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Abstract: Many degree-based topological indices can be obtained from the closed-off M-polynomial
of a carbon nanocone. These topological indices are numerical parameters that are associated with
a structure and, in combination, determine the properties of the carbon nanocone. In this paper,
we compute the closed form of the M-polynomial of generalized carbon nanocone and recover many
important degree-based topological indices. We use software Maple 2015 (Maplesoft, Waterloo, ON,
Canada) to plot the surfaces and graphs associated with these nanocones, and relate the topological
indices to the structure of these nanocones.
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1. Introduction

Chemical graph theory is a subject that connects mathematics, chemistry, and graph theory,
and solves problems arising in chemistry mathematically. A topological index is a numeric number
associated with a molecular graph that correlates certain physicochemical properties of chemical
compounds. The topological indices are useful in the prediction of physicochemical properties and
the bioactivity of the chemical compounds [1–4]. These indices capture the overall structure of the
compound and predict chemical properties such as strain energy, heat formation, boiling points, etc.

Long computation is required to compute topological indices, and in order to simplify the
computation of the degree indices, which form a subclass of degree-based topological indices of utmost
importance, the M-polynomial was introduced in [5] by Deutsch and Klavžar. From the M-polynomial,
one can recover nine degree-based topological indices. For this reason, the M-polynomial has been
studied extensively in recent years, for example, Munir et al. computed M-polynomials for polyhex
nanotubes, and recovered many important degree-based topological indices [6]. The M-polynomials for
nanostar dendrimers were studied by Munir et al. in [7]. Munir et al. also studied the M-polynomials
of titania nanotubes and its degree-based topological indices [8]. Ali et al. [9] studied zigzag and
rhombic benzenoid systems. For more studies in this direction, see Munir et al. [10], Kwun et al. [11],
Kang et al. [12], Ahmad et al. [13] and Kang et al. [14].

Carbon nanocones have been observed since 1968 or even earlier [15] on the surface of naturally
occurring graphite. The molecular graph of nanocones have conical structures with a cycle of length k
at its core and n layers of hexagons placed at the conical surface around its center. The importance
of carbon nanostructures is due to their potential use in many applications, including gas sensors,
energy storage, nanoelectronic devices, biosensors, and chemical probes [16]. Carbon allotropes such
as carbon nanocones and carbon nanotubes have been proposed as possible molecular gas storage
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devices [17]. More recently, carbon nanocones have gained increased scientific interest due to their
unique properties and promising uses in many novel applications such as energy and hydrogen
storage. Figures 1 and 2 show carbon nanocones.
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Figure 2. The molecular graph of CNCk[n] for k = 5.

The molecular graph of CNCk[n] nanocones have conical structures with a cycle of length k at its
core and n layers of hexagons placed at the conical surface around its center, as shown in the following
Figure 3.

In the present report, we give a closed form of the M-polynomial of carbon nanocones. From the
M-polynomial, we recover nine degree-based topological indices. In [18], Xu et al. computed the
Hosoya polynomial and related distance-based indices for CNC7[n]. In [19], Ghorbani et al. computed
the Vertex PI, Szeged, and Omega polynomials of carbon nanocone CNC4[n]. Similarly, many partial
results regarding topological indices have been obtained for some particular classes of nanocones.
However, we present some general results about complete families of nanocones. Our results present
organized generalizations of many existing partial results.
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2. Basic Definitions and Notions

Algebraic polynomials have many useful applications in chemistry. For instance, the Hosoya
polynomial (also called the Wiener polynomial) [20] plays a vital role in determining distance-based
topological indices. The M-polynomial [5], which was introduced in 2015, plays the same role in
determining many degree-based topological indices [6–14].

Throughout this paper, G denotes connected graph, V(G) and E(G) denote the vertex set and the
edge set, respectively, and dv denotes the degree of a vertex.

Definition 1. The M-polynomial of G is defined as:

M (G, x, y) = ∑
δ≤i≤j≤∆

mij(G)xiyj,

where δ = Min{dv|v ∈ V (G)}, ∆ = Max{dv|v ∈ V (G)}, and mij(G) is the edge vu ∈ E(G) such that
{dv, du} = {i, j}.

The first well-known topological index was introduced by Wiener [21] when he was studying
the boiling point of paraffin. He named it the path number, which is now known as the Wiener
index [22,23]. Later, Randic defined the first degree-based topological index in 1975 [24]. The Randic
index is denoted by R−1/2(G), and is defined as:

R−1/2(G) = ∑
uv∈E(G)

1√
dudv

.

In 1998, working independently, Bollobas and Erdos [25] and Amic et al. [26] proposed
the generalized Randic index, which has been studied extensively by both chemists and
mathematicians [27]. Many mathematical properties of the Randic index have been discussed [28].
For a detailed survey we refer to the monograph of Li and Gutman [29].
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The general Randic index is defined as:

Rα(G) = ∑
uv∈E(G)

(dudv)
α.

Obviously R−1/2(G) is the particular case of Rα(G) when α = − 1
2 .

Gutman and Trinajstic introduced the first Zagreb index and second Zagreb index, which are
defined as: M1(G) = ∑

uv∈E(G)
(du + dv) and M2(G) = ∑

uv∈E(G)
(du × dv), respectively. The second

modified Zagreb index was defined as:

m M2(G) = ∑
uv∈E(G)

1
d(u)d(v)

.

For detail about these indices, we refer Nikolić et al. [30], Gutman and Das [31], Das and
Gutman [32] and Trinajstić et al. [33] to the readers.

The symmetric division index is defined as:

SDD(G) = ∑
uv∈E(G)

{
min(du, dv)

max(du, dv)
+

max(du, dv)

min(du, dv)

}
.

Other well-known topological indices are the harmonic index, H(G) = ∑
vu∈E(G)

2
du+dv

., the inverse

sum index, I(G) = ∑
vu∈E(G)

dudv
du+dv

, and the augmented Zagreb index [34,35]:

A(G) = ∑
vu∈E(G)

{
dudv

du + dv − 2

}3
.

The following Table 1 relates some well-known degree-based topological indices with the
M-polynomial [5].

Table 1. Derivation of some degree-based topological indices from the M-polynomial.

Topological Index Derivation from M(G; x, y)
First Zagreb (Dx + Dy)(M(G; x, y))

∣∣
x=y=1

Second Zagreb (DxDy)(M(G; x, y))
∣∣
x=y=1

Second Modified Zagreb (SxSy)(M(G; x, y))
∣∣
x=y=1

General Randić Index (Dα
x Dα

y )(M(G; x, y))
∣∣∣
x=y=1

General inverse Randić Index (Sα
xSα

y)(M(G; x, y))
∣∣∣
x=y=1

Symmetric Division Index (DxSy + SxDy)(M(G; x, y))
∣∣
x=y=1

Harmonic Index 2 Sx J (M(G ; x, y))x=1
Inverse sum Index Sx J Dx Dy(M(G ; x, y))x=1

Augmented Zagreb Index Sx
3 Q−2 J Dx

3Dy
3(M(G ; x , y))x=1

where:

Dx = x ∂( f (x,y)
∂x , Dy = y ∂( f (x,y)

∂y , Sx =
x∫

0

f (t,y)
t dt, Sy =

y∫
0

f (x,t)
t dt, J( f (x, y)) = f (x, x),

Qα( f (x, y)) = xα f (x, y).

3. Results

In this section, we give our computational results.
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Theorem 1. Let CNCk[n] be the graph of carbon nanocones. Then, the M-polynomial of CNCk[n] is:

M(CNCk[n], x, y) = kx2y2 + 2knx2y3 +
kn
3
(3n + 1)x3y3.

Proof. Let CNCk[n] be the graph of nanocones. From the graph of CNCk[n] nanocones, we can see
that there are two partitions, V{3} = {v ∈ V(CNCk[n])|dv = 3} and V{2} = {v ∈ V(CNCk[n])|dv = 2}.
The edge set of the CNCk[n] can be partitions as follows:

E{2,2} = {e = uv ∈ E(CNCk[n])|du = 2&dv = 2},

E{2,3} = {e = uv ∈ E(CNCk[n])|du = 2&dv = 3}

and:
E{3,3} = {e = uv ∈ E(CNCk[n])|du = dv = 3}

From the molecular graph of CNCk[n], we can observe that
∣∣∣E{2,2}

∣∣∣ = k,
∣∣∣E{2,3}

∣∣∣ = 2kn,

and
∣∣∣E{3,3}

∣∣∣ = kn
3 (3n + 1).

Thus, by Definition 1, the M-polynomial of CNCk[n] (Figure 4) is:

M(CNCk[n]; x, y) = ∑
i≤j

mij(CNCk[n])xiyj,

= ∑
2≤2

m22(CNCk[n])x2y2 + ∑
2≤3

m23(CNCk[n])x2y3 + ∑
3≤3

m33(CNCk[n])x3y3,

= ∑
uv∈E{2,2}

m22(CNCk[n])x2y2 + ∑
uv∈E{2,3}

m23(CNCk[n])x2y3 + ∑
uv∈E{3,3}

m33(CNCk[n])x3y3,

=
∣∣∣E{2,2}

∣∣∣x2y2 +
∣∣∣E{2,3}

∣∣∣x2y3 +
∣∣∣E{3,3}

∣∣∣x3y3,

= kx2y2 + 2knx2y3 + kn
3 (3n + 1)x3y3.
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Theorem 2. Let CNCk[n] be the graph of carbon nanocones. Then:

1. M1(CNCk[n]) = 6kn2 + 12kn + 4k.
2. M2(CNCk[n]) = 9kn2 + 15kn + 4k.
3. m M2(CNCk[n]) = 1

9 kn2 + 10
27 kn + 1

4 k.
4. Rα(CNCk[n]) = k22α + kn

(
n32α + 22α+1 + 32α−1).

5. Rα(CNCk[n]) = k4−α + 2kn6−α + 1
3 kn(3n + 1)9−α.

6. SDD(CNCk[n]) = 2kn2 + 5kn + 2k.
7. H(CNCk[n]) = 1

3 kn2 + 41
45 kn + 1

2 k.
8. I(CNCk[n]) = 3

2 kn2 + 29
10 kn + k.

9. A(CNCk[n]) = 729
64 kn2 + 1267

64 kn + 8k.

Proof. Let M(CNCk[n]; x, y) = f (x, y) = kx2y2 + 2knx2y3 + kn
3 (3n + 1)x3y3,

Dx( f (x, y)) = 2kx2y2 + 4knx2y3 + kn(3n + 1)x3y3,

Dy( f (x, y)) = 2kx2y2 + 6knx2y3 + kn(3n + 1)x3y3,

Sx( f (x, y)) =
k
2

x2y2 + knx2y3 +
kn
9
(3n + 1)x3y3,

Sy( f (x, y)) =
k
2

x2y2 +
2
3

knx2y3 +
kn
9
(3n + 1)mx3y3,

Dα
x Dα

y( f (x, y)) = 22αkx2y2 + 2α+13αknx2y3 + 32α−1kn(3n + 1)x3y3,

Sα
xSα

y( f (x, y)) =
k

22α
x2y2 +

1
2α−13α

knx2y3 +
kn

32α+1 (3n + 1)x3y3

J( f (x, y)) = kx4 + 2knx5 +
kn
3
(3n + 1)x6,

Sx J( f (x, y)) =
k
4

x4 +
2
5

knx5 +
kn
18

(3n + 1)x6,

DxDy( f (x, y)) = 4kx2y2 + 12knx2y3 + 3kn(3n + 1)x3y3,

JDxDy( f (x, y)) = 4kx4 + 12knx5 + 3kn(3n + 1)x6,

Sx JDxDy( f (x, y)) = kx4 +
12
5

knx5 +
1
2

kn(3n + 1)x6,

D3
y( f (x, y)) = 8kx2y2 + 54knx2y3 + 9kn(3n + 1)x3y3,

D3
xD3

y( f (x, y)) = 64kx2y2 + 432knx2y3 + 243kn(3n + 1)x3y3,

JD3
xD3

y( f (x, y)) = 64kx4 + 432knx5 + 243kn(3n + 1)x6,

Q−2 JD3
xD3

y( f (x, y)) = 64kx2 + 432knx3 + 243kn(3n + 1)x4,

S3
xQ−2 JD3

xD3
y( f (x, y)) = 8kx2 + 16knx3 +

243
64

kn(3n + 1)x4.

�

Now we recover degree-based topological indices by using Table 1. The Figures 5–13 show the
relations of different topological indices with values of k and n. It is noticeable that all of the above
discussed topological indices vary quadratically with n, and linearly with k.

1. M1(CNCk[n]) =
(

Dx + Dy
)
( f (x, y))(M(CNCk[n])x, y)

∣∣∣x=y=1 = k
2
(
18n2 + 26n + 10

)
.
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(
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)
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4
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Figure 9. Plots for the inverse Randic index (left for arbitrary n and k, middle for k = 4, and right for
n = 5).

6. SDD(CNCk[n]) =
(

DxSy + DySx
)
( f (x, y))

∣∣x=y=1 = 2kn2 + 5kn + 2k.
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for n = 5).

7. H(CNCk[n]) = 2Sx J( f (x, y))
∣∣∣x=1 = 1

3 kn2 + 41
45 kn + 1

2 k.
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8. I(CNCk[n]) = Sx JDxDy( f (x, y))
∣∣x=1 = 3

2 kn2 + 29
10 kn + k.
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9. A(CNCk[n]) = S3
xQ−2 JD3

xD3
y( f (x, y))

∣∣∣x=1 = 729
64 kn2 + 1267

64 kn + 8k.
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for n = 5).

4. Conclusions

The closed form of the M-polynomials of all of the carbon nanocones is computed. This polynomial
generates a lot of information about degree-based topological descriptors, which are actually graph
invariants. These indices, in combination, determine the properties of nanocones. The topological
indices calculated in this paper are important for guessing the physicochemical properties of
understudy chemical compounds. For example, the Randić index is a topological descriptor that
has been connected with numerous substance qualities of atoms, and has been found to be parallel
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to processing the boiling point and Kovats constants of the particles. To associate with certain
physicochemical properties, the GA index has a very preferable prescient control over the prescient
intensity of the Randić index. The first and second Zagreb indexes were found to calculate the
aggregate π-electron vitality of the atoms inside specific surmised articulations. These are among
the graph invariants, which were proposed for the estimation of the skeleton of the spreading of the
carbon molecule. To calculate the distance-based topological indices of understudied nanocones is an
interesting problem that is worthy of further investigation.

Author Contributions: W.N. design the problem. A.F. and M.Y. investigate the results, M.M. draw the figures
and S.M.K. formate the paper and validate the results.

Funding: This research received no external funding.

Acknowledgments: The authors are thankful to both the reviewers for suggestion that help us to improve
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Basak, S.C.; Mills, D.; Mumtaz, M.M.; Balasubramanian, K. Use of Topological Indices in Predicting Aryl
Hydrocarbon Receptor Binding Potency of Dibenzofurans: A Hierarchical QSAR Approach. Ind. J. Chem.
2003, 42A, 1385–1391.

2. García, I.; Fall, Y.; Gómez, G. Using topological indices to predict anti-Alzheimer and anti-parasitic GSK-3
inhibitors by multi-target QSAR in silico screening. Molecules 2010, 15, 5408–5422. [CrossRef] [PubMed]

3. Husin, M.N.; Hasni, R.; Arif, N.E.; Imran, M. On topological indices of certain families of nanostar dendrimers.
Molecules 2016, 21, 821. [CrossRef] [PubMed]

4. Verma, S.; Tripathi, D.; Gupta, P.; Singh, R.; Bahuguna, G.M.; Shivakumark, L.N.; Chauhan, R.K.; Saran, K.S.;
Jain, S.L. Highly dispersed palladium nanoparticles grafted onto nanocrystalline starch for the oxidation of
alcohols using molecular oxygen as an oxidant. Dalton Trans. 2013, 42, 11522–11527. [CrossRef] [PubMed]

5. Deutsch, E.; Klavžar, S. M-polynomial and degree-based topological indices. arXiv 2014, arXiv:1407.1592.
6. Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and degree-based topological indices of

polyhex nanotubes. Symmetry 2016, 8, 149. [CrossRef]
7. Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and related topological indices of Nanostar

dendrimers. Symmetry 2016, 8, 97. [CrossRef]
8. Munir, M.; Nazeer, W.; Nizami, A.R.; Rafique, S.; Kang, S.M. M-polynomials and topological indices of

titania nanotubes. Symmetry 2016, 8, 117. [CrossRef]
9. Ali, A.; Nazeer, W.; Munir, M.; Kang, S.M. M-polynomials and topological indices of zigzag and rhombic

benzenoid systems. Open Chem. 2018, 16, 73–78. [CrossRef]
10. Munir, M.; Nazeer, W.; Rafique, S.; Nizami, A.R.; Kang, S.M. Some computational aspects of boron triangular

nanotubes. Symmetry 2017, 9, 6. [CrossRef]
11. Kwun, Y.C.; Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-Polynomials and topological indices of

V-Phenylenic Nanotubes and Nanotori. Sci. Rep. 2017, 7, 8756. [CrossRef] [PubMed]
12. Kang, S.M.; Nazeer, W.; Gao, W.; Afzal, D.; Gillani, S.N. M-polynomials and topological indices of dominating

David derived networks. Open Chem. 2018, 16, 201–213. [CrossRef]
13. Ahmad, M.S.; Nazeer, W.; Kang, S.M.; Jung, C.Y. M-polynomials and degree based topological indices for

the line graph of firecracker graph. Glob. J. Pure Appl. Math. 2017, 13, 2749–2776.
14. Kang, S.M.; Nazeer, W.; Zahid, M.A.; Nizami, A.R.; Aslam, A.; Munir, M. M-polynomials and topological

indices of hex-derived networks. Open Phys. 2018, 16, 394–403. [CrossRef]
15. Gillot, J.; Bollmann, W.; Lux, B. Cigar-shaped graphite crystals with conical structure. Carbon 1968, 6, 381–384.

[CrossRef]
16. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [CrossRef]
17. Adisa, O.O.; Cox, B.J.; Hill, J.M. Modelling the surface adsorption of methane on carbon nanostructures.

Carbon 2011, 49, 3212–3218. [CrossRef]
18. Xu, S.J.; Zhang, Q.X. The hosoya polynomial of one-heptagonal nanocone. Curr. Nanosci. 2013, 9, 411–414.

[CrossRef]

http://dx.doi.org/10.3390/molecules15085408
http://www.ncbi.nlm.nih.gov/pubmed/20714305
http://dx.doi.org/10.3390/molecules21070821
http://www.ncbi.nlm.nih.gov/pubmed/27347913
http://dx.doi.org/10.1039/c3dt51059j
http://www.ncbi.nlm.nih.gov/pubmed/23831737
http://dx.doi.org/10.3390/sym8120149
http://dx.doi.org/10.3390/sym8090097
http://dx.doi.org/10.3390/sym8110117
http://dx.doi.org/10.1515/chem-2018-0010
http://dx.doi.org/10.3390/sym9010006
http://dx.doi.org/10.1038/s41598-017-08309-y
http://www.ncbi.nlm.nih.gov/pubmed/28821827
http://dx.doi.org/10.1515/chem-2018-0023
http://dx.doi.org/10.1515/phys-2018-0054
http://dx.doi.org/10.1016/0008-6223(68)90033-X
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1016/j.carbon.2011.03.046
http://dx.doi.org/10.2174/1573413711309030020


Biomolecules 2018, 8, 92 11 of 11

19. Ghorbani, M.; Jalali, M. The vertex PI, szeged and omega polynomials of carbon nanocones CNC4 (n).
MATCH Commun. Math. Comput. Chem. 2009, 62, 353–362.

20. Hosoya, H. On some counting polynomials in chemistry. Dis. Appl. Math. 1988, 19, 239–257. [CrossRef]
21. Wiener, H.J. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17–20. [CrossRef]

[PubMed]
22. Dobrynin, A.A.; Gutman, I. The Wiener index for trees and graphs of hexagonal systems. Acta Appl. Math.

2001, 66, 211–249. [CrossRef]
23. Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: New York, NY, USA, 1986.
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