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Abstract: Protein phosphorylation often switches cellular activity from one state to another, and this
post-translational modification plays an important role in gene regulation by the nuclear hormone
receptor superfamily, including the glucocorticoid receptor (GR). Cell signaling pathways that
regulate phosphorylation of the GR are important determinants of GR actions, including lymphoid
cell apoptosis, DNA binding, and interaction with coregulatory proteins. All major functionally
important phosphorylation sites in the human GR are located in its N-terminal domain (NTD),
which possesses a powerful transactivation domain, AF1. The GR NTD exists as an intrinsically
disordered protein (IDP) and undergoes disorder-order transition for AF1’s efficient interaction with
several coregulatory proteins and subsequent AF1-mediated GR activity. It has been reported that
GR’s NTD/AF1 undergoes such disorder-order transition following site-specific phosphorylation.
This review provides currently available information regarding the role of GR phosphorylation in its
action and highlights the possible underlying mechanisms of action.

Keywords: glucocorticoid receptor; phosphorylation; intrinsically disordered; transactivation activity;
gene regulation; coactivators

1. Introduction

The glucocorticoid receptor (GR) is a well-known, ligand-driven transcription factor, essential
for many of the functions-physiologic, pathological, and therapeutic of hormonal and synthetic
glucocorticoids [1–8]. The GR belongs to the superfamily of the steroid and thyroid hormone-activated
intracellular transcription factors, and the larger family of nuclear hormone receptors (NHRs) [9–13].
The GR was the first member of this superfamily to be cloned and characterized [14]. It is a ubiquitously
expressed intracellular protein that regulates the expression of glucocorticoid-responsive genes in
a cell/tissue- and promoter-specific manner [9,10]. The broad overview of glucocorticoid action
(Figure 1) states that the cytosolic GR is part of a large heteromeric complex consisting of several
chaperone proteins including HSP90, HSP70, p23, immunophilins of the FK506-binding protein family
(FKBP51 and FKBP52) and possibly several others [15–18]. These proteins maintain the receptor in a
transcriptionally inactive conformation that favors high affinity ligand binding [15–18].

Glucocorticoid binding to GR’s C-terminal ligand binding pocket leads to structural
rearrangements, causing the receptor to be released from the complex. At some point, the GR becomes
hyper-phosphorylated and active [15–19], enters the nucleus and interacts with site-specific DNA
sequences, termed “glucocorticoid response elements” (GREs), and several additional coregulatory
proteins. (Figure 1). The GR can also bind at heterodox regulatory elements by “piggybacking” on
other transcription factors [10,11,13]. The DNA and protein interactions are highly dynamic in the
genomic context, as the receptor rapidly moves from one site to another and interacts with various
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proteins [9]. One important implication of this model is that the surfaces of the GR must be employed
in various ways in order to allow temporary interactions with a variety of other macromolecules,
and thus change transcription [9]. In this review, we discuss the structure and functions of the GR,
specifically the role of site-specific phosphorylation in the regulation of its intrinsically disordered
(ID) NTD.Biomolecules 2019, 8, x 2 of 10 

 

Figure 1. Classical action of the glucocorticoid signaling mediated by the glucocorticoid receptor (GR). 
(A) A topological diagram of human GR protein showing major functional domains and major known 
AF1 phosphorylation (P) sites (other GR sites not shown) [6]. NTD, N-terminal domain; DBD, DNA 
binding domain; H, Hinge region, LBD, Ligand binding domain. (B) Unliganded receptor is located 
in the cytosol associated with several heat shock and other chaperone proteins including HSP90, 
HSP70, CyP-40, P23, and FKBPs (shown by different colors around GR). Ligand binding leads to 
conformational alterations in the GR, and by doing so GR dissociates from these associated proteins, 
and ligand bound GR is free to translocate to the nucleus. This process appears to be phosphorylation 
(P) dependent. Once in the nucleus, GR binds to site-specific DNA binding sequences and interacts 
with several other coregulatory proteins (shown by different colors and shapes around GR), and 
subsequently leads to transcriptional regulation. Based on reference [10]. 
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The human GR gene consists of 9 exons located on chromosome 5 [20,21]. Like other steroid 
hormone receptors (SHRs), the GR consists of three well-known major functional domains: N-terminal 
(NTD), DNA binding (DBD), and ligand-binding (LBD) (Figure 1A). DBD and LBD are separated by a 
short intrinsically disordered (ID) amino acid sequence known as the “hinge” region [13]. Within the 
NTD and LBD are two transcription activation function regions, AF1 and AF2, respectively [13]. AF2 is 
strictly ligand-dependent whereas AF1 is ligand-dependent in the context of the holo-GR but is 
constitutively active and can regulate GR-target genes in a ligand-independent manner when the 
LBD is removed [9,13]. In other words, the AF1 can act constitutively in the absence of the LBD and 
is quite active in stimulating transcription from simple promoters containing cognate GR binding 
sites [13]. With the discovery of a large cohort of GR forms with unique expression, gene-regulatory, 
and functional profiles [6], the traditional view that a single GR protein regulates the effects of 

Figure 1. Classical action of the glucocorticoid signaling mediated by the glucocorticoid receptor (GR).
(A) A topological diagram of human GR protein showing major functional domains and major known
AF1 phosphorylation (P) sites (other GR sites not shown) [6]. NTD, N-terminal domain; DBD, DNA
binding domain; H, Hinge region, LBD, Ligand binding domain. (B) Unliganded receptor is located in
the cytosol associated with several heat shock and other chaperone proteins including HSP90, HSP70,
CyP-40, P23, and FKBPs (shown by different colors around GR). Ligand binding leads to conformational
alterations in the GR, and by doing so GR dissociates from these associated proteins, and ligand bound
GR is free to translocate to the nucleus. This process appears to be phosphorylation (P) dependent.
Once in the nucleus, GR binds to site-specific DNA binding sequences and interacts with several other
coregulatory proteins (shown by different colors and shapes around GR), and subsequently leads to
transcriptional regulation. Based on reference [10].

2. The Structure of the Glucocorticoid Receptor and its Gene

The human GR gene consists of 9 exons located on chromosome 5 [20,21]. Like other steroid
hormone receptors (SHRs), the GR consists of three well-known major functional domains: N-terminal
(NTD), DNA binding (DBD), and ligand-binding (LBD) (Figure 1A). DBD and LBD are separated by
a short intrinsically disordered (ID) amino acid sequence known as the “hinge” region [13]. Within
the NTD and LBD are two transcription activation function regions, AF1 and AF2, respectively [13].
AF2 is strictly ligand-dependent whereas AF1 is ligand-dependent in the context of the holo-GR but
is constitutively active and can regulate GR-target genes in a ligand-independent manner when the
LBD is removed [9,13]. In other words, the AF1 can act constitutively in the absence of the LBD and
is quite active in stimulating transcription from simple promoters containing cognate GR binding
sites [13]. With the discovery of a large cohort of GR forms with unique expression, gene-regulatory,
and functional profiles [6], the traditional view that a single GR protein regulates the effects of
glucocorticoids has changed in recent years. Alternative exon splicing and translation initiation sites
in the human GR mRNA result in a number of receptor sub-types [6].

When interacting with chromosomal DNA, both AF domains of the GR mediate transcriptional
activation by recruiting coregulatory multi-subunit complexes that remodel chromatin, target initiation
sites, and stabilize the RNA polymerase II machinery for repeated rounds of transcription of target
genes [9]. In the conceptual model of receptor:coactivator complexes, the ligand-bound GR recruits
one or more cofactors, which subsequently results in the recruitment of additional known cofactors to
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the assembly of the complex [9,13]. Depending on the GR ligand, these cofactors may lead to increased
or reduced transcription of regulated genes. It is likely that additional as yet unknown cofactors are
involved, and that different GRs may recruit different components to the complex, thus achieving a
level of specificity among GRs and coactivators or corepressors [9].

Though the structures of independently expressed, more stably structured LBD and DBD were
solved long ago [22,23], no 3D structure of full-length GR is currently known. From the LBD structural
and mutation data, it is clear that ligand binding results in conformational rearrangement of AF2
sub-domain (usually helix 12) such that its surfaces are available for interactions with specific
coregulatory proteins through LXXLL motifs [23]. Bound to an agonist ligand, AF2 adopts a
conformation that suits for interaction with coactivators, whereas an antagonist binding blocks such
interactions and rather opens surfaces for corepressor interactions [23]. However, many ligands
originally labeled “antagonists” are actually weak partial agonists that compete for the LBD site.
Presumably, when bound with these, the LBD-ligand-coactivator interactions are weaker, so that gene
induction is reduced. Furthermore, the GR LBD crystal structure revealed a second charge clamp,
which may determine the binding selectivity of a coactivator [23]. The structure of the DBD and how it
fits into its GRE has been known for some time [22], though this binding process may be more dynamic
than once envisaged [9].

Due to its disordered nature, our understanding about the structure and functions of AF1 has
languished until recently. The GR AF1 supplies most of the transcription-controlling power of the
GR; and this lack of information about how AF1 interacts with various coregulatory proteins, and the
consequences for transcriptional regulation, has hampered understanding of the full spectrum of GR
action. The AF1 activation domain was discovered well before AF2 and was initially thought to be the
only GR transactivation function. The major obstacle in solving full-length GR structure or that of AF1
alone is the fact that large portion of the GR NTD, including AF1, is IDP [24–30]. A new, quantitative
thermodynamic model for allosteric interdomain coupling has been proposed that explains the role of
the IDP NTD of the GR in the receptor’s function [31]. This model would be applicable to other SHRs
and transcription factors generally.

3. The IDP Nature of the GR NTD/AF1 Means that it Can be Thought of as a Large Ensemble of
Rapidly Interchanging Conformations

Compared to the LBD and DBD, the GR NTD is most variable in terms of sequence homology
and size among various mammals [10]. The AF1 plays an important role in the interaction of the
receptor with molecules necessary for the initiation of transcription, such as chromatin modulators
and protein from basal transcription factors, including RNA polymerase II, TATA-binding protein
(TBP) and a host of TBP-associated proteins [9,28]. The AF1 is also known to interact with many other
coregulatory proteins including coactivators and corepressors, which are essential for optimal GR
activity in a cell/tissue-specific manner [9,10,12,28]. Several of these coregulatory proteins are also
known to interact with the AF2 region [9,10,12,28]. However, unlike the LXXLL binding motif for AF2
interactions, no such motif is known for the AF1 [23], and in fact, IDP regions usually lack a defined
interaction motif as in many transcription factors [32–34].

IDPs are subject to combinatorial alternative splicing and post-translational modifications, adding
complexity to regulatory networks and providing a mechanism for cell/tissue-specific signaling [35–37].
Thus, the ID ensemble allows molecular recognition by providing protein surfaces capable of
binding specific target molecules from the assembly of signaling complexes [35–37]. A variety of
computational, biochemical, and biophysical methods have confirmed the IDP nature of the GR AF1
in recent years [24–27,38,39]. It has been proposed that the IDP nature of the GR AF1 allows it rapidly
to “sample” its environment until appropriate binding partners are found [38,39]. Then, either by
induced-fit or selective binding of a particular AF1 conformer, a high-affinity and more persistent
interaction occurs between AF1 and the relevant coregulatory protein(s) [24–27,38,39]. The IDP
regions/domains including GR’s NTD/AF1 promote molecular recognition primarily through unique
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combination of high specificity and low binding affinity with their functional binding partners,
recognize and bind a number of biological targets, and create propensity to form large interaction
surfaces suitable for interactions with their specific binding partners [40–47].

We have reported that several factors can influence AF1 secondary/tertiary structure formation,
including binding protein partners, binding of the GR DBD to DNA, post-translational modifications
such as site-specific phosphorylation in the NTD and in some circumstances, the type and
concentrations of naturally occurring intracellular organic osmolytes [9,25,28,38,39]. We have also
reported that such induced conformation in AF1 plays an important role in facilitating AF1’s interaction
with specific coregulatory proteins and subsequent transcriptional activity [9,24–27,38,39]. The ID
domains of many transcription factors have been shown to undergo a disorder-order transition
upon interaction with binding partners that act as coregulators [28,35]. We have also shown that
interaction of the AF1 with that partner at appropriate concentrations may cause AF1 to adopt
higher secondary/tertiary structure that leads to stabilize AF1 structure [24–27,38,39]. For example,
the TATA box binding protein (TBP) directly binds to the GR AF1 domain in vitro and in vivo and
induces secondary/tertiary structure formation in AF1 such that TBP binding-induced folding in
AF1 significantly enhances AF1’s interaction with other coactivators and subsequent AF1-mediated,
GRE-driven promoter-reporter activity [38,39]. This phenomenon has now been reported for some
other SHRs [26].

4. Role of Phosphorylation in the Regulation of Intrinsically Disordered AF1 Structure and Functions

Phosphorylation is an important post translational modification that regulates protein functions,
including those of transcription factors in eukaryotic cells [48–52]. For transcription factors,
phosphorylation can modulate their DNA binding affinity, interaction with components of the
transcription initiation complex, and intracellular translocations [53–55]. Like many other transcription
factors, the GR is a phospho-protein; consequently kinases can phosphorylate GR at multiple sites,
leading to altered GR transcriptional activity [56–60]. Cell and tissue-specific GR functions are heavily
regulated by specific kinases [61]. In the human GR, five serine residues have been identified [59].
All these known phosphorylation sites identified in human GR are found in the IDP NTD [10,59,60].
Three of them (S203, S211, and S226) are located within the AF1 [59].

Phosphorylation of the AF1’s core region has been shown to stabilize its structure, i.e. to shift
the ensemble of conformers to a higher fraction containing structure [39]. Such phosphorylation is
biologically relevant. We have shown that p38 in the MAPK pathways is a potent kinase for in vitro
phosphorylation of S211 on the human GR [62,63]. Glucocorticoid treatment of CEM (human leukemic)
cells induces the upstream kinase of p38, which phosphorylates and actives p38, which in turn,
phosphorylates the GR, establishing a forward-acting functional loop. Because, in vitro and in vivo, p38
phosphorylates the GR at this specific site, we tested the relevance to GR function. The results showed
that in transfected cells, the non-phosphorylatable S211A GR mutant was considerably less potent in
inducing an AF1-mediated, GRE-driven reporter gene, and in driving GR-mediated apoptosis induced
by a synthetic glucocorticoid, dexamethasone [64]. More general relevance to a range of lymphoid
malignancies was found when we showed that in several unrelated malignant lymphoid cell lines, a
greater proportion of p38 relative to other MAPKs corresponded to relative sensitivity to GR-driven
apoptosis [65], Other reports suggest that phosphorylation may affect GR stability and thus alter
transcriptional activity of the receptor [66]. We have also shown that site-specific phosphorylation of
the ID AF1 leads to disorder-order conformational transition such that AF1’s interaction with other
critical coregulatory proteins, and subsequent transcriptional activity are significantly enhanced [62,64].
Garabedian and co-workers have also demonstrated that site-specific phosphorylation in GR,
particularly S211 and S226, play an important role in gene regulation by the GR, for which AF1 is a
main player, as discussed above [36,59,67,68].
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Several reports suggest that the state of GR phosphorylation affects its interactions with other
proteins. TSG101, a component of the ESCRIT-I complex, has been reported to be preferentially
recruited to the nonphosphorylated form of the GR [68]. It has been suggested that TSG101 stabilizes
ligand-unbound GR in its unphosphorylated form to protect it from degradation. Thus, TSG101
interaction with GR may be important to keep unliganded GR protected from auto-degradation until
the GR becomes hyper-phosphorylated. Interaction with DRIP150 (another GR coregulator and part of
mediator complex) also has been reported to be modulated through GR phosphorylation [59]. Thus,
it can be concluded that site-specific phosphorylation of the AF1 domain of GR can either enhance or
diminish recruitment of coregulators, reflecting the biologic need for the GR to up- or down-regulate
gene(s) in a cell- and promoter- specific manner by interactions with specific combinations of cofactors.

5. Discussion

Compared to protein segments with well-define globular structures, protein phosphorylation of
Ser residue predominantly occurs within ID regions of signaling molecules [44,69–71]. This is
significant because the formation of new hydrogen bonds would be more difficult if the sites of
phosphorylation were located within ordered regions [36]. Thus, phosphorylation may regulate
protein functions of the GR by affecting the conformational dynamics of the IDP NTD/AF1, leading to
altered transcriptional activities [36,37,39,72]. As noted above, the GR exists in several translationally
derived forms, successively shortened from the N terminus. The GR-C3 form is several times more
active than the full-length, predominant “GRα” form [6,21,31]. It has been shown that this is due to
loss of an NTD sub-domain, the R region, which exerts an allosterically repressive effect on GR’s AF1
function [31,73]. The structural and functional effects of site-specific phosphorylations of the several
GR translational forms will be important to study.

The mechanisms by which GR controls gene expression pose a central problem in molecular
biology, and the role of its ID AF1 is of immense importance. Phosphorylation elicits diverse effects on
the biological functions of ID proteins by altering the energetics of their conformational landscape and
by modulating interactions with other cellular components by stabilizing and/or inducing secondary
structural elements [74–77]. There are also reports suggesting that in IDP receptors, poly-electrostatic
interactions may also play important role [78]. Thus, signaling cascades that induce phosphorylation of
the GR are important factors in determining the physiological actions of its ID NTD/AF1.

6. Summary and Perspectives

Glucocorticoids, working through the GR, regulate a variety of human physiological processes
in a cell/tissue-dependent manner at the level of gene regulation. Glucocorticoids have also been
frontline therapy for decades in the treatment of several pathological and disease conditions; however,
the exact mechanism by which GR passes signals from ligand to regulate specific genes is not fully
understood. Knowledge of 3-D structure of the full-length GR will of course be the starting point
to provide answers to several questions on the actions of the GR. Post-translational modifications
including phosphorylation, ubiquitination, and sumoylation have all been shown to affect functions of
NHR family members. There is evidence that that differential phosphorylation stabilizes the structure
of the GR’s IDP region and thus is a regulator of GR actions; yet it is also quite clear that the role of GR
phosphorylation is a remarkably complex phenomenon.

Several outstanding questions remain to be answered: (1) What are the relative levels of
phosphorylation of individual sites in specific cell/tissue- types under physiological conditions?
(2) How does each phosphorylation site contribute to GR-mediated signaling through conformational
rearrangements in the otherwise IDP AF1/NTD? (3) What are the allosteric consequences for the
holo-GR? (4) Do the sequence of site-specific phosphorylations and the patterns of multiple-site
phosphorylations matter? (5) What is the correlation between cell-based studies and in vivo animal
models? (6) What are the effects of phosphorylations on the many GR isoforms?
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Based on studies from our laboratory and those of others, we propose that
phosphorylation-induced conformational changes in the ID AF1 may be dependent upon the
phosphorylation of individual site(s) such that the effects of one phosphorylated GR site may be
influenced by the relative phosphorylation of other sites (Figure 2). Cell/tissue-specific effects of GR are
tightly regulated through specific kinase(s)/phosphatase(s), and site-specific phosphorylation-induced
conformational changes in ID NTD/AF1 and its subsequent effects on transactivation activities may
provide critical information on how different surfaces within the ID AF1/NTD may be created and
used to manipulate GR target gene expression. How site-specific phosphorylation leads to induced
conformations in the ID AF1 and what kind of functional folded conformation it adopts in the
full-length receptor are open questions.
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