase PH [46]. The recently solved crystal structure of the S. cerevisiae exosome complex 
shows Rrp44 (Dis3) to be anchored at the bottom of the exosome core through interactions with the  
PIN domain and CR3 motif [44,47]. Rrp6, can associate with the exosome cap, forming an 11-subunit 
complex. In vitro evidence suggests that DIS3 can act independently of the exosome although this has 
not been shown in vivo [5,45]. In vitro, when bound to the exosome, the activities of DIS3 and Rrp6 are 
suppressed through allosteric effects that diminish their RNA binding ability [5,48]. This may suggest that 
the exosome core modulates the RNase activities as part of a regulatory process that controls RNA decay. 

 

Figure 2. The exosome complex in association with DIS3. The inactive “core” exosome 
consists of nine subunits. Three subunits form an RNA binding “cap” structure (shades of 
red/orange). The remaining six subunits form a ring structure through which the RNA 
substrate is channeled (shades of blue). The exosome gains its activity by association with 
DIS3 at base of the ring structure. Adapted with permission from Luisi, B. Structure 2009, 
17, 1429–1431, doi:10.1016/j.str.2009.10.006 [46]. 

The central channel of the exosome is only wide enough to accommodate single-stranded RNA,  
so secondary structures must be unwound from the cap by either the nuclear TRAMP complex or 
cytoplasmic Ski complex [46,49,50]. Substrates targeted to DIS3 can either enter the catalytic domain 
directly or be threaded through the central channel of the exosome to the exo- or endoribonuclease sites 
at the bottom. Recent data suggests that substrates for processing are targeted directly to DIS3, whereas 
some substrates for degradation must first be threaded through the exosome core [51,52]. Substrates 
targeted to Rrp6 are threaded through the central channel and divert off laterally beneath the S1/KH cap 
to access the Rrp6 active site. It is unknown how RNAs are differentially targeted to DIS3 or Rrp6;  
it appears stochastic but could be determined by additional factors in vivo [5]. Interestingly, Rrp6 appears 
to enhance the activity of DIS3 in the 11-subunit exosome complex [5] but the mechanism behind this 
is unknown. How the activities of these two enzymes cooperate in vivo is also unknown, however they 
are known to work sequentially in the maturation of 5.8 S rRNA [53]. 
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Subcellular compartmentalisation of exoribonucleases is an important control mechanism in the 
temporal and spatial regulation of RNA processing and decay. The subcellular localisation of DIS3 
homologues and the different exosome subunits has not been investigated in great depth, besides two 
studies in Drosophila [45,54] and one study in human-derived HeLa and HEK-293 cells [31]. It is 
generally agreed that DIS3 is nuclear, excluded from the nucleolus with minor pools being found in the 
cytoplasm; whereas Rrp6 is found in both the nucleolus and nucleus and DIS3L is solely cytoplasmic 
(Figure 3). However, in some Drosophila S2 cells, Dis3 has shown restricted localisation to the 
cytoplasm and the localisation pattern differed from cell to cell [54]. Furthermore, a flag-tagged version 
of DIS3 expressed in a stable HEK-293 cell line showed only a nuclear localisation with no signal being 
detected in the cytoplasm [31]. The functional significance of these localisation patterns remains to be 
determined. DIS3, along with other exosome components, may localise to different regions of the cell 
depending on cell-cycle stage or changes in growth conditions. Interestingly, flag-tagged Dis3  
co-localises with the nuclear lamina in Drosophila cells [54]. The importance of this nucleo-peripheral 
localisation is unknown; however DIS3 could be critical for surveillance during mRNA export. This 
hypothesis is supported by previous studies that show both S. pombe and human DIS3 interact with Ran, 
which is essential for nucleocytoplasmic transport of proteins and ribonucleoproteins [14,55]. 

 

Figure 3. Sub-cellular localisation of the different human exosome complexes. The  
non-catalytic exosome core (grey) is present in the nucleus, cytoplasm and nucleolus but 
associates with different 3' to 5' catalytic subunits depending on the compartment.  
In the nucleus the exosome associates simultaneously with DIS3 (purple) and Rrp6 (red).  
In the cytoplasm the core associates with the cytoplasmic-restricted DIS3L (blue) and separately 
with DIS3 but in lower amounts. In the nucleolus the exosome binds only to Rrp6. It remains 
to be determined whether the exosome or the catalytic subunits exist on their own. 

The predominantly observed nuclear localisation of DIS3 is thought to be controlled by two nuclear 
localisation signals at the C-terminus of the protein [45]. DIS3 is known to target both nuclear and 
cytoplasmic RNAs but it is not known whether a distinct pool of DIS3 proteins exist in each 
compartment, or if a single, shuttling pool is responsible for the processing and/or turnover of targets in 
both the nucleus and cytoplasm. N-terminal domains also appear to contribute to DIS3 subcellular 
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localisation but they do not contain nuclear localisation sequences [56]. N-terminal domains may contain 
an additional regulatory sequence or they may act by maintaining the proper structure of the enzyme, 
such that the C-terminal nuclear localisation signal is kept in a functional conformation. 

3. Molecular Functions of DIS3 

The continuous synthesis and degradation of RNAs allow the metabolic changes required for proper 
cellular function. In association with the exosome, DIS3 is the common effector of a vast range of RNA 
metabolic pathways functioning in mRNA quality control, regulation of gene expression and small RNA 
processing. Although not discussed here, the ability of the exosome to handle such a diversity of 
substrates is down to a network of auxiliary factors which interact with exosome to recruit it to particular 
substrates [57]. The following section aims to discuss the role of DIS3 and the exosome in mRNA decay 
as well as in small RNA processing and decay. The relative contributions of Rrp6 and Dis3 to the 
degradation of the many exosome substrates are still not fully understood, however where specificities 
are known this has been indicated. 

3.1. Role of DIS3 in mRNA Decay 

mRNA degradation in eukaryotes involves a number of complex and interconnected pathways  
that all converge on three common mechanisms. mRNAs must first be either deadenylated and  
de-capped or internally cleaved to allow access for either the exosome and paralogues of DIS3 or the  
5'-3' exoribonuclease, XRN1 (Figure 4). Deadenylation removes the poly-A tail from transcripts to  
allow access for 3' to 5' degradation by DIS3 and the exosome [58]. The 5'-cap may then be  
removed by decapping enzymes, leaving the transcript vulnerable to 5' to 3' degradation by the XRN1 
exoribonuclease [59]. Finally, transcripts can be endonucleolytically cleaved to create two fragments 
which are susceptible to degradation by either DIS3 and the exosome or XRN1. Many different  
pathways exist upstream of these processes to target particular substrates for degradation. These 
pathways can be divided into quality-control and regulated-decay pathways and are described in the 
following three sub-sections. 

3.1.1. Role of DIS3 in RNA Quality-Control Pathways 

Aberrant and faulty transcripts must be detected by the cell to prevent the production of potentially 
toxic protein products. Surveillance mechanisms exist both in the nucleus and in the cytoplasm to detect 
errors at all stages of mRNA production and maturation. In the nucleus mRNAs that are faulty due  
to errors in transcription, export or processing are degraded. Both the 3' to 5' and 5' to 3' pathways are 
involved in nuclear mRNA turnover but which is used depends on the substrate. The exosome is known 
to specifically degrade un-spliced pre-mRNAs [6] and mRNAs with defective poly-adenylation [7]. 
Interestingly, there is evidence that pre-mRNA surveillance by the exosome takes place during 
transcription. The interaction and co-localisation with the elongation factor, Spt6, and RNA polymerase II, 
in Drosophila, suggests the exosome may function co-transcriptionally in vivo as part of a checkpoint 
that monitors proper pre-mRNA processing [60]. 
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Figure 4. Overview of the mRNA degradation pathways in eukaryotes. Messenger RNAs first 
undergo removal of the 3' poly-A tail (deadenylation) allowing access for 3' � 5' degradation 
by the exosome complex and DIS3. Following deadenylation the mRNA can undergo removal 
of the 5' cap (decapping) exposing the mRNA to degradation by the 5' � 3' exoribonuclease 
XRN1. Alternatively mRNAs can undergo endonucleolytic cleavage (e.g., due to RNAi, 
or nonsense-mediated mRNA decay in some organisms) creating two fragments, each of 
which is susceptible to either XRN1 or the exosome and the DIS3 paralogues. 

Surveillance pathways that take place in the cytoplasm are translation dependent and include 
nonsense mediated decay [61], non-stop decay [62,63] and no-go decay [64]. Nonsense mediated decay 
(NMD) is triggered by transcripts that contain a premature termination codon (PTC). In NMD a sequence 
of protein binding events are triggered [65] which subsequently leads to the decay of the transcript by 
either the 5' to 3' or 3' to 5' pathway [61]. Although not yet clear, evidence suggests that Rrp6 is 
predominant over DIS3 in targeting these NMD substrates [66]. Non-stop decay targets mRNAs that 
lack a stop-codon and as a consequence translation continues along the poly-A tail. In yeast and 
mammalian cells, a stalled ribosome at the 3' end of a transcript is detected and bound by Ski7 which 
recruits the Ski complex and the exosome to deadenylate and degrade the transcript [62]. 

The most recently discovered RNA surveillance pathway, no-go decay, prevents translation of 
transcripts with a strong secondary structure. Ribosomes stalled by the secondary structure are detected 
and the mRNA is endonucleolytically cleaved. The endonuclease responsible has not been identified but 
seems to require Dom34 and HSB1, proteins which are related to the eukaryotic translation release 
factors, eRF1 and eRF3 [64]. Once the transcript has been cleaved into two fragments, it is degraded by 
either the exosome or XRN1. 

3.1.2. Role of DIS3 in Regulated mRNA-Decay Pathways 

Alternative to the degradation of aberrant mRNAs, mRNAs may be subjected to regulated 
degradation as a means of controlling gene expression. This can occur through cis-encoded destabilising 
elements in the 3' UTRs or by the RNA-induced silencing complex (RISC). 
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Two types of cis-encoded destabilising elements exist: AU-rich elements (ARE) and GU-rich 
elements (GRE), both found in the 3' UTRs of a number of mRNAs. AREs are found in short-lived 
mRNAs coding for proteins that mediate regulatory responses in the cell, such as inflammatory or stress 
responses (e.g., GM-CSF, c-fos, and cmyc) [67]. AREs exert their effect on post-transcriptional gene 
expression by recruiting trans factors. These ARE-binding proteins (AUBPs) can promote transcript 
degradation by recruitment of the CCR4-NOT complex resulting in deadenylation of the mRNA and 
subsequent degradation by DIS3 and the exosome [8,9]. The function and abundance of GREs is less 
understood but they have been shown to regulate a different repertoire of genes and have a more modest 
effect on mRNA stability [68]. 

MiRNA-mediated degradation of mRNAs provides another means of modulating gene expression. 
miRNAs are short RNA molecules which generally act to downregulate target expression by either 
repressing translation or causing degradation of their target mRNA by the RNA-decay machinery.  
In plant cells, miRNAs typically base-pair with their targets with almost perfect complementarity which 
results in cleavage of the target mRNA by RISC (RNA-induced silencing complex) and subsequent 
degradation of the 3' section by AtXRN4. The 5' section is thought to be degraded by the exosome [69]. 
In animal cells, the molecular mechanisms of miRNA-mediated gene silencing are still not clear, 
probably due to the existence of such a huge diversity of mechanisms. However, in most cases miRNAs 
are usually only partially complementary to their targets and direct endonucleolytic cleavage of targets 
rarely occurs. Although it was previously thought that the levels of miRNA-targeted mRNAs remained 
unchanged, recent evidence suggests that mRNA degradation rather than translational repression is the 
main mechanism of silencing [69]. For these targets, the CCR4-NOT complex is recruited resulting in 
deadenylation of the mRNA targets which are then decapped and degraded 5' to 3' by XRN1 [70]. 
However, there is currently no evidence to suggest DIS3 or the exosome are involved in the degradation 
of miRNA-repressed mRNAs in animal cells. 

3.2. Role of DIS3 in Small-RNA Processing and Decay 

Not all RNA substrates that are targeted by the RNA decay machinery are destined for complete 
degradation. DIS3 and the exosome were originally discovered in yeast to be involved in the processing 
of ribosomal RNAs (rRNAs) [11] and were only later discovered to have a function in mRNA 
surveillance. rRNA, small nucleolar RNA (snoRNA), small nuclear RNA (snRNA) and tRNA species 
are all transcribed as pre-RNAs, which must then be cleaved and/or trimmed to produce functional small 
RNA products [71]. The exosome is generally responsible for processing these stable nuclear RNAs by 
trimming the extended 3' ends of primary transcripts down to their mature length. 

For example, rRNA synthesis in yeast begins with the synthesis of a 35S precursor-rRNA in the 
nucleolus. The pre-rRNA gets internally cleaved in a series of steps to produce a number of smaller 
fragments including a 7S intermediate. In the nucleus, the Dis3-exosome complex is required for the  
3' end processing of the 7S intermediate into the mature 5.8 S rRNA and for the degradation of the  
5' external transcribed spacer removed from the full length pre-rRNA transcript [72]. Final maturation 
of 5.8 S rRNA takes place in the cytoplasm where it undergoes exonucleolytic processing at the 3' end, 
also by the exosome. Additionally, snoRNAs and snRNAs which participate in rRNA processing and 
modification and pre-mRNA splicing respectively, are excised from polycistronic precursors or from 
mRNA introns and undergo multi-step 3' processing that involves the nuclear exosome [10]. 
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Dis3 has been found to specifically degrade tRNA species in yeast. This function was first discovered 
in S. cerevisiae tRNA methyltransferase mutants that produce hypomodified tRNAs [73,74]. These  
tRNAs lack a single modification which may subtly affect their folding but otherwise are mature  
and functional. The intact exosome lacking only the catalytic activity of Dis3 fails to degrade the 
hypomodified tRNA, showing this to be a specific Dis3 substrate. Additionally, in yeast Dis3 mutants, 
both mature and precursor tRNAs are markedly increased [75]. This phenotype is intensified in Dis3 
exo-endo-double mutants suggesting PIN activity contributes significantly to tRNA degradation,  
as expected from highly structured substrates. Interestingly, this study revealed that more than 50% of 
tRNAs that are transcribed are degraded by Dis3 and never reach the functional pool of mature tRNAs 
in wild-type cells. 

As mentioned previously, miRNA-mediated degradation of mRNAs is an important means of 
modulating gene expression. The unique combination of miRNAs contributes to a cell’s specific array 
of protein expression and their misexpression is associated with many types of human cancer [76].  
For this reason, miRNA production is itself subject to several levels of regulation [77]. As well as 
transcriptional regulation, post-transcriptional regulation through RNA degradation is also important. 
This can occur indirectly through the regulation of RNA-binding proteins such as the cleavage of 
DCGR8 mRNA by Drosha, leading to its degradation [78,79], or directly by targeting either the pri,  
pre- or mature miRNA. 

Many miRNAs that are known to be degraded in different organisms have as yet undefined nucleases. 
Nevertheless, the exosome and sometimes DIS3 specifically have been found to be involved in the 
turnover of several miRNAs. In Drosophila wing imaginal discs, Dis3 knock-down has been found to 
increase the expression of the mature form of miR-252-5p but not the precursor, suggesting Dis3 may 
be functioning to specifically degrade the mature miRNA as a means of regulation. Another miRNA, 
miR-982-5p, decreases in expression in Dis3 knock-down discs, suggesting Dis3 may be involved in 
processing the precursor miRNA into its mature form [80]. Also in Drosophila, a family of miRNAs 
have been discovered that are encoded in introns, which are processed in an exosome mediated biogenesis 
pathway. These mirtrons bypass normal Drosha cleavage and are processed into pre-miRNAs by the 
spliceosome. After splicing the 3' tail is trimmed by the exosome [81]. Additionally, DIS3 and Rrp6 
have been found to be involved in the degradation of pre-miRNAs in mammalian cells. Unlike Rrp6, 
knockdown of DIS3 does not seem to affect the level of mature miRNAs but does cause an increase in 
several truncated pre-miRNAs, suggesting DIS3 is involved in the quality control of pre-miRNAs [82]. 
Interestingly, this study found the activity of DIS3 on pre-miRNAs to be stimulated by uridine tails, 
which stimulate the uridyl transferases TUT4 and TUT7, providing a positive feedback-loop in the 
degradation of Ago-bound pre-miRNAs. 

One of the major classes of nuclear exosome substrates in humans is PROMoter uPstream Transcripts 
(PROMPTs). Similar to cryptic unstable transcripts (CUTs) in yeast, PROMPTS are short-lived RNA 
species, between 200 and 600 nucleotides in length, transcribed upstream of the promoters of active 
protein-coding genes. PROMPTs are transcribed by any of the three RNA polymerases and have  
3' poly-A tails as well as 5' cap structures. Evidence suggests that most, if not all, actively transcribed 
RNA pol II genes have associated PROMPTs, but they seem to be especially prominent at TATA-less, 
CpG-rich promoters with broad transcription start site (TSS) regions [83]. PROMPTs tend to be 
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generated between 500 and 2500 nt upstream of the TSS and although not linked with TSS-associated 
RNAs (formed by RNA Pol II backtracking and stalling), their transcription is positively correlated with 
downstream gene activity. PROMPTs are currently poorly understood but could function in regulating 
the expression of downstream genes by providing reservoirs of RNAPII which facilitates rapid activation 
of the downstream gene [84]. PROMPTs are only detected when exosome subunits are depleted. Single  
knock-downs of DIS3 or Rrp6 yield a much lower stabilisation than double depletion of both catalytic 
subunits [31,83], however human DIS3 mutant cells show a significant stabilisation of PROMPTs 
without simultaneous mutation of Rrp6 [85]. 

4. Biological Functions of DIS3 

Although its role in RNA metabolism is well-documented, the biological functions of DIS3 
responsible for the observed phenotypes in mutants are less well known. There are a number of studies 
in yeast and Drosophila which pertain to the biological activity of DIS3 (Table 1), however sufficient 
functional studies of DIS3 in human cells do not exist. Nevertheless, this protein is strikingly 
conserved across eukaryotes meaning studies in lower organisms may yield useful insight into its 
function in human cells. 

4.1. Role of DIS3 in Cell-Cycle Regulation 

There are a number of studies which present evidence for a role of DIS3 in regulation of the  
cell-cycle. Dis3 was first discovered in a mutant fission yeast strain to cause non-separation of sister 
chromatids during anaphase [12,13]. Subsequently, the S. pombe Dis3 homologue was found to bind to 
the human GTPase Ran, a member of the RAS superfamily [14] which functions in spindle assembly 
and the regulation of cell cycle progression as well as in nucleocytoplasmic transport [86,87].  
RanGTP specifically functions to activate spindle assembly factors by releasing them from complexes 
with importins [88,89]. At kinetochores, increased Ran-GTP levels displace some spindle assembly 
checkpoint (SAC) components to allow activation of the anaphase-promoting complex (APC) [90], 
facilitating cell-cycle progression. Interestingly, the same RNA processing phenotype has been observed 
in both Dis3 and Ran yeast mutants, suggesting that Ran may regulate the assembly or disassembly of 
Dis3 and the nuclear exosome [91]. 

More recently, S. pombe Dis3 mutants have been shown to have elongated metaphase spindles and a 
block in metaphase to anaphase transition [16]. Like Ran, Dis3 appears to be required for correct 
kinetochore formation and function. The kinetochore consists of many proteins whose functions include 
anchoring of chromosomes to the mitotic spindle, verification of anchoring, activation of the spindle 
checkpoint and participation in force generation to propel chromosome movement during cell  
division [92]. Kinetochore formation is monitored by the spindle checkpoint protein Mad2. In single 
Dis3 mutants, Mad2 restrains mitotic progression but in Dis3 Mad2 double mutants, cells proceed to 
anaphase without proper chromosome segregation, generating aneuploid cells.
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Table 1. List of phenotypes observed in DIS3/exosome mutants and knock-downs in various organisms. Where applicable the corresponding 
amino acid (AA) in human DIS3 has been given, along with the affected domain. 

Phenotype/Process Affected Organism/Cell Line 
Knock-Down or Mutant 

(AA Position) 

Corresponding Human DIS3 

AA Position 

Conserved in 

Humans? 
Domain 

DIS3/Exosome Subunit 

Referred to as 
Refs. 

Non-separation of sister chromatids S. pombe P509L 
P509—Conserved (based on 

predicted S. pombe sequence) 
Yes RNB dis3 [12,13] 

Mitotic control and interaction with 

Ran GTPase 
S. cerevisiae G562D, E565K, V566G 

G562 

E565 

V566 

Yes, all three RNB Dis3sc [14,91] 

Aneuploidy, spindle assembly, 

metaphase to anaphase transition 

and kinetochore function 

S. pombe P509L 
P509—Conserved (based on 

predicted S. pombe sequence) 
Yes RNB dis3 [16] 

Cell-cycle regulation and 

microtubule production 

S. cerevisiae 

D. melanogaster 

G562D, E565K, V566G 

Knock-down 

G562 

E565 

V566 

Yes 

N/A 

RNB 

N/A 
Dis3 [14,66,93] 

Larval lethality, no wings D. melanogaster Knock-down N/A N/A N/A Dis3 [80] 

Centromeric transcript turnover and 

heterochromatin silencing 
S. pombe, S. cerevisiae P509L P509 Yes RNB Dis3/Rrp44/Rrp4 [16,94,95] 

Antibody diversification 

M. musculus CH12F3 

lymphoma cells, Human 

Ramos B lymphoma cells, 

HEK-293 cells 

Knock-down N/A N/A N/A 
Dis3/Rrp44/Rrp40, 

exosome subunit 
[17] 
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Andrulis et al. provide further evidence that DIS3 is involved in mitotic progression as perturbation 
of Dis3 in S. cerevisiae affects microtubule localization and structure [15]. RNA-seq analysis showed 
broad changes in the levels of cell cycle and microtubule related transcripts in Dis3 mutant strains. 
Similar work in Drosophila S2 cells showed that the knock-down of Dis3 also predominantly affects the 
expression of cell cycle-related transcripts [66]. Another study using transgenic flies showed ubiquitous 
loss of Dis3 to cause larval lethality. In the same study, a spatial knock-down of Dis3 only in the wing 
pouch region of the imaginal disc was performed, yielding flies with a severe “no wing” phenotype [80] 
(Figure 5), revealing the essential role of this protein in development. 

 

Figure 5. Knockdown of Dis3 in D. melanogaster wing imaginal disc results in a severe  
“no wing” developmental phenotype (right) compared to wild-type (left) [80]. 

Although previous siRNA-based experiments in human cells did not show an effect of DIS3  
knock-down on growth rate, Tomecki et al. subsequently showed a mutation-specific effect on the 
growth of HEK-293 cells. Cell lines were created that expressed inducible exogenous variants of DIS3 
with multiple myeloma associated mutations. Cells expressing DIS3 variants with D487N or R780K 
substitutions proliferated at a slower rate compared with the wild-type cell line. Additionally, when the 
endonucleolytic PIN domain is mutated alongside mutations in the RNB domain, synthetic lethality and 
a higher accumulation of PROMPTs are observed, suggesting the two catalytic domains cooperate to 
degrade substrates. The same group have shown homozygous conditional knock-outs of human DIS3 
from the DT40 Cre1 cell line is lethal [85]. 

What is the mechanism by which DIS3 is affecting mitosis? One suggestion is that DIS3 could be 
processing a gene needed for kinetochore formation [16]. Another, supported by recent data, is that DIS3 
has a link with heterochromatin silencing at the centromere [16,94,95]. Previously, dense chromatin 
packaging in heterochromatic regions was thought to inhibit transcription leading to low level gene 
activity [96]. However, recent evidence from budding and fission yeasts suggests that rapid nuclear 
turnover of heterochromatic transcripts, reinforces transcriptional silencing [97]. The deletion of Dis3 
considerably increases levels of transcripts from silent centromeric and telomeric loci [20,86,95]. As the 
centromere is essential for proper segregation of chromosomes, which is disrupted in Dis3 mutants, 
centromeric heterochromatin silencing represents a plausible role for DIS3 in vivo. 
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4.2. Role of DIS3 in Generating Antibody Diversity 

Interestingly, the exosome has also been implicated in recruiting activation-induced cytidine 
deaminase (AID) to chromatin in mammalian B-cells, where DIS3 may be functioning specifically in 
degrading nascent RNA during the DNA repair process [17]. AID functions by converting methylated 
and 5-hydroxymethylated cytidine residues into uracil and thymine respectively, which are subsequently 
recognised by the DNA repair machinery and converted into double-strand breaks (DSBs). The double 
strand breaks are mostly repaired locally between IgH regions as part of two immunoglobulin gene 
diversification processes: Somatic hypermutation (SHM) and IgH class switch recombination (CSR). 
Since AID can only act on single-stranded DNA (ssDNA), these processes only occur during gene 
transcription when the DNA duplex is opened up. However, although able to access the non-template strand 
directly, AID has no known activity on RNA/DNA hybrids; therefore the mechanism by which it accesses 
the template strand which is hybridised to the nascent transcript, is unknown. 

In vivo knockdown, ChIP, and physical association studies by Basu et al. provide evidence that the 
RNA exosome functions in recruiting AID to both strands of transcribed duplex DNA substrates [17]. 
To do this, the exosome along with one of its catalytic subunits, must remove the template RNA.  
As discussed previously, the exosome has been shown to interact with elongating RNA polymerase II [60]. 
However, it does not engage RNA substrates that lack a free single-stranded 3' end and RNA still 
attached to RNA polymerase only has a free 5' end. Therefore Basu et al propose a model whereby the 
exosome functions on stalled Pol II units that backtrack to reveal a free 3' end [17]. DIS3 or Rrp6, may 
function in degrading the nascent RNA in the 3' to 5' direction, leaving the template strand as ssDNA 
substrate for AID. Interestingly, in the event of DSB repair failure after AID-directed deamination, 
chromosomal translocations can result, as is often observed in multiple myeloma. 

5. DIS3 and Disease 

5.1. DIS3 and Cancer 

The earliest study linking DIS3 to cancer identified it as a metastasis-related gene. Two independent 
gene expression profiling studies of colorectal cell lines and human tissues identified overexpression of 
DIS3 as high as 38-fold in primary and metastatic tumours relative to normal colonic mucosa [18,19]. 
Another study has shown a significant overexpression of DIS3 in colorectal carcinomas compared to 
adenomas [20,98]. This observed overexpression could be due to an amplification of the DIS3 locus, 
13q22, frequently observed in colorectal cancer. Conversely, the DIS3 locus is often deleted in chronic 
lymphocytic leukaemia (CLL) and patients have been found to display loss-of-heterozygosity (LOH). 
Sequenced germline DNA from five families with CLL showed five amino acid changes within DIS3. 
DIS3 was also shown to be under-expressed 2.8-fold in a CLL leukaemic clone compared with normal 
B-cells [22], suggesting decreased expression is a consequence of the decrease in copy number.  
This difference in copy number between colorectal cancer and CLL may suggest a tissue-context 
dependent role of DIS3 in promoting cancer development. DIS3 has also appeared in linkage studies of 
breast cancer patients [21]. However the significance of this is unclear as it involves polymorphisms 
rather than deleterious mutations. 
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DIS3 may also be biologically relevant in melanoma. In superficial spreading melanoma (SSM) cells, 
DIS3 has reduced expression compared to normal melanocytes because one chromosomal copy is 
deleted. In contrast, DIS3 is overexpressed in nodular melanoma (NM) cells [23]. Furthermore, SSM 
cells display sensitivity to mebendazole, a microtubule-destabilizing drug, whereas NM cells are 
resistant. This is consistent with the function of DIS3 in the regulation of chromosomal segregation 
during mitosis (see Section 4.1) [16]. SSM and NM are believed to represent sequential phases of linear 
progression from radial to vertical growth, yet recurrent differential deletions such as that of DIS3 
suggest SSM and NM might be the result of an independent pathway. However, a recent meta-analysis 
with combined experimental validation of five microarray-based melanoma datasets did not identify 
DIS3 to be part of a biomarker signature for melanoma [24]. 

Whole genome sequencing studies have identified missense mutations in DIS3 to occur in ~4% (4/106) 
of Acute Myeloid Leukaemia (AML) patients [99]. In all affected patients, mutations mapped to the 
exoribonucleolytic RNB domain. AML develops as a clonal evolution of haematopoietic progenitor cells 
(HPSC/blasts). A HPSC acquires an initiating event which increases its proliferation and genetic 
instability, causing the clone to expand. Many subclones evolve from the founding clone leading to an 
oligoclonal malignant tumour [100]. Alleles found to have a variant allele frequency (VAF) of 50% 
usually represent heterozygous somatic mutations that are present in all cells within the sample. DIS3 is 
mutated in both primary tumour and relapse samples at a VAF between 37% and 47%, suggesting a 
heterozygous event in these cases. However, whether DIS3 mutations initiate clonal expansion of  
the HSPC or cooperate to give the clone an additional advantage is still unclear [99]. 

5.2. DIS3 and Multiple Myeloma 

The most striking association between DIS3 and cancer is probably the finding that DIS3 is 
recurrently mutated in multiple myeloma (MM). Multiple myeloma is defined by a malignant 
proliferation of monoclonal antibody (also called M protein)-secreting plasma cells and counts  
for 20% of deaths related to haematological malignancies [101,102]. MM begins as an asymptomatic  
pre-malignant syndrome of clonal plasma cell proliferation termed monoclonal gammopathy of 
undetermined significance (MGUS) and eventually evolves into plasma cell leukaemia, an aggressive 
extramedullary disease. Multiple myeloma is a genetically heterogenous disease where different patients 
fall into distinct genetic subgroups that determine different clinical outcomes. 

To date 34 of 306 (11%) myeloma patients analysed by whole genome or exome sequencing studies 
have been found to have missense mutations in DIS3 that may be functionally relevant (Figure 6) [25–28]. 
In most patients DIS3 mutations correlate with deletions of 13q and a few patients were also found to be 
associated with copy neutral loss of heterozygosity (cnLOH) that results in the presence of homozygous 
DIS3 mutations. A recent amplicon sequencing study identified three hotspot mutations (R780, D488 
and E665) within the RNB domain of DIS3 and investigations in HEK-293 cells indicate that the R780K 
mutation leads to a lower proliferation rate compared to the WT cell line, suggesting a loss-of-function 
phenotype which would classify DIS3 as a tumour-suppressor gene. Moreover, biochemical assays 
performed using recombinant versions of DIS3 bearing MM-associated mutations indicate that in the 
majority of cases, these mutations abolish DIS3 exoribonucleolytic activity [85]. Analyses using 
available structural information and predictive tools also suggest that most myeloma mutations have  
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a destabilising effect on the enzyme. For example, R780K, found in six multiple myeloma patients, 
involves an amino acid which is directly involved in binding to the phosphate backbone of the incoming 
substrate so is highly likely to affect catalysis. Also, S477R, found in another patient, is a drastic 
mutation from a small to very large amino acid, with a charge reversal. It is next to a loop that contains 
residues involved in magnesium ion coordination and is therefore also predicted to have an impact on 
the catalytic activity of DIS3. 

 

Figure 6. Three-dimensional model of DIS3 illustrating the position of amino acids substituted 
by myeloma-associated mutations. Mutations in pink. DIS3 domain functions—RNB domain: 
Exoribonucleolytic; PIN domain: Endoribonucleolytic; CSD1 and CSD2: Cold-shock;  
S1: RNA binding. Modelled according to the recently solved S. cerevisiae Rrp44 structure [44] 
using Phyre2 [103] and the webserver “Site Directed Mutator”. 

Similar to many other cancers, multiple myeloma has been found to develop as a consequence of a 
clonal evolution of cells [104–106]. In multiple myeloma specifically, the initial immortalisation of the 
cell usually occurs by the acquisition of a chromosomal abnormality [107]. Chromosomal abnormalities 
can be classified into hyperdiploid (trisomies) or non-hyperdiploid subtypes. Curiously, DIS3 mutations 
are most commonly seen in non-hyperdiploid subtypes [25–27]. Non-hyperdiploidy involves translocations 
of the IgH locus with other chromosomes and is caused by aberrant class-switch recombination (CSR) 
in B-cells. Aberrant CSR brings oncogenes under the influence of the IgH enhancer region leading to 
their up-regulation. These primary genetic events co-operate with secondary lesions to produce the 
founding clone of myeloma [108]. Many subclones evolve from the founding clone, leading to an 
oligoclonal malignant tumour. This process of clonal evolution creates extensive heterogeneity not only 
between patients but also within individual cases. Moreover, intra-patient clonal heterogeneity can 
change over time as a result of treatments that incompletely suppress the whole tumour population, 
leading to the emergence of an aggressive minor subclone. Recently there has been a move towards 
using combinatory chemotherapy in an attempt to eradicate all clones as well as avoiding selection of 
minor aggressive ones [109]. 
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High throughput studies have provided semi-quantitative analysis of the size of the clonal populations 
carrying a particular mutation within an individual tumour. It was anticipated that mutations arising in 
all the clones would take part in initiating myeloma whereas mutations present only in some subclones 
would be potentiators of the disease. However, it appears that the situation is not quite that simple. 
Mutations in DIS3 were found to be both clonal in some patients and sub-clonal in others meaning they 
are functioning sometimes as the former and sometimes as latter [25,28]. This observation is not 
restricted to DIS3 but rather applies to the other ten significantly mutated genes in myeloma patients, 
KRAS, NRAS, TP53, FAM46C, BRAF, TRAF3, PRDM1, CYLD, RB1 and ACTG1. 

Within patient samples, some patterns of cooperation and exclusion can be identified between 
mutations in DIS3 and other genes. DIS3 mutations seem to be mutually exclusive with mutations in 
FAM46C. Collectively, DIS3 and FAM46C mutations are observed in 21% of patients [25]. The precise 
function of FAM46C is yet unknown, however there is evidence it belongs to a family of 
nucleotidyltransferases [110] and it was recently shown to function as an mRNA stability factor that 
interacts with poly-A-binding protein cytoplasmic 1(PABPC1) and binds to CU rich motifs within the 
3' UTRs of some mRNAs [111]. In support of this function, Chapman et al. have found its expression to 
be highly correlated to the expression of a set of ribosomal proteins and translation initiation factors [30]. 
DIS3 is known to function in the maturation of rRNA, suggesting these two genes could be involved  
in the same cellular pathway. 

Conversely, DIS3 mutations mostly seem to occur in parallel with a hemizygous (monallelic) deletion 
of the RB1 region (13q14), either as del (13q) or as an interstitial deletion of the RB1 locus. The gene 
of interest at 13q14 may be RB1 (retinoblastoma tumour suppressor protein), or one of the miRNAs at 
this locus which are under-expressed in CLL and MM (miR-15a/16). This raises the possibility that 
mutation and selection of DIS3 as a driver mutation in myeloma is dependent on deletion of 13q14. 
However, more NGS studies are needed to increase the sample size in order determine whether this 
correlation is significant. 

Although there is very little data on the clinical impact of DIS3 mutations, one very recent study has 
identified a trend towards a shorter median overall survival for patients with DIS3 mutations.  
Patients carrying DIS3 mutations in minor subclones of their tumours also showed a significantly worse 
response to therapy compared to patients with DIS3 mutations in the major subclone [28]. Nevertheless, 
minor subclones tend to accumulate 17p deletions which may also explain this trend. 

While the cohort sizes in these genome-wide sequencing studies are large, the absolute number of 
patients with DIS3 mutations is nonetheless relatively small. For this reason, more patient sequencing 
studies need to be conducted in order to fully determine the clinical implications of DIS3 mutations to 
myeloma prognosis. 

6. Conclusions and Future Prospects 

DIS3 has been proven to be far more than simply an RNA disposal machine, with essential roles in both 
gene regulation and small RNA processing. The phenotypes of DIS3 knockdowns and mutants have led 
to both mechanistic and biological insights about the roles of this enzyme in the cell. Mutants often reveal 
specific developmental phenotypes, suggesting DIS3 may be targeting particular functional subsets of 
RNAs such as those involved in cell-cycle regulation, spindle assembly and kinetochore function. While 
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a large body of structural and biochemical data exists, it is only in recent years that the functional diversity 
of DIS3 has been fully appreciated and DIS3 has been connected with human disease. 

Although DIS3 has been found to be associated with multiple types of cancer including colorectal, 
melanoma and three types of blood cancers, there is no consensus about whether DIS3 is a tumour 
suppressor or oncogene. It seems to be over-expressed in some cancers and under-expressed in others, 
whilst displaying loss-of-function mutations in AML, suggesting the role of DIS3 might differ within 
the context of different tissues and tumourigenic pressures. However, the most significant association of 
DIS3 and human disease is the recurrent loss-of-function mutations in multiple myeloma patients. 
Although it is an extremely heterogenous disease, multiple myeloma is currently, for the most part, 
treated as a single entity with the result that therapeutic success is varied amongst individual patients. 
As the characterisation of the PML-RARA fusion showed, a lot of progress can be made by the 
identification of a single molecular event regarding disease definition. Therefore, identifying the role of 
DIS3 in oncogenesis may help to develop new targeted therapies for affected patients. 

The mutant and knock-down phenotypes we have discussed in lower organisms and cell lines have 
the potential to yield insight into the role of DIS3 in myelomagenesis. The observations that DIS3 causes 
cell cycle arrest in many mutants may at first appear illogical in relation to its role in MM as a tumour 
suppressor gene. If DIS3 plays an important role in myeloma progression, we may expect DIS3 mutants 
to display over-proliferation or de-differentiation, phenotypes more consistent with those observed in 
tumours. However, when we consider that cancers are a result of a clonal evolution of cells that have 
acquired not just one, but many cooperating mutations, it is not surprising that mutation of just one of 
these genes in a model organism produces a different phenotype. This is demonstrated in single yeast 
Dis3 mutants that display elongated metaphase spindles. The production of faulty spindles leads to a 
block in metaphase to anaphase transition. In these single mutants, the intact Mad2 protein restrains 
mitotic progression because the chromosomes cannot be segregated properly, leading to eventual 
apoptosis. However, in Dis3 Mad2 double mutants, cells proceed to anaphase despite having elongated 
spindles meaning chromosomes are not properly segregated, leading to the production of aneuploid cells. 
This phenotype may have relevance to the pathogenesis of multiple myeloma of which 90% of patients 
display aneuploidy [112]. A combination of DIS3 and spindle-assembly checkpoint defects [113] may 
allow cells to progress through the cell-cycle without proper chromosome segregation generating 
aneuploidy cells which lead to the development of myeloma. 

Another scenario by which DIS3 could be contributing to the development of myeloma is through the 
interaction between the RNA exosome and AID during the process of class switching and hypermutation 
in B-cells. Multiple myeloma is a malignancy of mature antibody-producing B-cells. DIS3 mutations 
could indirectly, through disruption of an interaction with AID, cause mistargeting of somatic 
hypermutation leading to chromosomal translocations. This fits with DIS3 mutations being almost 
exclusively observed in non-hyperdiploid subtypes i.e., those defined by IgH translocations [29]. Exactly 
how DIS3 mutations could contribute to this though remains to be elucidated. Alternatively,  
loss-of-function of DIS3 may either allow increased expression of other mutated genes, or may cause 
the overabundance of unstable noncoding transcripts such as PROMPTs (see previous discussion) that 
may indirectly affect expression of genes important for carcinogenesis. 
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The preferred method by which to experimentally verify these hypotheses is to use true myeloma 
models. The cell line OPM2 for instance, carries a DIS3 mutation in the PIN domain paired with  
cnLOH [29]; however, whether this mutation affects the exoribonucleolytic function of the enzyme 
remains to be investigated. Remarkably, there are not yet any reports on the specific biological functions 
of DIS3 in the mouse or in zebrafish. Further work on the biological role of this enzyme in model 
organisms is likely to shed light on its role in human cancers. 

As well as performing functional assays to elucidate the role of DIS3, important information can be 
derived from mutational patterns revealed by genome-wide sequencing studies. Many mutations arising 
in myeloma do not co-occur in the same cell progeny suggesting disruption of one gene in a pathway 
may be sufficient to drive oncogenesis. As discussed, mutations in DIS3 and mutations in genes involved 
in protein translation and/or homeostasis such as FAM46C appear to be mutually exclusive in MM [26]. 
Conversely, DIS3 mutations mostly seem to occur in parallel with a hemizygous (monoallelic) deletion 
of the RB1 region (13q14) [26–29]. Identifying a pattern of cooperation or exclusion between DIS3 and 
other recurrent mutations may help us to understand its role in the pathogenesis of multiple myeloma. 

It is useful to note that there appears to be an accumulation of mutations in the RNB domain of DIS3 
but not DIS3L in myeloma, suggesting that inhibition specifically of the exonucleolytic activity of the 
nuclear exosome is what may facilitate oncogenesis. If this is the case, one might ask the question: Why 
Rrp6, which can act redundantly with DIS3 in the nucleus, does not compensate for the loss of DIS3 
activity? This may be explained by a study in yeast which shows that when DIS3 is mutated, Rrp6 in the 
11-subunit exosome complex is inhibited [57]. This dominant negative effect is thought to be caused by 
a blockage of the central channel by the ineffective interaction of RNA with the RNB domain. This may 
be an important consideration when performing knock-down experiments to investigate the role of DIS3 
in myeloma development, as DIS3 knock-down is likely to have a different effect within the cell than 
DIS3 mutations, which probably affect the function of the protein. DIS3 mutant organisms rather than 
knock-down models are likely to provide a better insight into the role of DIS3 in myeloma pathogenesis. 
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