
biomolecules

Article

Glutaminase Increases in Rat Dorsal Root Ganglion
Neurons after Unilateral Adjuvant-Induced Hind
Paw Inflammation
E. Matthew Hoffman, Zijia Zhang, Ruben Schechter † and Kenneth E. Miller *

Received: 13 November 2015; Accepted: 5 January 2016; Published: 13 January 2016
Academic Editor: Jürg Bähler

Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa,
OK 74107, USA; e.matthew.hoffman@gmail.com (E.M.H.), zijia.zhang@okstate.edu (Z.Z.)
* Correspondence: kenneth.miller@okstate.edu; Tel.: +918-561-5817; Fax: +918-561-8276
† Deceased.

Abstract: Glutamate is a neurotransmitter used at both the peripheral and central terminals of
nociceptive primary sensory neurons, yet little is known concerning regulation of glutamate
metabolism during peripheral inflammation. Glutaminase (GLS) is an enzyme of the
glutamate-glutamine cycle that converts glutamine into glutamate for neurotransmission and is
implicated in producing elevated levels of glutamate in central and peripheral terminals. A potential
mechanism for increased levels of glutamate is an elevation in GLS expression. We assessed GLS
expression after unilateral hind paw inflammation by measuring GLS immunoreactivity (ir) with
quantitative image analysis of L4 dorsal root ganglion (DRG) neurons after one, two, four, and
eight days of adjuvant-induced arthritis (AIA) compared to saline injected controls. No significant
elevation in GLS-ir occurred in the DRG ipsilateral to the inflamed hind paw after one or two days
of AIA. After four days AIA, GLS-ir was elevated significantly in all sizes of DRG neurons. After
eight days AIA, GLS-ir remained elevated in small (<400 µm2), presumably nociceptive neurons.
Western blot analysis of the L4 DRG at day four AIA confirmed the elevated GLS-ir. The present
study indicates that GLS expression is increased in the chronic stage of inflammation and may be a
target for chronic pain therapy.

Keywords: glutaminase; glutamate; adjuvant-induced arthritis; complete Freund’s adjuvant; dorsal
root ganglion

1. Introduction

Central axons of pseudounipolar primary sensory neurons of the dorsal root ganglion (DRG)
terminate in spinal cord dorsal horn and medullary dorsal column nuclei for pain and touch pathways,
respectively [1]. Peripheral axons of these neurons terminate in and bring sensory information from
target tissues, such as viscera, muscle and skin. The central axon terminals release the neurotransmitter
glutamate at both spinal [2–5] and medullary levels [2]. Although the peripheral axon terminals
are afferent receptors, some of them also have efferent capabilities [6,7], e.g., glutamate release in
response to noxious stimulation [8–10]. Inflammation of peripheral target tissues increases the amount
of glutamate released from both the peripheral [9,10] and central axon terminals of DRG neurons [3,4].
Similar phenomena occur with the neuropeptides substance P (SP) and calcitonin gene-related peptide
(CGRP) when inflammation induces gene regulation at the transcriptional level, providing the elevated
amounts of SP and CGRP for release from peripheral and central terminals [11,12]. Increasing the
quantity of glutamate available for release depends on regulating the amount of the enzyme for
synthesizing glutamate, i.e., glutaminase (GLS; EC 3.5.1.2). Despite glutamate being released from
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the same neurons that release neuropeptides [13] and the co-localization of GLS within peptidergic
neurons [14], very little is known about glutamate metabolism in DRG neurons during inflammation.
One study indicates that GLS is elevated in small and medium diameter lumbar 4 (L4) DRG neurons
after seven ys of unilateral adjuvant-induced arthritis (AIA) [15].

Glutamate metabolism in the central nervous system (CNS) has been well studied [16], since
glutamate is the primary excitatory neurotransmitter in the CNS. Neurotransmitter glutamate is taken
up and converted to glutamine by astrocytes via the enzyme glutamine synthetase, which release
glutamine back to the neurons. Neurons take up glutamine and convert it to glutamate with GLS.
Many of the proteins necessary for the glutamate-glutamine cycle are present in DRG neurons and their
glia [7,17–21]. Acute increase in the production of glutamate available for release in DRG neurons could
involve an increase in flux through the glutamate-glutamine cycle near the sites of glutamate release.
Long-term responses may require regulating the expression of glutamate-glutamine cycle proteins at
the cell body in the DRG and then transporting them to the peripheral and central terminals [7,15].
To address this issue, we hypothesize that hind paw inflammation increases GLS production in rat
DRG neurons. In the present study, we examined GLS-immunoreactivity (ir) with quantitative image
analysis of neurons in the rat lumbar 4 (L4) DRG neurons after one, two, four, and eight days of hind
paw inflammation, i.e., AIA, and Western blot after four days of AIA.

2. Materials and Methods

2.1. Animals

A combination of male and female Sprague-Dawley rats (n = 32; 170–280 g) bred on site were
used for this study. They were housed on a 12 h light: 12 h dark cycle and given free access to food
and water. Procedures in this study were conducted according to guidelines from the International
Association for the Study of Pain [22] and the National Institutes of Health [23], and were approved
by the Oklahoma State University—Center for Health Sciences Institutional Animal Care and Use
Committee (Protocol # 2010-02). All appropriate efforts were made to minimize the number of rats
used in this study.

To induce a unilateral inflammation of the hind paw, rats (n = 20) were anesthetized with isoflurane
and 150 µL of a 1:1 emulsion containing complete Freund’s adjuvant (CFA; Sigma; St. Louis, MO, USA)
and 10 mM phosphate buffered 0.9% saline (PBS) was injected into the plantar surface of the right hind
paw using a 26 gauge needle. Control rats (n = 12) were given an injection of 150 µL PBS in the right
hind paw with the same anesthesia procedure and injection technique. Inflammation was allowed to
persist for one, two, four, or eight days; at each time point, 5 CFA-injected and 3 PBS-injected animals
were used for immunohistochemistry experiments.

2.2. Evoked Pain Behavioral Responses

Behavioral studies were performed to verify the presence of hyperalgesia after induction of
inflammation. Rats were housed in a behavioral testing room within the animal facility to familiarize
them to the testing environment and to minimize the experience of transfer to and from testing
chambers and housing cages. Three days of testing were performed prior to the injection day to obtain
a baseline reading for each animal; these days were noted as days -3, -2, and -1. On injection day
(day 0), the behavioral test was done prior to the injection, thus serving as a fourth and final assessment
of baseline sensitivity. Behavioral testing continued daily at the same approximate time each day
throughout the remainder of each individual experiment, with the longest being until day 8 (12 total
days of testing).

Thermal latencies measured in seconds were obtained using a Plantar Test apparatus (Ugo Basile,
Comerio, Italy) set at an intensity of 55 mW/cm2. Mechanical thresholds measured in grams were
obtained using a Dynamic Plantar Aesthesiometer (Ugo Basile) set to apply a maximum of 50 g at a
ramp rate of 5 g/s. Each testing period consisted of placing the rats into the testing chambers where
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acclimation was indicated by cessation of all exploratory and grooming behaviors. Two thermal
latencies and two mechanical thresholds were measured from each hind paw of each rat, with
measurements spaced at least ten minutes apart.

2.3. Hind Paw Edema

Hind paw edema was measured with a dial caliper (Mitutoyo; Aurora, IL, USA) by measuring
metatarsal thickness to the nearest 0.05 mm of both hind paws on the day that the rat was perfused.
All hind paw edema measurements were taken when animals were 47–48 days old so that age would
not confound the results.

2.4. Immunohistochemistry (IHC)

After one, two, four, or eight days of inflammation, 3 PBS-injected and 5 CFA-injected rats were
anesthetized with intraperitoneal (i.p.) injections of 1.5 mL 2.5% (w/v) Avertin followed by 0.5 mL
xylazine. Rats were perfused with 75 mL of calcium-free Tyrode’s solution, pH 7.3 followed by
325 mL of 0.96% (w/v) picric acid and 0.2% (w/v) formaldehyde in 0.1 M sodium phosphate buffer,
pH 7.3. We chose this fixative because low aldehyde concentration results in optimal immunolabeling
of GLS [18,24]. The right (ipsilateral) and left (contralateral) L4 DRG were carefully dissected and
placed in the same fixative for 24 h at 4 ˝C before being transferred to 20% (w/v) sucrose in 0.1 M
sodium phosphate buffer, pH 7.3 for 48 h at 4 ˝C. The eight DRG from a single time set of animals
were embedded in a single frozen block and cut in 10 µm sections on a Microm HM 550 OMVP
cryostat (Richard Allan Scientific; Kalamazoo, MI, USA). Every fourth section was thaw mounted on
gelatin-coated SuperFrost slides (Fischer Scientific; Pittsburg, PA, USA) with two sections per slide.
Five slides of DRG sections from each time point were dried at 37 ˝C for two hours. After three 10 min
rinses in PBS, DRG sections were blocked for one hour at room temperature in 10% (v/v) normal goat
serum, 10% (v/v) fetal bovine serum, 10% (v/v) normal horse serum, 2% (w/v) polyvinylpyrollidone,
2% (w/v) bovine serum albumin, and 0.3% (v/v) Triton X-100 in PBS. A polyclonal rabbit antiserum
against glutaminase was a generous gift from Dr. Norman Curthoys (Colorado State University, Ft.
Collins, CO, USA) and previous absorption controls on DRG tissue sections have been performed [18].
The primary antiserum was diluted 1:10,000 in PBS containing 0.3% (w/v) Triton X-100 (PBS-T) and
DRG sections were incubated for four days at 4 ˝C [18]. After primary antiserum incubation, DRG
sections were rinsed three times for 10 min in PBS and incubated for one hour at room temperature in
biotinylated goat anti-rabbit (Vector Laboratories; Burlingame, CA, USA) diluted in PBS-T to 1.5 µg/mL.
DRG sections were rinsed two times in PBS for 10 min and one time in 0.1 M sodium carbonate buffered
0.9% (w/v) saline (SCBS) for 10 min before one hour of incubation at room temperature in fluorescein
isothiocyanate conjugated avidin (Vector Laboratories) diluted to 1 µg/mL in SCBS. After three 10 min
rinses in PBS, cover slips were affixed with ProLong Gold (Invitrogen; Carlsbad, CA, USA) to retard
fading of immunofluorescence.

2.5. Quantitative Image Analysis

Images of L4 DRG tissue sections were acquired on a BX51 epifluorescence microscope (Olympus;
Center Valley, PA, USA) using a SPOT RT740 camera (Diagnostic Instruments; Sterling Heights, MI,
USA). An exposure and gain combination was determined empirically for each of the four slide sets
in which the dimmest regions of tissue could be discerned visually for tracing, but the brightest
regions were not oversaturated [15,18,25,26]. Three fields of view were captured randomly from
each section of each DRG. All nucleated cells were analyzed in ImageJ (National Institutes of Health;
Bethesda, MD, USA) by using the freehand selection tool to identify the cells as regions of interest
(ROIs). Once all ROIs for a given image were selected and added to the ROI manager, the area (in µm2)
and cytoplasmic mean gray values were measured for each cell and exported for subsequent statistical
analysis. Each pixel of an 8-bit grayscale image had a value from 0–255. Each mean gray intensity (MGI)
value (C) was converted into a relative MGI value that ranged from 1–100 [27], because images from
each of the four slide sets, i.e., different days of inflammation, were taken at slightly different gain and
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exposure settings. To accomplish this conversion, the MGI value of the most weakly labeled neuron in
each data set (A) and the MGI value of the most intensely labeled neuron in each data set (B) were
determined and each neuron was given a relative MGI value = (100 ˆ (C ´ A)/(B ´ A)). MGI values
were used to quantitate the immunoreactivity (ir) and therefore estimate protein expression [26].
Frequency distributions of MGI’s were generated for each time point. At each of the four time points
assessed, the mean MGI’s were calculated for small (<400 µm2), medium (400–600 µm2), and large
(>800 µm2) neurons of each L4 DRG as described in previous reports [18,25,27,28].

2.6. Western blot

Tissues were obtained from six female Sprague-Dawley rats weighing 200–250 g; three controls
were injected with PBS and three injected with CFA as described in Section 2.1. Rats were asphyxiated
with CO2 after four days of AIA, and the right L4 DRG’s were rapidly extracted. DRG’s were
homogenized with lysis buffer (pH 7.4, 10 mM Tris-HCl, 2 mM EDTA, 0.1% Triton X-100, 1%
Cocktail I, 2% Cocktail II and protease inhibitor (all from Sigma-Aldrich; St. Louis, MO, USA) as
previously described [15,29]. Samples were centrifuged for 20 min at 70,000 RPM at 4 ˝C. Supernatants
were collected and total protein concentration was evaluated using bicinchoninic acid (BCA kit,
Thermo Scientific; Rockford, IL, USA). Samples for GLS purification were normalized to 80 µg/mL
of total protein. Samples were exposed to M-280 magnetic beads (Invitrogen; Grand Island, NY,
USA) conjugated with rabbit anti-GLS antibody (gift from Dr. N.P. Curthoys) against a synthetic
GLS peptide [30] in lysis buffer at 4 ˝C overnight as previously reported [15,31]. The GLS-bound
beads were extracted with a magnet, resuspended in 10 mM Tris Base, 1 mM EDTA, 2.5% SDS, 5%
β-mercaptoethanol and 0.01% bromophenol blue and boiled at 100 ˝C for 3 min. After a second
exposure to the magnet, the supernatant containing GLS was removed and the beads were discarded.
Samples and a protein molecular weight marker (Novagen; Rockland, MA, USA) were separated using
the PhastSystem (GE Healthcare Life Sciences; Pittsburgh, PA, USA) employing a 12.5% homogenous
SDS gel (GE Healthcare Life Sciences). The PhastSystem, using parameters previously described [15,29],
was used to transfer samples to a nitrocellulose membrane (Whatman, GE Healthcare; Piscataway, NJ,
USA). Membranes were dried for 10 min and blocked for 30 min with 1% bovine serum albumin (BSA)
in Tris-buffered saline Tween (TBST, 20 mM Tris-HCl, 150 mM NaCl, 0.05% Tween 20, pH 7.5) at room
temperature. After rinsing in TBS, the membranes were incubated overnight at 4 ˝C with GLS antibody
at 1:1000 in TBST. Membranes were washed in TBST and incubated in secondary mouse anti-rabbit
IgG alkaline phosphatase conjugate (Promega; Madison, WI, USA) at 1:7000 and S-AP conjugate at
1:5000 (Novagen; Rockland, MA, USA) for 30 min. Detection was performed using a Western Blue
stabilized substrate for alkaline phosphatase (Promega; Madison, WI, USA). Densitometric analysis of
Western blot images was performed with ImageTool (UTHSCSA; San Antonio, TX, USA) as described
previously [15].

2.7. Statistical Analysis

Graphs and statistical calculations were performed in GraphPad Prism version 5.01 for Windows
(GraphPad Software Inc.; San Diego, CA, USA). Two-way ANOVA was performed to determine if
effects of inflammation or time were significant on thermal latency, mechanical threshold, and hind
paw edema data. Bonferroni post-tests were performed to determine which groups differed and when.
A two way ANOVA was performed for the GLS-ir data to determine if effects of inflammation were
significant on the mean GLS-ir of small, medium, and large L4 DRG neurons. Bonferroni post-tests
were performed to determine which DRG and which neuron populations differed significantly in
GLS-ir. All graphical results represent mean plus or minus the standard deviation. Results were
considered significant when p values were less than 0.05.

Western blot results were reported as mean density and standard error of the mean (SEM).
A Student’s t test was performed on GLS Western blot data and p < 0.05 was considered statistical
significant. The percent changes of control and AIA treated animals also were reported.
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3. Results

3.1. Evoked Pain Behavioral Responses

Thermal latencies and mechanical thresholds of the hind paws ipsilateral or contralateral to the
PBS injection, or contralateral to the CFA injection were never significantly different from each other.
The baseline thermal latencies of the hind paws ipsilateral to the CFA injection were significantly
different from the three other groups after the CFA injection at day 0 through day 4. Hind paw thermal
latencies ipsilateral to the CFA injection were not different than those from hind paws ipsilateral to the
PBS injection on days 5, 7 or 8 (Figure 1A). Baseline mechanical thresholds of the hind paws ipsilateral
to the CFA injection were not significantly different than the other baseline measurements, but they
were always significantly different from the three other groups after the injection at day 0 through
day 8 (Figure 1B).
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points, there was a significant increase in edema in the CFA-injected hind paw, with peak swelling 
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Figure 1. Thermal latencies, mechanical thresholds, and metatarsal thicknesses from rat hind paws after
injection with phosphate buffered saline (PBS) or complete Freund’s adjuvant (CFA). Adjuvant-induced
arthritis (AIA) caused significant decreases in thermal latencies (A) for days 1 through 4 and mechanical
thresholds (B) for days 1 through 8. Thermal latencies appeared decreased for days 5 through 8, but
significance could not be shown with sample sizes of n = 3 for PBS and n = 5 for CFA at these time
points. The behavioral data from all four sets were combined; therefore, the number of rats contributing
to the data set declined as the study progressed. Edema measurements (C) for each time point, however,
consisted of 3 PBS-injected rats and 5 CFA-injected rats. At all time points, there was a significant
increase in edema in the CFA-injected hind paw, with peak swelling occurring after two days of
inflammation. Data are presented as mean ˘ SEM. * p < 0.05; *** p < 0.001.
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3.2. Hind Paw Edema

Metatarsal thicknesses of the PBS injected hindpaws were not significantly different from the
hindpaws contralateral to PBS and CFA injections at any of the four time points. Metatarsal thicknesses
were increased significantly (p < 0.001) in the hind paws ipsilateral to CFA injection compared to the
other three groups of hind paw at all four time points with a peak increase at 2 days (Figure 1C).
The relative increases of the CFA-injected paw vs. the PBS-injected paw were 67%, 84%, 52%, and 28%,
for days 1, 2, 4, and 8, respectively.

3.3. Changes in GLS-ir During Inflammation

As in previous reports, all DRG neurons were immunoreactive for GLS (Figure 2) [14,15,18,20,25].
Representative images from the DRG ipsilateral to the PBS and CFA injections after one, two, four,
and eight days of inflammation (Figure 2) showed a qualitative increase in GLS-ir in DRG neurons of
AIA rats, especially after four days of AIA (Figure 2F). Frequency distributions of GLS-ir were similar
among ipsilateral and contralateral PBS- and CFA-injected groups after one and two days of AIA
(Figure 3A,B). At four and eight days AIA, there was an observable “rightward shift” in the frequency
distribution of GLS-ir in the DRG neuron population ipsilateral to the CFA injection (Figure 3C,D).
With quantitative image analysis, there was no significant difference in GLS-ir after one or two days of
inflammation (Figure 4A,B). A robust elevation in GLS-ir, however, was evident in all sizes of DRG
neurons after four days of inflammation (p < 0.001; Figure 4C; 121.4% overall increase) that persisted in
small neurons after eight days of inflammation (p < 0.01; Figure 4D). After four days of inflammation,
GLS-ir in small, medium, and large DRG neurons ipsilateral to CFA injection was approximately
double that of DRG neurons ipsilateral to PBS injection.
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Figure 3. Frequency distributions for GLS-ir in L4 DRG neurons. (A,B) There were no obvious 
differences among the GLS-ir mean gray intensity (MGI) frequency distributions for ipsilateral or 
contralateral L4 DRG in PBS- or CFA-injected rats; (C) At day 4 AIA, there was a rightward shift 
(arrows) in the GLS-ir frequency distribution of the L4 DRG neuronal population ipsilateral to the 
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Figure 2. Representative images of glutaminase (GLS) immunoreactivity (ir) in lumbar 4 (L4) dorsal
root ganglion (DRG) neurons ipsilateral to the PBS and CFA injected hind paws after one (A,B); two
(C,D); four (E,F); and eight (G,H) days of AIA. Left column images are from PBS injected rats. Right
column images are from CFA injected rats. All sizes of DRG neurons have GLS-ir. (F) After four days
of hind paw inflammation, GLS-ir increased (arrows) in many DRG neurons, regardless of neuronal
size, ipsilateral to CFA injection compared to PBS injected controls. (H) GLS-ir was still elevated in
some small neurons (arrows) after eight days of inflammation compared to controls.
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Figure 3. Frequency distributions for GLS-ir in L4 DRG neurons. (A,B) There were no obvious
differences among the GLS-ir mean gray intensity (MGI) frequency distributions for ipsilateral or
contralateral L4 DRG in PBS- or CFA-injected rats; (C) At day 4 AIA, there was a rightward shift
(arrows) in the GLS-ir frequency distribution of the L4 DRG neuronal population ipsilateral to the
CFA injection compared to the ipsilateral PBS injection; (D) At day 8 AIA, a slight right shift (arrows)
remained in the GLS-ir frequency distribution of the L4 DRG neuronal population ipsilateral to the
CFA injection compared to the ipsilateral PBS injection.



Biomolecules 2016, 6, 10 8 of 15
Biomolecules 2016, 6, 10 8 of 14 

 
Figure 4. Image analysis of GLS-ir for small, medium, large, and all L4 DRG neurons. (A,B) No 
significant difference in GLS-ir occurred after one or two days of inflammation; (C) Elevation in  
GLS-ir occurred in all DRG neuronal sizes after four days of inflammation (*** p < 0.001; 121.4% 
overall increase); (D) GLS-ir elevation also occurred in small neurons after eight days of 
inflammation (** p < 0.01).  

3.4. GLS Western Blots 

Western blots of GLS from DRG demonstrated the presence of 66,000 and 68,000 molecular 
weight (Mr) bands (Figure 5A) as previously reported for rat kidney and brain [30]. After four days 

Figure 4. Image analysis of GLS-ir for small, medium, large, and all L4 DRG neurons. (A,B) No
significant difference in GLS-ir occurred after one or two days of inflammation; (C) Elevation in
GLS-ir occurred in all DRG neuronal sizes after four days of inflammation (*** p < 0.001; 121.4%
overall increase); (D) GLS-ir elevation also occurred in small neurons after eight days of inflammation
(** p < 0.01).
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3.4. GLS Western Blots

Western blots of GLS from DRG demonstrated the presence of 66,000 and 68,000 molecular
weight (Mr) bands (Figure 5A) as previously reported for rat kidney and brain [30]. After four days
of AIA, Western blots of ipsilateral DRGs demonstrated that the GLS-ir was significantly elevated
(p < 0.05) when compared to control (optical density, O.D., control = 32.34 ˘ 1.62, AIA = 44.67 ˘ 2.50)
representing a 38.1% increase (Figure 5B).
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Figure 5. Western blot analysis of GLS from PBS- and CFA-injected rats at four days AIA. (A) Western
blot of GLS from L4 DRG showed two bands, Mr 66,000 and Mr 68,000, corresponding to the two
isoforms of GLS. There was an increase in GLS-ir in the 4 day AIA rats compared to PBS controls;
(B) There was significant increase (38.1%) in the DRG from four day AIA rats compared to PBS-injected
rats (* p < 0.05) (optical density (O.D.)—control: 32.34 ˘ 1.62; AIA: 44.67 ˘ 2.50).

4. Discussion

Peripheral sensitization of DRG neurons during long-lasting inflammation initiates a sensitizing
cascade along the pain pathway resulting in a chronic pain state. Both post-translational and
expression dependent mechanisms are involved in peripheral sensitization; the former for initiation of
sensitization during the acute stage of inflammatory pain and the latter for maintaining the sensitization
during the chronic stage [11]. Many proteins involved in peripheral sensitization undergo both types
of changes. While GLS does not have a phosphorylation site, its activity can be modulated by allosteric
factors such as calcium and inorganic phosphate [32] and these concentrations increase in an activated
peripheral or central axon terminal [7]. For example, increased terminal activity increases hydrolysis
of ATP into ADP and inorganic phosphate [32] and increases calcium influx through voltage-gated
calcium channels [33] and members of the TRP family [34]. Therefore, increased terminal activity
during the acute stage of inflammation could increase GLS enzyme activity and account for the
elevated amounts of glutamate reported for the skin [9,10], peripheral axons [35], and spinal cord
dorsal horn within hours after the induction of inflammation [3,4].

In the current study, we have shown an elevation in GLS-ir indicating an increase in the content of
GLS in DRG neurons after peripheral inflammation. There was a disparity in the amount of elevation
with Western blotting (38%) vs. immunohistochemical image analysis (121%). This may be due to
differences in antibody binding to GLS between the two techniques (denatured vs. lightly fixed
protein). Additionally, the inclusion of satellite and Schwann cell protein to the overall protein for
Western blotting may have diminished the percent increase in GLS compared to evaluating GLS-ir
exclusively in the neuronal cytoplasm with image analysis [36]. Both techniques did show increases in
GLS-ir and we interpret this as increased expression of GLS by DRG neurons, either by transcription
dependent changes or enhanced translation of GLS protein. Based on the timescale of increased GLS
production, it is possible that a retrogradely transported neurotrophic factor such as nerve growth
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factor (NGF) is responsible for this regulation. Retrograde NGF signaling also could account for
subsequent anterograde transport out of newly synthesized GLS out of the cell body via mitochondrial
axonal transport [37,38]. Moreover, NGF regulates expression of several other proteins important for
nociception [25,39], and has the ability to affect GLS expression in DRG neurons [40–42] and retina [43].

Glutamate is implicated not only as a neurotransmitter released by nociceptive peripheral axon
terminals, but also as a sensitizer of these terminals [7]. Injecting glutamate or glutamate receptor
agonists sensitize nociceptors in ex vivo [44] studies and causes hyperalgesia in vivo in rodents [45–54]
and humans [55]. The role of glutamate in mediating hyperalgesia during inflammation is evidenced
by high glutamate levels in inflamed tissues [56,57] and the attenuation of hyperalgesia with glutamate
receptor antagonists in inflammatory animal models and burn injury in humans [45,52,53,58,59].
Glutamate may exacerbate the neurogenic component of inflammation by further activation of
neuropeptide release [60,61]. The numbers of glutamate receptors on peripheral axons also increases
during inflammation [49,58], which could lead to an escalating cycle wherein the peripheral terminals
are able to maintain their own sensitization and exacerbate chronic pain ([62]. Similarly, glutamate
is involved in sensitization of dorsal horn neurons to afferent stimulation [63–66]. The presence of
glutamate receptors on central axon terminals [67] could enhance central glutamate release via a
positive feedback mechanism. Therefore, increased glutamate production may be involved in both
peripheral and central sensitization mechanisms that culminate in chronic pain. The increase of GLS
specifically in small diameter DRG neurons at 8 days AIA would correspond with a chronic pain
mechanism originating from nociceptive DRG neurons. Future studies are directed toward evaluating
GLS alterations during inflammation in DRG neurons with specific nociceptive markers, e.g., CGRP.

Since GLS is only one of many proteins involved in the glutamate-glutamine cycle, other proteins
within the cycle may increase their activities and/or expressions in order to effectively increase
the flux of glutamate through the cycle. Very little is known about the glutamate-glutamine cycle
during inflammation, although many of these proteins have been localized to the DRG and peripheral
nerve [20]. The neuronal glutamate transporter responsible for reuptake of glutamate, excitatory amino
acid transporter 3 (EAAT3), localizes to primarily small diameter DRG neurons [21] and the glial
glutamate transporter, EAAT1, localizes to satellite glial cells of the DRG [17]. Glutamine synthetase,
the glial enzyme that converts glutamate to glutamine, not only serves as a specific marker for satellite
glial cells in the rat DRG [20] and mouse trigeminal ganglia (TG) [68,69], but increases along with
glutamine in satellite glial cells after peripheral inflammation [70]. Increases in GS and glutamine
concur with the notion that multiple glutamate-glutamine cycle proteins and substrates increase in
response to inflammation. Little is known concerning glutamine transporters in the DRG, but we have
detected sodium-coupled neutral amino acid transporters (SNAT) 1 [71] and 2 [72] in DRG neurons.
Vesicular glutamate transporters (VGLUTs) are necessary at sites of glutamate neurotransmission and
VGLUT1 and 2 localize to different size classes of DRG and TG neuron cell bodies [73–75] in addition
to the peripheral and central terminals [73,75–77]. Regulation of VGLUT1 and 2 levels at the cell body
occurs after peripheral nerve crush and/or axotomy [73,78,79] and VGLUT2 expression appears to
regulate glutamate release during neuropathic pain [80]. Information, however, about alterations
of VGLUT during chronic inflammation is lacking. We hypothesize that post-translational and/or
expression dependent mechanisms may act on some or all of the aforementioned proteins to increase
glutamate production during inflammation and contribute to peripheral and central sensitization.
Support for this hypothesis comes from the observations that pharmacological intervention of GLS with
an irreversible inhibitor at the peripheral terminal [81,82] or glutamine transporter and GS inhibition in
dorsal horn [83,84] provide analgesia during inflammation. Peripheral inhibition of GLS also decreases
Fos activation in dorsal horn neurons after inflammation [60].

5. Conclusions

The present results indicate that an increase in GLS production occurs during the chronic stage
of inflammatory pain. Further study of glutamate-glutamine cycle proteins both peripherally and
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centrally during inflammation is necessary to fully understand the role glutamate metabolism plays in
peripheral and central sensitization. It is expected that such knowledge of glutamate metabolism will
provide useful targets for chronic pain.
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