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Abstract: Cells release vesicles to the extracellular environment with characteristic nucleic 
acid, protein, lipid, and glycan composition. Here we have isolated and characterized 
extracellular vesicles (EVs) and total cell membranes (MBs) from ovarian carcinoma OVMz 
cells. EVs were enriched in specific markers, including Tsg101, CD63, CD9, annexin-I, and 
MBs contained markers of cellular membrane compartments, including calnexin, GRASP65, 
GS28, LAMP-1, and L1CAM. The glycoprotein galectin-3 binding protein (LGALS3BP) 
was strongly enriched in EVs and it contained sialylated complex N-glycans. Lectin blotting 
with a panel of lectins showed that EVs had specific glycosignatures relative to MBs. 
Furthermore, the presence of glycoproteins bearing complex N-glycans with �2,3-linked 
sialic acid, fucose, bisecting-GlcNAc and LacdiNAc structures, and O-glycans with the T-antigen 
were detected. The inhibition of N-glycosylation processing from high mannose to complex 
glycans using kifunensine caused changes in the composition of EVs and induced a decrease 
of several glycoproteins. In conclusion, the results showed that glycosignatures of EVs were 
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specific and altered glycosylation within the cell affected the composition and/or dynamics 
of EVs release. Furthermore, the identified glycosignatures of EVs could provide novel 
biomarkers for ovarian cancer. 
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1. Introduction 

Extracellular vesicles (EVs) are produced by virtually all cells and a large body of evidence for their 
biological relevance has been obtained for immune, tumor or neural cells. The EVs may have different 
cellular origins, either from the multivesicular endosomes (designated as exosomes) or from budding off 
the plasma membrane (commonly known as microvesicles) [1]. Exosomes are in the range of 
approximately 30 to 150 nm whereas microvesicles have a more heterogeneous size distribution ranging 
from 50 to 2000 nm in diameter. Exosomes have been generally described to equilibrate at densities of 
1.13 to 1.19 g/mL in sucrose gradients. In addition, EVs include apoptotic vesicles that usually have 
larger diameters, ranging from 50–5000 nm [1,2]. 

In view of the overlapping of several biochemical and biophysical characteristics, the discrimination 
of the different vesicle types is a particularly complex topic due to limitations of the techniques used for 
their purification. More recently, it has been suggested that also from endosomal origin there are different 
types of exosomes. Therefore, the methodology for isolation of pure vesicle fractions is a challenging 
topic and, currently, several techniques are used, including ultracentrifugation, ultrafiltration, gel exclusion 
chromatography, immunoaffinity isolation [3], and lectin affinity separation [4]. Because of the different 
methodologies used for EVs isolation and characterization, a consensus article aiming at standardization 
of sample collection, isolation, and analysis methods for EVs research has recently been published [5]. 

EVs present a specific protein, lipid and glycan composition. The content of EVs is the result of 
sorting mechanisms involved in their biogenesis and the cells from where they originate. Numerous studies 
on EVs composition of biomolecules have been made in recent years with accumulating results displayed 
in the database Vesiclepedia ([6]; http://www.microvesicles.org/) that contains data on protein, mRNA, 
miRNA, and lipid composition of extracellular vesicles (exosomes, ectosomes or shedding microvesicles 
and apoptotic bodies).The protein composition of EVs reflects in part the molecular mechanisms of 
biogenesis. In the formation of exosomes the membrane of endosomes invaginates with the production 
of intraluminal vesicles resulting in the appearance of multivesicular endosomes (reviewed in [7]). Those 
luminal vesicles designated as exosomes, have the same membrane topology as the plasma membrane, 
and will appear in the extracellular environment as the result from fusion of the multivesicular endosomes 
with the plasma membrane. The biogenesis of intraluminal vesicles requires the action of proteins from 
the endosomal sorting complex required for transport (ESCRT). ESCRTs consist of four protein 
complexes ESCRT-0, -I, -II, and -III and associated proteins [7,8]. ESCRT-0 binds ubiquitinated cargo 
proteins, PI(3)P and clathrin. It initiates cargo sorting by recruiting ESCRT-I by binding its protein 
component Tsg101. ESCRT-II binds ESCRT-I and ESCRT-III. Proteins from the ESCRT-III complex 
are recruited from the cytosol and polymerize thus forming filaments that induce vesicle formation [7]. 
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Therefore, exosomes contain proteins involved in biogenesis (e.g., Alix and Tsg101), and also proteins 
involved in membrane fusion and transport (e.g., RabGTPases, annexins, flotillin). They also contain 
cytoplasmic proteins including cytoskeleton and heat-shock proteins (e.g., hsc70) [1]. Such proteins 
are often used as markers during EVs purification. 

The budding mechanisms involved in the release of microvesicles from the plasma membrane are 
less well described at the molecular level. It is possible that they are related to virus budding mechanisms. 
Indeed many of the studies published on the characterization of exosomes, include most likely a mixture 
of vesicles from endosomal and plasma membrane origin. 

Another class of proteins that is particularly enriched in EVs are tetraspanins that are membrane proteins 
with four transmembrane domains. Tetraspanins are palmitoylated and usually are glycosylated [9–11]. 
They associate with themselves and other proteins, including integrins, immunoglobulin-superfamily 
receptors, and metalloproteinases, and interact with cholesterol and gangliosides, thus forming specific 
membrane platforms [10]. Thus, tetraspanins, such as CD63, CD9, CD81, and CD82 have been widely 
used as EVs markers [12]. Evidence from the literature also suggested that tetraspanins are involved in 
EVs biogenesis [1]. For example, in the absence of the ESCRT machinery cells are still able to produce 
multivesicular endosomes and CD63 positive exosomes [13]. In addition, tetraspanins have been 
implicated in protein sorting into the exosomes more specifically selected CD81 ligands are depleted 
from exosomes in CD81-deficient cells [14]. 

EVs are generally enriched in sphingomyelin, cholesterol, phosphatidylserine, phosphatidylinositol, 
phosphatidic acid, saturated fatty acids, ganglioside GM3, ceramide, and in GPI-anchored proteins [15]. 
Furthermore, ceramide was shown to play an important role in exosome formation via a mechanism 
independent of the ESCRT machinery in a neural cell line [16]. 

EVs from different cell types have consistently been found to contain characteristic glycan signatures 
that are distinct from the parental cell membranes. Initial findings showed distinct prion protein 
glycoforms incorporated into exosomes [17]. Furthermore, it was found in T cells, melanoma, and colon 
cancer cells that, although the overall glycomics composition of EVs was related to the parental cells, 
there were distinct glycosignatures for EVs relative to the parental cell membranes, as evaluated by lectin 
array analysis. An enrichment of high mannose, polylactosamine, �2,6-linked sialic acid, and complex  
N-glycans was noted but also a depletion of terminal blood group A and B antigens [18,19]. In ovarian 
carcinoma cells specific sialoglycoproteins were found associated with EVs and specific glycosylation 
signatures were detected in EVs, relative to plasma membrane or microsomal glycoproteins [20,21]. 

Although EVs contain specific biomolecules as a result of biogenesis, they also share common 
structural features with their parental cells, which are distinct from those found in other cell types. Since 
EVs are found in extracellular compartments including body fluids, they could become very useful 
targets for biomarker identification. The emerging potential of EVs as biomarkers has been suggested  
in several diseases, most notably in cancer where increased amounts of EVs are produced by tumor  
cells [22–24]. 

In the present work we showed that EVs from ovarian carcinoma cells have specific glycosignatures 
using lectin blotting, which may constitute potential biomarkers. Furthermore, we observed that the 
glycosylation inhibitor kifunensin (KIF) had an impact in EVs composition. 
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2. Results 

2.1. Production, Purification and Characterization of EVs 

EVs were isolated from confluent monolayers of OVMz ovarian carcinoma cells grown in serum 
depleted medium for 48 h. The supernatant was centrifuged at 500× g, 10,000× g, and 100,000× g  
as previously described [21] (Figure 1A) and the different fractions were analyzed by immunoblotting 
with antibodies against EVs markers, CD63, Tsg101, CD9, and L1CAM. The results showed that  
EVs were strongly enriched in the 100,000 g pellet (Figure 1B). Furthermore, the sialoglycoprotein 
galectin-3-binding protein (LGALS3BP, encoded by the LGALS3BP gene, and also known as MAC2BP), 
which was previously identified as an EVs marker in ovarian carcinoma SKOV3 cells [21] was also 
found strongly enriched in EVs from OVMz cells (Figure 1B). 

 

Figure 1. Isolation of EVs from OVMz cells. (A) Diagrammatic representation of the isolation 
procedure; (B) Immunoblotting of EVs markers in cellular extracts (CE), fractions collected 
during the purification (F1, F2, F3) and extracellular vesicles (EVs). Three μg of total protein 
were applied per lane with the exception of CE where ten μg of total protein were used. 
Detection was by the chemiluminescent method. Results were representative of two experiments; 
(C) NTA distribution profile of a representative population of EVs diluted in sterile PBS and 
analyzed using NanoSight NS500 equipment. 

To characterize particle size distribution, the samples of EVs were measured by nanoparticle tracking 
analysis and a representative plot is shown in Figure 1C. The EVs exhibited a heterogeneous population 
in the range between 30 and 900 nm. The maximum of the major peak ranged between 91 and 191 nm 
with an average of 145 ± 26 nm (n = 24 plots from four EVs isolations). The heterogeneity can be related 
to the degree of sample purification, since the pellet of the 100,000× g centrifugation consisted of a crude 
mixture of different populations of vesicles with endosomal and plasma membrane origin that have been 
reported to have heterogeneous sizes [1,2]. 

For comparison total cell membranes (MBs) were obtained from OVMz cells after sonication as 
described [25] (Figure 1A). To confirm the composition of the MBs immunoblotting with antibodies 
against markers for cellular membrane compartments were performed (Figure 2A). MBs were found to 
contain endoplasmic reticulum (detected by anti-calnexin), Golgi apparatus (anti-GRASP65 and GS28), 
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lysosomes (LAMP1), and plasma membrane (L1CAM). For early endosomes only a faint band with 
anti-EEA1 was detected in the MBs, whereas it was found in the corresponding supernatant, probably 
as result of sonication since EEA1 is a peripheral protein. L1CAM and LAMP1 were also detected in 
EVs as previously described ([26], Vesiclepedia). LGALS3BP was only detected in the EVs but not in 
MBs. LGALS3BP is a protein from the cellular matrix that was found to interact with other proteins 
from the extracellular matrix, such as integrins. Since it does not contain transmembrane domains it 
would be expected not to be found in the MBs fraction. However, it is strongly enriched in EVs, probably 
via interaction with other proteins either from the extracellular matrix, such as collagens IV, V and VI, 
fibronectin [27], which have also been found in EVs (Vesiclepedia), or lectins, namely galectin-3, that 
have already been described in exosomes [25]. Since LGALS3BP was found soluble in the post-100,000 g 
supernatant (F3, Figure 1A) it possibly associates with the EVs extracellularly, which would explain 
no/low detection in the cell extracts and fractions of MBs isolation (Figure 2A). 

 

Figure 2. Comparison of protein profiles of MBs and EVs from OVMz cells.  
(A) Immunoblotting of cellular extracts (CE), post-100,000 g supernatant from MBs 
isolation (S), MBs and EVs. Ten μg of total protein were applied per lane with the exception 
of EVs in the incubation with LGALS3BP where three μg of total protein  
were used. Detection was by the chemiluminescent method. Results were representative of 
three experiments; (B) SDS-PAGE analysis of proteins of MBs and EVs. Ten μg of protein 
were applied per lane. Protein detection was with Coomassie R-250. 

The specific marker profiles confirmed the identity of the MBs and EVs fractions. These were further 
analyzed by SDS-PAGE and staining with Coomassie Blue R-250 and different profiles for the total 
proteins were found (Figure 2B). Major bands that were highly enriched in EVs or MBs were identified 
by MALDI-TOF/TOF analysis after trypsin digestion (Tables 1, S1 and S2). Most proteins were from 
cytoplasmic origin with the exception of LGALS3BP, which is from the extracellular matrix, and their 
presence in EVs has already been described in Vesiclepedia. 
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Table 1. List of proteins identified in EVs and MBs from OVMz cells using MALDI-TOF/TOF after SDS-PAGE separation using MALDI-TOF/TOF. 
Bands were excised from the gel shown in Figure 2B. 

Gel Band Protein Name UniProt Identifier Gene Name 
Nominal 

Mass (Mr) 
Protein 
Score 

Sequence 
Coverage (%) 

Queries 
Matched 

Vesiclepedia 

1 
Galectin-3-binding protein LG3BP_HUMAN LGALS3BP 65,289 460 27 13 + 

Alpha-actinin-4 ACTN4_HUMAN ACTN4 104,788 50 10 8 + 
2 Pyruvate kinase PKM KPYM_HUMAN PKM 57,900 47 18 7 + 

3 
Actin, cytoplasmic 2 ACTG_HUMAN ACTG1 41,766 447 50 15 + 

Actin, alpha cardiac muscle ACTC_HUMAN ACTC1 41,992 
166 19 7 

+ 
Actin, alpha skeletal muscle ACTS_HUMAN ACTA1 42,024 + 

4 

Glyceraldehyde-3-phosphate 
dehydrogenase 

G3P_HUMAN GAPDH 36,030 157 52 16 + 

Ezrin EZRI_HUMAN EZR 69,370 
69 3 3 

+ 
Moesin MOES_HUMAN MSN 67,778 + 
Radixin RADI_HUMAN RDX 68,521 + 

5 Vimentin VIME_HUMAN VIM 53,619 415 48 21 + 

6 

Keratin, type II cytoskeletal 8 K2C8_HUMAN KRT8 53,671 84 21 12 + 
Tubulin alpha-1B chain TBA1B_HUMAN TUBA1B 50,120 74 22 7 + 
Tubulin beta-4A chain TBB4A_HUMAN TUBB4A 49,554 

54 18 6 
+ 

Tubulin beta-4B chain TBB4B_HUMAN TUBB4B 49,799 + 
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The presence of LGALS3BP in EVs from OVMz cells was in agreement with the immunoblot 
analysis (Figure 2A). Although the mass calculated from the amino acid sequence of the protein without 
the signal sequence is 63,277, it was detected at approximately 110 kDa by SDS-PAGE indicating that 
it was heavily glycosylated. 

In order to investigate the type of glycosylation, LGALS3BP from EVs was immunoprecipitated and 
digested with endoglycosidase H (Endo H), peptide N-glycosidase F (PNGase F), and Vibrio cholerae 
sialidase. The protein was not sensitive to digestion with Endo H, showing the absence or very low 
amounts of high mannose glycans. Digestion with peptide N-glycosidase F caused a shift to a mass of 
approximately 60 kDa corresponding most likely to the fully deglycosylated form. Fainter bands at 
intermediary molecular masses were also detected, probably representing incomplete deglycosylation 
due to the large size of the protein. However, we cannot rule out other post-translational modifications. 
Digestion with V. cholerae sialidase also caused a downward shift of LGALS3BP indicating the presence 
of sialic acid (Figure 3B). 

 

Figure 3. Deglycosylation of immunoprecipitated LGALS3BP. LGALS3BP was deglycosylated 
with Endo H, PNGase F, and sialidase from V. cholerae after immunoprecipitation from EVs 
(Ctr). The input EVs contained three μg of total protein. As control for the digestion the 
immunoprecipitate was incubated with the corresponding buffer (bufH for Endo H, bufF for 
PNGase F and bufS for sialidase). The controls of the immunoprecipitation without EVs 
(w/o EVs) and without antibody (w/o Ab) were also shown in the second panel. The blots are 
representative of two (Endo H) or four (PNGase F and sialidase) experiments. Immunoglobulin 
G bands are represented with *. 

2.2. Glycosignatures of EVs and MBs 

EVs and MBs were analyzed by lectin blotting with a panel of lectins to investigate EVs specific 
signatures. The lectin from Maackia amurensis (MAL) revealed the enrichment of several sialoglycoproteins 
with sialic acid in �2,3-linkage in EVs and a strong band was detected at approximately 110 kDa  
(Figure 4A), which probably consisted of LGALS3BP. On the contrary, the detection with Sambucus nigra 
agglutinin in EVs was faint and it was at the same level as the control after incubation with sialidase, 
which indicated the absence of sialic acid in �2,6-linkage in EVs from OVMz cells (Figure 4A). This 
result differed from ovarian carcinoma SKOV3 cells [21]. 
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Figure 4. Comparison of glycosignatures from MBs and EVs. A. Lectin blotting with 
biotinylated MAL and SNA. As control for the lectin blotting the samples were desialylated 
with sialidase from V. cholerae. B. Lectin blotting with biotinylated WGA, ECL, AAL, E-PHA, 
WFA, and PNA, and non-biotinylated Con A (upper panels). Controls with competitive sugars 
as indicated in Material and Methods, are shown in the lower panels. Lectin specificities [28] 
are shown below the blots. Glycan representation is according to the nomenclature of  
the Consortium of Functional Glycomics. The lanes contained ten μg of protein. Detection 
was by the chemiluminescent method. Major specific bands are indicated on the right with 
arrowheads. The blots are representative of at least three experiments. 

Wheat germ agglutinin (WGA), which binds sialic acid, also revealed a distinct profile between MBs 
and EVs, and a strong band appeared at approximately 110 kDa that is compatible with LGALS3BP 
(Figure 4B). The glycoprotein profiles with ECL, AAL, E-PHA, WFA, Con A, and PNA with glycan 
specificities shown in Figure 4 (below the blots) were also distinct between MBs and EVs fractions. 
Major bands that were enriched in EVs relatively to MBs and that decreased/disappeared in the presence 
of the competitive sugar are indicated on the right of the panels with arrowheads. 

The presence of bisecting-GlcNAc, detected with E-PHA, was previously proposed as a potential marker 
for ovarian cancer cells [29,30], and also found in SKOV3 cells [21], was also detected here in OVMz 
cells and was strongly enriched in the EVs fraction (Figure 4B). Furthermore, the LacdiNAc structure 
detected with WFA previously found in SKOV3 cells [31], was also found here in EVs from OVMz cells 
(Figure 4B). Finally, PNA, which binds the T antigen, also detected broad bands above 180 kDa in EVs. 

2.3. Effect of the Glycosylation Inhibitor Kifunensine 

KIF is an N-glycosylation inhibitor that prevents the processing of N-glycans from high mannose  
to complex glycans, since it inhibits the �-mannosidase I enzyme from the endoplasmic reticulum.  
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To investigate the impact of the type of N-glycosylation on (glyco)protein composition of exosomes  
we tested the effect of 5 μM KIF on the cell cultures. As control cell concentration, cell viability and 
total protein were estimated. The number of cells was found to be 6.1 × 105 ± 0.5 × 105 cells/well or  
5.4 × 105 ± 0.6 × 105 cells/well in the absence or presence of KIF, respectively, but the difference was 
not significant using the unpaired t test (n = 6; p = 0.0662). Furthermore, KIF did not affect cell viability 
(99 ± 1%, n = 18 or 99 ± 1%, n = 6 in the absence or presence of KIF, respectively). The amount of 
protein in the EVs fraction was 48 ± 12 μg protein/T75 (n = 8) and 57 ± 3 μg protein/T75 (n = 6), in the 
absence or presence of KIF, but the difference was not statistically significant using the unpaired t test 
(p = 0.0928). 

Concerning the effect of KIF on the detection of several N-glycosylated (CD63, LGALS3BP, L1CAM 
and CD9) and non-N-glycosylated (annexin-I and Tsg101) EVs markers (Figure 5), clear differences 
were detected. First, the concentration of KIF used was found to efficiently inhibit N-glycosylation since 
CD63, LGALS3BP, and L1CAM had higher migration in SDS-PAGE in the presence of the inhibitor. 
The higher migration was due to lower molecular mass of high mannose glycans (e.g., Man9GlcNAc2 
has 1883 Da), relative to complex glycans (e.g., complex sialylated diantennary with proximal fucose 
has 2369 Da or complex sialylated tetraantennary with proximal fucose has 3681 Da). Furthermore, 
although all proteins were still detected in the EVs in the presence of KIF several were detected at lower 
levels (Figure 5A). Semi-quantification of the bands from six replicates using Image J software 1.48v 
(Wayne Rasband, National Institutes of Health, Bethesda, MD, USA) revealed a trend towards a 
decrease of CD63, LGALS3BP, L1CAM, CD9, and Tsg101, whereas the difference for annexin-I was 
less evident (Figure 5B). 

 

Figure 5. Effect of kifunensin on the protein profiles from MBs and EVs. (A) SDS-PAGE 
analysis. Protein staining was with Coomassie Blue-R250. Five μg of protein were applied 
per lane. KIF was used at 5 μM concentration; (B) Immunoblot analysis. Three μg of total 
protein were applied per lane; (C) Semi-quantitative analysis of the ratio between band 
intensities in the presence or absence of KIF using Image J software. Representative blots 
(B) average and standard deviation (C) from six experiments are presented. Light and dark 
grey corresponded to EVs and MBs, respectively. 
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3. Discussion 

3.1. EVs Glycosignatures and Glycoprotein Sorting Mechanisms 

In the present article we have isolated and characterized EVs from ovarian carcinoma OVMz cells, 
grown in monolayer, with respect to their glycoprotein content and the type of glycosylation. We have 
found that EVs have specific glycosignatures compared to total membrane proteins using lectin blotting. 
Furthermore, we observed that inhibition of processing of high mannose to complex glycans caused 
changes in the dynamic composition of EVs. 

Results from the literature had already reported specific glycan signatures for EVs from different  
cell lines, such as T-cells (Jurkat, SupT1 and H9), colon cancer (HCT-15 and HT-29), skin cancer 
(SkMel-5) [19], and ovarian carcinoma SKOV3 [21] cells. It is possible that the specific glycosignatures 
are the result of glycan-based sorting mechanisms that could involve cellular lectins, such as galectins. 
Galectin-3 and galectin-4 were detected in EVs [19] and galectin-5 has been proposed to mediate the 
concentration of poly-N-acetylactosamine containing glycoproteins into reticulocytes [32]. LGALS3BP, 
which binds galectin-3 and has previously been found abundantly expressed in EVs ([21,33], Vesiclepedia), 
was also found in the present work on OVMz cells. In agreement with this perspective lectins are 
involved in other sorting mechanisms within the cell. For example, several lectins including galectin-4, 
which is raft associated, and galectin-3, which is raft independent, are involved in apical targeting of 
glycoproteins in polarized cells [34]. More recently, sialylation of N-linked glycans was found to mediate 
apical targeting of endolyn via a galectin-9-dependent mechanism [35]. On the other hand, N-glycans 
were also shown to promote the trafficking of the urea transporter UT-A1 into membrane lipid raft 
subdomains [36]. Therefore, a pathway of glycoprotein sorting to EVs may be related to its glycan 
moiety as an alternative to the well characterized pathway based on the ESCRT machinery. The 
hypothesis would be that glycans interact with specific lectins, which promote the specific sorting of the 
carrier glycoproteins into exosomes or microvesicles at the endosome or at the plasma membrane, 
respectively. Whether that specific sorting would involve a previous enrichment into specific membrane 
domains (tetraspanin platforms or detergent resistant domains) could be a possibility. However, 
experimental evidence is still lacking at this point in support of these possible mechanisms. 

The treatment of OVMz cells with kifunensine, which prevents the processing of high mannose to 
complex glycans, caused relatively decreased levels of the N-linked glycoproteins CD63, LGALS3BP, 
L1CAM, and also of the non-glycosylated exosome marker Tsg101 in the EVs, whereas the same effect 
on the non-glycosylated protein annexin-I was not observed. The results may be due to impaired sorting 
of specific glycoproteins into EVs. In agreement with this hypothesis, results from another group showed 
that the alpha-mannosidase I inhibitor, deoxymannojirimycin, caused decreased levels of the glycoprotein 
EWI-2 in EVs from Sk-Mel-5 cells, although its level on the cell surface did not appear to be affected [25]. 
However, these authors found LGALS3BP dramatically increased on EVs in the presence of the inhibitor 
much in contrast to our findings. This difference could be due to the different cell line used since non-treated 
OVMz cells have much higher levels of LGALS3BP than those reported for Sk-Mel-5 cells [25]. 

The decreased levels of specific glycosylated and non-glycosylated proteins that we observed in  
the presence of kifunensine could also result from changes in the composition of EVs into specific 
subpopulations of vesicles from endosomal (exosomes) or plasma membrane (microvesicles) origin or 
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apoptotic vesicles. Since we applied the same amount of total protein per lane, the detected decrease of 
certain proteins could be due to reduced number of the vesicles where it is sorted, concomitant, or not, 
to the increased number of vesicles where it is not sorted. Further studies are required to explore this 
challenging topic, whether there is impaired sorting of certain glycoproteins into EVs caused by 
kifunensine, or if the cell dynamics are changing as a response to the inhibitor in a way that the 
composition of the pool of EVs is altered. 

3.2. EVs Glycosignatures and Disease Diagnosis 

EVs are carriers of potential disease biomarkers that include miRNA, proteins, glycoproteins [21,23,24,37,38], 
and protein glycosylation [21]. 

Here, we have detected the presence of bisecting-GlcNAc-containing glycans in EVs from OVMz 
cells. This type of structure has already been found by our group in EVs from ovarian carcinoma SKOV3 
cells [21] and bisecting-GlcNAc-containing glycans. They were proposed as potential markers for ovarian 
cancer since tissues of serous and endometrioid ovarian carcinoma patients express this structure [29,30]. 
We also found the LacdiNAc structure in glycoproteins from OVMz EVs. This structure has been found 
in the N-glycans from tumor-associated glycoproteins including glycoproteins from ovarian carcinoma 
SKOV3 cells [31]. Furthermore, we detected the T antigen in OVMz EVs, and this carbohydrate 
structure is known to be increased in cancer [39]. 

Work by other groups has emphasized the importance of EV glycosylation as a disease biomarker. In this 
context, glycosylation of urine exosomes was studied by flow cytometry and lectin microarray and showed 
promising results for future studies on biomarkers for autosomal dominant polycystic kidney disease [40]. 
On the other hand, urinary microvesicles from patients with a deficiency in the galactose-1-phosphate 
uridyltransferase (GALT) gene showed dramatic shifts from prevalent high-mannose-type glycans found 
in healthy subjects towards complex-type N-linked glycosylation in a differential semiquantitative  
N-glycomics study of membrane proteins. These N-glycosylation shifts were not observed on the Tamm 
Horsfall glycoprotein, which showed predominant high-mannose-type glycosylation with M6 [41]. 

Concerning glycoproteins, exosomes derived from ovarian cancer patients carry the putative cancer 
marker glycosylated molecules CD24 and EpCAM, supporting their potential in diagnostics [42,43]. 
Here, we found that the sialoglycoprotein galectin-3-binding-protein was an abundant component of 
OVMz EVs as it was found in EVs from ovarian carcinoma SKOV3 cells [21]. High expression levels 
of galectin-3 binding protein are associated with a shorter survival, the occurrence of metastasis or a 
reduced response to chemotherapy in patients with different types of malignancy [44]. 

Potential biomarkers have been identified in EVs from several types of cancer, namely ovarian, 
colorectal, breast, pancreatic, and urogenital cancers including bladder and prostate cancer, glioblastoma, 
melanoma, lung adenocarcinoma, and esophageal squamous cell carcinoma [23,24,37,38,45]. There is 
also evidence that EVs isolated from the blood of glioblastoma patients can serve as a surrogate for 
primary tumor mutations and a predictive metric of treatment-induced changes [46]. 

EVs also provide potential biomarkers for other diseases other than cancer, such as neurological diseases, 
including ischemic stroke and multiple sclerosis [47], kidney-related diseases [24] or cardiovascular 
diseases [48], and neurodegenerative diseases where they carry misfolded pathogenic proteins [49–53] 
and deregulated microRNAs [24]. The studies concerning glycosylation of biomolecules from exosomes 
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in neurodegeneration are scarce. In this context early studies showed that specific glycoforms of prion 
protein were associated with exosomes [17]. 

3.3. EVs Glycosignatures and EVs Uptake by Other Cells 

Once EVs are released into the extracellular environment, they have the capability to interact with 
other cells and are, subsequently, internalized, thereby delivering their biomolecules into the selected 
target cells. In this way they can act as carriers of disease-associated biomolecules including nucleic 
acids as mRNA and miRNA [54], or pathogenic proteins, such as oncogenic receptor EGFRvIII in  
glioma [55]. In neurodegeneration, EVs are also partially responsible by the transmission of misfolded 
pathogenic forms of proteins, such as Abeta and tau associated with Alzheimer’s disease, alpha-synuclein 
associated with Parkinson’s disease, and superoxide dismutase associated with amyotrophic lateral 
sclerosis [49,56], among cells. On the other hand, beneficial roles of EVs from healthy cells have also 
been discussed in the context of cancer and neurodegeneration [57]. Most noteworthy, EVs from 
mesenchymal stem cells have been advanced as an alternative to the cells in several disease models [58]. 

The transmission of biomolecules between cells via EVs requires initial recognition steps between 
the EVs and the target cells with the participation of proteins, glycans, and lipids, followed by internalization 
of EVs by endocytic pathways or membrane fusion [59]. In the present work we report that EVs from 
OVMz cells have specific glycosignatures and it is possible that the glycans have a functional role in 
interaction and uptake by other cells. In support of this hypothesis are observations from several groups, 
including our own. For example, glycans from exosomes, more specifically �2,3-linked sialic acid-
containing moieties from B cell exosomes, were shown to be recognized by sialoadhesin CD169 on 
macrophages in the marginal zone of the spleen and in the subcapsular sinus of the lymph node 
suggesting a potential role of CD169 in the immune response to exosomal antigen [60]. This is in line 
with our previous observations that desialylation of exosomes caused a trend towards an increase in 
exosome uptake by ovarian carcinoma SKOV3 cells [20]. Thus, it is possible that the presence of  
�2,3-linked sialic acid in several sialoglycoproteins from OVMz cells could play a relevant functional 
role in exosome uptake by other cells. Other sugars have been shown to play a relevant role in EV uptake; 
for example, heparan sulphate proteoglycans, which are known to mediate virus entry into cells, also 
participate in EVs uptake. More specifically, heparan sulfate proteoglycans of the syndecan and glypican 
type from recipient cells, but not from exosomes, participated in EVs uptake by glioblastoma cells, and 
the uptake was specifically dependent on the 2-O and N-sulfation groups [61]. Heparin was also shown 
to inhibit uptake of exosomes by bladder cancer cells [62]. In addition, in macrophages exosome uptake 
was inhibited by lactose possibly by interfering with a mechanism of recognition involving galectin-5 [32], 
whereas D-mannose and D-glucosamine inhibited exosome uptake by dendritic cells and a C-type lectin 
was at least in part required [63]. 

A body of evidence supports the relevance of tetraspanins, integrins, and IgSF molecules, which are 
generally glycosylated molecules, in EV-recipient cell interactions [59]. 

In view of their properties EVs have been used as nanocarriers for delivery of biomolecules  
of therapeutic value [64]. This is particularly valuable for diseases of the central nervous system since 
EVs seem to be capable of crossing the blood-brain-barrier [65]. In addition, AAV vectors associated 
with EVs were found to be more efficient in transduction of cells than conventionally purified AAV 
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vectors [66]. Other studies showed that exosomes can efficiently deliver miRNA to epidermal growth 
factor receptor-expressing breast cancer cells [67]. Systemic exosomal siRNA delivery reduced �-synuclein 
aggregates in the brains of the transgenic mice model of Parkinson’s disease [68]. Finally, anti-inflammatory 
drugs encapsulated in exosomes and applied to the nasal region were used for the treatment of brain 
inflammatory diseases [69]. 

In view of EV specific glycosignatures and their potential implications in interactions with recipient 
cells one approach worth being explored to improve delivery would be through the modulation of EVs 
glycosylation. Further studies are required to investigate this topic. 

4. Materials and Methods 

4.1. Cell Culture 

Human ovarian cancer OVMz cell line was grown in Dulbecco’s Modified Eagle Medium high 
glucose (Sigma, St. Louis, MO, USA), supplemented with 10% fetal bovine serum (Gibco, Grand Island, 
NY, USA), 100 units/mL penicillin and 0.1 mg/mL streptomycin (Gibco), at 37 °C, in 5% CO2. 

4.2. Preparation of Cellular Extract, Extracellular Vesicles and Total Cell Membranes 

Cellular extracts were obtained by solubilization of cells in 50 mM Tris-HCl pH 7.5 buffer, containing 
5 mM ethylenediamine tetraacetic acid, 1% Triton X-100, 0.02% protease inhibitors cocktail, Complete 
(Roche Diagnostics GmbH, Manheim, Germany) for 30 min, followed by centrifugation at 10,000× g, 
10 min, at 4 °C. 

For EVs production, OVMz confluent cells were cultivated for 48 h in serum-free medium. The 
supernatant was collected and successively centrifuged at 500, 10,000, and 100,000× g, for 10, 20, and  
120 min, respectively, at 4 °C. The pellet of the last centrifugations consisted of the EVs fraction. 

For the separation of total cell membranes (MBs), confluent cells were incubated with 0.5 M 
ethylenediamine tetraacetic acid (EDTA) pH 8.0, for 10 min, collected with a cell scraper and 
centrifuged at 500× g, 5 min. Then, cells were sonicated on ice with three cycles of 5 s, at 70% power, 
Branson Digital Sonifier Models 250/450 and 2 min pause in between cycles for cooling. MBs were 
collected as the pellet of a 100,000× g centrifugation, for 1 h. The diagrammatic representation of the 
procedures is shown in Figure 1A. The recovery of protein was approximately 130 μg total protein/T175. 

The glycosylation inhibitor KIF (Sigma) at 5 μM was added to confluent cells in serum-free medium, 
for 48 h, in 24-well-plates to determine cell concentration and viability, or in T75 flasks for EVs 
production. Cell viability was estimated by the trypan blue exclusion assay. Statistical analysis was done 
using GraphPad Prism 6 (GraphPad Software Inc., La Jolla, CA, USA). 

Protein concentration was determined by the bicinchoninic acid method. 

4.3. Immunoblotting and Lectin Blotting Analysis 

Proteins were analysed by SDS-PAGE and transferred to polyvinyledene fluoride membranes that 
were blocked for 1 h with 5% defatted dry milk (Nestle Portugal S.A., Linda-A-Velha, Portugal) in 
phosphate-buffered saline (PBS) with 0.1% Tween-20 (PBST) or in Tris-buffered saline (TBS) with 
0.1% Tween-20 (TBST). The following antibodies were used: mouse anti-L1CAM (L1-11A) monoclonal 
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(1:1000), mouse anti-CD63 monoclonal (1:500) (Invitrogen, Camarillo, CA, USA), mouse anti-CD9 
monoclonal (1:5000), goat anti-human LGALS3BP polyclonal (1:2000) (R&D, Minneapolis, MN, USA), 
goat anti-Tsg101 polyclonal (1:200), goat anti-GRASP65 polyclonal (1:500), goat anti-calnexin 
polyclonal (1:500) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-annexin-I 
monoclonal (1:5000), mouse anti-human LAMP-1 monoclonal (1:500) (BD Biosciences Pharmingen, 
San Diego, CA, USA), mouse anti-EEA1 monoclonal (1:1000), mouse anti-GS28 monoclonal (1:250) 
(BD Transduction Lab, San Diego, CA, USA). Secondary antibodies were sheep anti-mouse IgG 
coupled to HRP (1:4000) (Amersham, GE Healthcare Europe GmbH, Carnaxide, Portugal) or rabbit 
anti-goat IgG coupled to HRP (1:20000) (Sigma). Washings were with TBST or PBST. For annexin-I 
the buffer used was TBS. Detection was performed with the Immobilon Western chemiluminescent HRP 
substrate (Millipore, Billerica, MA, USA). CD63, and CD9 were analyzed in non-reducing conditions. 
Semi-quantitative analysis was done with the Image J software version 1.48v. 

For lectin blotting, blots were blocked with 3% BSA biotin free (Carl-Roth, Karlsruhe, Germany)  
in TBST for 1 h. The they were incubated with the following lectins in TBST for 1 h: 25 μg/mL 
concanavalin A (Con A) (Sigma), 0.5 μg/mL Phaseolus vulgaris erythroagglutinin (E-PHA), 1 μg/mL 
Wisteria floribunda (WFA; Vector Laboratories, Burlingame, CA, USA), 5 μg/mL Maackia amurensis 
lectin (MAL), 0.5 μg/mL Sambucus nigra agglutinin (SNA), 0.1 μg/mL wheat germ agglutinin (WGA), 
0.5 μg/mL Erythrina cristagalli lectin (ECL), 1 μg/mL Aleuria aurantia lectin (AAL), 0.5 μg/mL  
peanut agglutinin (PNA) (Galab Techonologies, Geesthacht, Germany). For Con A, E-PHA, and ECL 
TBST contained 1 mM CaCl2 /1 mM MnCl2 or 1 mM CaCl2 /1 mM MgCl2 for PNA. The blots were 
then incubated with 0.1 �g/mL streptavidin-peroxidase (Sigma). Washings were performed with TBST 
with or without salts. Detection was performed with the Immobilon Western chemiluminescent HRP 
substrate (Millipore). 

As control of MAL and SNA specificity MBs and EVs were incubated with sialidase from Vibrio cholerae, 
as previously described [20]. As control of WGA, AAL, E-PHA, WFA, Con A, and PNA specificities, 
incubations were done in the presence of competitive sugars, respectively, 0.5 M N-acetylglucosamine, 
0.1 M fucose, 0.4 M and 0.1 M N-acetylgalactosamine, 0.1 M methyl-�-D-mannopyranoside and  
0.3 M galactose, after a pre-incubation of 15 min of the lectin with the sugar. 

Gels were stained with Coomassie Blue R-250 (Merck, Darmstadt, Germany) and destained with  
25% methanol and 7% acetic acid. 

4.4. Immunoprecipitation and Deglycosylation of LGALS3BP 

For each immunoprecipitation, 20 �L aliquot of Protein A/G-agarose beads (Santa Cruz Biotechnologies) 
were incubated with 5 �L of goat anti-human LGALS3BP polyclonal antibody (R&D) for 20 min, at 4 °C, 
with constant rotation, in RIPA buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% sodium 
deoxycholate, 1% Triton-X 100, 0.02% protease inhibitors cocktail, Complete, Roche Biodiagnostics 
GmbH). These beads were then incubated for 1 h, at 4 °C, with RIPA-solubilized EVs (150 μg), which 
had been pre-cleared with 20 �L of Protein A/G-agarose beads for 20 min. Washings were done with 
RIPA buffer. For deglycosylation, beads were incubated with 0.5% SDS, 1% �-mercaptoethanol and 
0.02% protease inhibitors cocktail (Roche Biodiagnostics GmbH), at 99 °C. After cooling, the beads 
were incubated at 37 °C overnight, either with 5 mU Endo H (Roche Diagnostics GmbH) in 50 mM 
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sodium citrate pH 5.5, or with 2.5 mU PNGase F (Prozyme, Hayward, CA, USA) in 1% Nonidet P-40 
and 50 mM sodium phosphate pH 7.5, 10 mM EDTA. For sialidase digestion, beads were incubated 
overnight, at 37 °C, with 15 mU sialidase from Vibrio cholerae (Roche Diagnostics GmbH) in 50 mM 
sodium acetate pH 5.5 containing 4 mM CaCl2. 

4.5. Nanoparticle Tracking Analysis (NTA) 

Concentration and size distribution of EVs were measured using a NanoSight NS500 (NanoSight Ltd, 
Amesbury, UK). The samples were diluted in sterile PBS to get a particle concentration in the instrument 
linear range (108–109 particles/mL). All measurements were performed at 22 °C. Sample videos were 
analyzed with the Nanoparticle Tracking Analysis (NTA) 2.3 Analytical software (NanoSight Ltd., 
Wiltshire, UK)—Release version build 0025. Videos of 60 s were acquired and the average of ten 
measurements was considered as a representative result. Capture settings (shutter and gain) were 
adjusted manually. The mean size and standard deviation values of the major peak were calculated by 
taking into account all measurements. 

4.6. MALDI-TOF/TOF Analysis and Protein Identification 

Following protein separation by SDS-PAGE, protein gel bands of interest (stained with Coomassie 
Blue R-250) were excised from the gels for further MALDI-TOF/TOF analysis as previously described [70] 
with minor modifications. Briefly, gel pieces were destained with 50% (v/v) acetonitrile and digested 
overnight with trypsin (6.7 ng/�L) at 37 °C. Tryptic extracts were subsequently desalted and concentrated 
using homemade POROS R2 (Applied Biosystems, Warrington, UK) microcolumns. Peptides were eluted 
from the column using 5 mg/mL �-Cyano-4-hydroxycinnamic acid (LaserBio Labs, Sophia Antipolis, 
France) in 50% (v/v) acetonitrile with 5% (v/v) formic acid, and were applied directly to a MALDI plate. 
Data were acquired in positive reflector MS and MS/MS modes using a 4800 plus MALDI-TOF/TOF 
(Applied Biosystems, Foster City, CA, USA) mass spectrometer and the 4000 Series Explorer Software 
v.3.5.3 (Applied Biosystems, Foster City, CA, USA). External calibration was performed using the 
calibration standards (Pepmix1; Laser BioLabs). The fifty most intense precursor ions from the MS 
spectra were selected for MS/MS analysis. Data were analyzed using Protein Pilot Software v. 4.5 
(ABSciex, Framingham, MA, USA) and the Mascot search engine (MOWSE algorithm). The search 
parameters used were: monoisotopic peptide mass values, maximum precursor mass tolerance (MS) of 
50 ppm and a maximum fragment mass tolerance (MS/MS) of 0.3 Da; Carbamidomethyl (C), Deamidated 
(NQ), Gln- > pyro-Glu (N-term Q), and Oxidation (M) as variable modifications. A maximum of two 
missed cleavages was allowed. The searches were performed against SwissProt protein database 
(547,357 sequences; 194,874,700 residues) with taxonomic restriction to Homo sapiens (20,200 sequences). 
Only MS/MS data were considered for protein identification. All proteins identified have at least: one 
peptide fragmented with a significant individual ion score (score > 32, p < 0.05) and a bold red peptide 
match, in order to eliminate duplicate homologous proteins. 
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5. Conclusions 

EVs from ovarian carcinoma cells have characteristic protein glycosylation signatures, thus suggesting 
specific sorting mechanisms of glycoproteins into EVs. Furthermore, the glycan structures identified in 
the EVs may constitute potential markers for ovarian cancer and constitute targets for investigation in 
other tumor cell lines and in human tissues. 
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