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Abstract: Phenolics are a group of important plant secondary metabolites that have been proven to
possess remarkable antioxidant activity and to be beneficial for human health. Pecan nuts are an
excellent source of dietary phenolics. In recent years, many studies have focused on the separation
and biochemical analysis of pecan phenolics, but the molecular mechanisms of phenolic metabolism
in pecans have not been fully elucidated, which significantly hinders quality breeding research for
this plant. Chalcone synthase (CHS) plays crucial roles in phenolic biosynthesis. In this study, three
Carya illinoinensis CHSs (CiCHS1, CiCHS2, and CiCHS3), were isolated and analyzed. CiCHS2 and
CiCHS3 present high expression levels in different tissues, and they are also highly expressed at
the initial developmental stages of kernels in three pecan genotypes. A correlation analysis was
performed between the phenolic content and CHSs expression values during kernel development.
The results indicated that the expression variations of CiCHS2 and CiCHS3 are significantly related
to changes in total phenolic content. Therefore, CiCHSs play crucial roles in phenolic components
synthesis in pecan. We believe that the isolation of CiCHSs is helpful for understanding phenolic
metabolism in C. illinoinensis, which will improve quality breeding and resistance breeding studies in
this plant.
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1. Introduction

Pecan (Carya illinoinensis (Wangenh.) K. Koch) belongs to the Juglandaceae family and is a
commercially important nut crop native to North America that is cultivated throughout the world [1].
In recent years, tree nuts have been shown to be rich in unsaturated fatty acids and phenolic
compounds, which present high antioxidant activity and are good for health. Many epidemiological
studies have shown that high intake of tree nuts, fruits, and vegetables reduces the incidence of diabetes,
cardiovascular diseases, cancer, and obesity [2,3]. Among different plant active ingredients, phenolics
are crucial for these potential health benefits [2]. Compared to other nut types, pecan was reported
to have higher content of phenolics, flavonoids, and condensed tannin and has been recommended
as an excellent source of diet phenolics [4,5]. Thus, many studies have focused on the separation of
phenolics and characterization of antioxidant capacity of different components in pecan [6–9]. However,
the molecular basis of phenolic biosynthesis in pecan has not been fully elucidated [10]. Recently,
an RNA-Seq dataset of pecan kernels was released, and in total, 36 putative structural genes involved
in flavonoid synthesis were reported [10]. However, until now, no flavonoid related gene has been
identified or characterized in C. illinoinensis.

Chalcone synthase (CHS) is the first committed enzyme in flavonoid synthesis, which channels
the flow of the “phenylpropanoid pathway” toward the “flavonoid pathway”. This enzyme plays an
essential role in many physiological processes, including fruit/seed development, floral pigmentation,
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pollination, and resistance to biotic and abiotic stresses in plants [11]. Therefore, it has been widely
studied in various plants. For example, knockout or overexpression of CHS has been shown to
influence the synthesis and accumulation of phenolics in walnut [12], maize [13], Silybum marianum [14],
flax [15], and Arabidopsis thaliana [16]. Moreover, CHS has been proved to regulate floral color in
Petunia hybrida [17], seed coat color in soybean [18], verticillium disease resistance in both A. thaliana
and cotton [19], dicamba resistance in Kochia scoparia [20], antioxidant capacity [21] and cell wall
components in flax [22]. In addition, allelic variations present in CHS might affect the expression level
or catalytic activity of the enzyme and can be converted into functional markers for molecular marker
assisted selection (MAS) in plants such as Zingiber officinale [23] and Indian mulberry [24]. Genus Carya
includes 18 species [25], among them pecan and 3 types of Cathay hickory (C. cathayensis, C. hunanensis,
and C. dabieshanensis) have economic values. Nevertheless, CHSs in Carya have not been cloned, which
significantly hinders the study of phenolic metabolism and biotic/abiotic stress tolerance research in
these species.

In the present study, the content variation of total phenolics (TPC), total flavonoids (TFC)
and condensed tannins (CTC) during kernel development was detected in three pecan genotypes.
The full-length cDNAs of 3 C. illinoinensis CHSs (CiCHSs) were cloned and analyzed. Subsequently,
a quantitative real time PCR (qRT-PCR) method was employed to determine the expression of CiCHSs
in six types of tissues and seven different developmental stages of embryo. Finally, correlation analyses
between the phenolic content and the gene expression patterns were performed. We believe that the
cloning and characterization of CiCHSs will help to reveal the genetic basis of phenolic synthesis and
accelerate MAS breeding studies and stress tolerance research in C. illinoinensis as well as in other
species in the genus Carya.

2. Results and Discussion

2.1. Total Phenolic, Total Flavonoid, and Condensed Tannin Content

To investigate the dynamic changes of phenolic components during pecan kernel development,
the TPC, TFC, and CTC in seven developmental stages of embryos from “Mahan”, “SD1”, and “YLC28”
were analyzed (Figure 1). Of these, the phenolic content of four time points (August 29, September
12, September 26 and October 10) of “YLC28” came from our previous study [10]. The highest TPCs
of “Mahan” (188.89 mg/g GAE) and “YLC28” (131.70 mg/g GAE) were seen at the first stage, and
TPCs gradually decreased thereafter. However, TPC in “SD1” first increased and reached a peak in
September 5 (257.28 mg/g GAE), then decreased during embryo ripening. Similarly, Amin et al. (2017)
reported that TPC decreased during walnut kernel ripening [26]. The changes of TFC in “Mahan”
were similar to those of TPC in this cultivar. TFC in both “YLC28” and “SD1” increased first and then
decreased, but the highest TFC in “SD1” (95.63 mg/g CE) and “YLC28” (68.61 mg/g CE) occurred at the
second and the third developmental stages, respectively. CTC in “Mahan” decreased from August 29 to
September 26 and exhibited a slight increase thereafter. In “SD1”, CTC sharply increased from August
29 to September 5 (381.56 mg/g CE), then decreased and reached a minimum level on September 26
(123.01 mg/g CE), after which it increased slightly. CTC in “YLC28” showed a different variation trend
from the other 2 genotypes, with a slow increase during the early developmental period, and showed
the highest content on September 19 (234.37 mg/g CE), and then shared similar trends with “SD1”.
These results indicated that the phenolic profiles of different genotypes were significantly different.
Similar results were also reported by Jia et al. (2018) who detected dynamic changes of phenolics
during pecan kernel ripening in 5 cultivars. They found that TPC was highest at the early stage of
kernel development and declined quickly thereafter. TFC and CTC exhibited similar profiles but were
slightly different among different cultivars [6].
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Figure 1. The dynamic changes of phenolic components content during pecan kernel development
in three genotypes. Total phenolic content (TPC), total flavonoid content (TFC), and condensed
tannin content (CTC). The experiments were repeated three times and the data are presented as the
mean ± standard error (SE).

2.2. Cloning and Analysis of Three CiCHSs

Three putative CHSs were selected from our previous study on transcriptomic profiles of pecan
kernels in four developmental stages [10]. The target bands were obtained and sequenced (Figures S1
and S2). The resulting full-length cDNA sequences of three CiCHSs of strain “YLC28” were obtained
and submitted to GenBank with new gene IDs (Table 1). The three CiCHSs were translated into
amino acid sequences, and we constructed a dendrogram with these sequences and with CHS protein
sequences from maize [27] and Populus [28] (Figure 2). The dendrogram revealed that the sequences
were classified into three clusters (clusters I, II, and III). Most CHSs (14 out of 30) were classified into
group I, including three CiCHSs, nine PoptrCHSs, and two ZmCHSs. In addition, nine ZmCHSs were
clustered into group II, and three ZmCHSs and four PoptrCHSLs were clustered into group III. The
conserved motifs and domains of each CHS were investigated using MEME and SMART programs,
respectively. Ten conserved motifs (namely, motifs 1–10) and two domains of “Chal_sti_synt_N”
and “Chal_sti_synt_C” were identified (Figure 2). This result was consistent with the findings of
a previous study on rice [29]. The “Chal_sti_synt_N” domain was represented by motifs 2, 4–7, 9,
and 10, while domain “Chal_sti_synt_C” was represented by motifs 1, 3, and 8. The two domains of
“Chal_sti_synt_N” and “Chal_sti_synt_C” were highly conserved in three CiCHSs. CHSs constitute a
large gene family in the plant genome [27–29] and perform different functions in plant development
and stress response. Therefore, the functional identification of CiCHSs in pecan should be performed
in the future.

Table 1. Information regarding 3 CiCHSs.

Gene Full-Length
cDNA (bp)

ORF
(bp)

Amino
Acids No.

Molecular
Weight (kDa)

Isoelectric
Point (pI)

Accession
No.

CiCHS1 1432 1185 394 43.09 6.23 MK690794
CiCHS2 1309 1170 389 42.64 6.12 MK690795
CiCHS3 1258 1170 389 42.59 6.34 MK690796
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Figure 2. Phylogenetic dendrogram of three amino acid sequences of CiCHSs and CHSs from maize
(ZmCHS01~14) and Populus (PoptrCHS1~6, PoptrCHSL1~7) constructed using the neighbor-joining
method (1000 bootstrap replications). The conserved motifs in each protein sequence were predicted
using the Motif Elicitation (MEME) web server. The red stars show the positions of the three CiCHSs.

A multiple sequence alignment of TT4 (AT5G13930), CsCHS2 (P48387.1), CiCHS1, CiCHS2, and
CiCHS3 was constructed by using DNAMAN software (Figure 3). CiCHS1 shared 73.25% and 74.75%
identity with TT4 and CsCHS2, respectively. For CiCHS2, the identity values were 82.75% (with TT4)
and 92.50% (with CsCHS2). In addition, for CiCHS3, the values were 83.00% (with TT4) and 91.75%
(with CsCHS2). TT4 encodes a CHS in Arabidopsis, where it regulates flavonoid accumulation and
affects plant development and the gravitropism of roots [30]. Tea accumulates much polyphenol in
leaves, and CsCHS acts as a rate-limiting enzyme in the flavonoid pathway [31]. Therefore, the high
identity of the 3 CiCHSs with TT4 and CsCHS2 implies that they have crucial roles in phenolic synthesis.
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Figure 3. Multiple alignment of five CHSs: CiCHS1, CiCHS2, CiCHS3, TT4 (AT5G13930), and CsCHS2
(P48387.1). The red triangles indicate the positions of active sites. The black squares indicate the
positions of product binding sites.

2.3. Expression Profiles of 3 CiCHSs in Different Tissues

The expression patterns of the CiCHSs in various tissues were analyzed using qRT-PCR (Figure 4).
As shown in Figure 4b, CiCHS1 was mainly expressed in shuck but exhibited the lowest expression
level in different tissues among the three CiCHSs. CiCHS2 and CiCHS3 showed high expression
levels in different tissues and shared similar expression profiles with each other. Both CiCHS2 and
CiCHS3 had the highest expression in tender stem and showed high transcript levels in pistil and
leaf. In recent years, phenolics have been isolated and identified from pecan kernel, leaves, bark, and
shells [7,9,32–34]. The antioxidation and potential health efficacy of different tissue-derived phenolics
in pecan were also determined [32,33]. Moreover, pecan shell extracts can inhibit tumor cell growth and
may be potential candidates for cancer therapy [34]. In addition, phenolic components and flavonoids
are associated with biotic/abiotic stress tolerance and the fertilization process [11]. The high expression
levels of CiCHSs in stem, pistils, and leaves indicate that phenolic synthesis might be active in these
tissues. Mo et al. (2017) reported that the CHS protein was differentially expressed in the graft union
of pecan at five developmental stages after grafting. The CHS might relate to the callus proliferation
by regulating the accumulation of flavonoids after grafting [35]. Similarly, PtrCHS4 was mainly
expressed in leaves and stems in Populus trichocarpa, and its expression was stimulated by wounding
treatment [36]. Therefore, the CiCHSs might realize different functions through the regulation of
flavonoid biosynthesis in different organs. In addition, the higher transcript levels of CiCHS2 and
CiCHS3 in kernels implies that these two genes might be associated with phenolic accumulation in
pecan kernels. In addition, the higher transcript levels of CiCHS2 and CiCHS3 in kernels imply that the
two genes might associated with phenolic accumulation in pecan kernels.
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Figure 4. Six types of tissue (a), and the expression patterns of the three CiCHSs in the six different
tissues (b). Each reaction was performed in three biological replicates, and the data are presented as
the mean ± standard error (SE).

2.4. Expression Profiles of 3 CiCHSs during Pecan Kernel Development

To investigate gene expression variation during kernel development, the transcript profiles of the
three CiCHSs were identified in three pecan genotypes (Figure 5). The transcript levels were mostly
downregulated during embryo development and ripening. CiCHS3 showed the highest expression
amount at the early developmental stage of pecan kernels among the three genotypes. CiCHS2 shared
a similar expression pattern with CiCHS3 even though its transcript level was lower. CiCHS1 presented
the lowest expression values during the pecan kernel development period. These results were in
accordance with the tissue expression patterns of the three CiCHSs. In addition, the CiCHSs presented
obviously different expression behavior among the three pecan genotypes. In ‘YSL28′, the expression
of CiCHS3 and CiCHS2 were sharply decreased from August 29 to September 5, then showed a slight
increase on September 26 and were downregulated thereafter. Interestingly, the transcript profiles
were similar to TPC variation during the kernel development of “YLC28”. For “SD1”, the expression
of CiCHS3 and CiCHS2 were also decreased during embryo ripening, however, the decrease trend
gradually flattened from September 5 to September 26. CiCHS3 and CiCHS2 in “Mahan” were highly
expressed during the initial developmental period of kernels and presented the lowest expression
levels on September 12, and then were upregulated thereafter. Therefore, the different phenolic profiles
of the three pecan genotypes might result from different expression patterns of CiCHSs. On the other
hand, the expression levels of CiCHS2 and CiCHS3 were obviously different in the three genotypes.
Trojan et al. (2014) reported that the different expression levels of CHS may be associated with the
different contents of delphinidin-3-glucoside and cyanidin-3-glucoside in three genotypes of wheat [37].
Because only small differences among TPC, TFC, and CTC were observed compared to the gene
expression levels between the three pecan genotypes; the differentially expressed CiCHSs may be
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related to the different contents of specific metabolites in the three pecan genotypes. This possibility
should be investigated in the future.

Figure 5. The expression profiles of the three CiCHSs during kernel maturation in three pecan genotypes.
Each reaction was performed in three biological replicates, and the data are presented as the mean ±
standard error (SE).

2.5. Correlation Analysis

Correlation analysis was performed between the phenolic contents and the gene expression
values across pecan kernels development to determine the contribution of each CiCHS to the phenolic
components of TPC, CTC, and TFC. CiCHS1 showed no significant correlation with TPC, CTC, and TFC
(Figure 6). In contrast, high correlation coefficients were observed between CiCHS2 and CiCHS3 and
TPC, 0.68 (p ≤ 0.01) and 0.66 (p ≤ 0.01), respectively. The correlation between phenolic accumulation
and CHS expression was also confirmed in other species. For example, in walnut, a large positive
relationship was noticed between flavonoid content and CHS expression during rhizogenesis, and
weak positive relationships were observed between flavonol or proanthocyanidin content and CHS
expression [38]. In Brunfelsia acuminata, the expression of BaCHS was positively correlated with petal
anthocyanin contents [39]. In a maize cultivar, ‘SW93′ (purple kernels), two CHSs were upregulated
along the kernel as the color deepened and anthocyanins accumulated [40]. In C. sinensis, high CHS
transcript values were associated with a high amount of total tea polyphenols and total catechin [41,42].
However, lower correlation coefficients indicating no significant correlation were observed between
CiCHS2 and CTC (0.41), CiCHS2 and TFC (0.31), CiCHS3 and CTC (0.40), and CiCHS3 and TFC (0.31).
These results might be caused by the downstream genes of the flavonoid biosynthesis pathway that
together regulate the synthesis of flavonoids and condensed tannin in pecan kernels, and these genes
might play more important roles in determining the content and composition of flavonoids. In addition,
flavonoids may transport from synthetic sites to other parts of the plant [43,44]. The redistribution of
flavonoids between organs and tissues might also occur in pecan, which would thus influence the
concentration of flavonoids in kernels.



Biomolecules 2019, 9, 236 8 of 12

Figure 6. Correlation coefficient of phenolic content and gene expression during pecan kernel
development. The distribution of gene expression values and phenolics component contents are
shown on the diagonal. To the bottom left are the bivariate scatter plots with best fit lines displayed.
Correlation coefficients are shown above the diagonal. “***” and “**” denote significance with p values
of 0.001 and 0.01, respectively.

3. Materials and Methods

3.1. Plant Materials, RNA Isolation, and Reverse Transcription

Seven different developmental stages (29 August, 5 September, 12 September, 19 September,
26 September, 1 October, and 10 October) of embryo were collected from each of three pecan genotypes,
“Mahan” (an important cultivar introduced from USA), “YLC28” (an excellent strain), and “SD1”
(a seedling tree) in 2017. Tissues of leaves, shuck, young stem, and male and female flowers were
collected from “YLC28”. The samples were frozen rapidly in liquid nitrogen and stored at −80 ◦C for
further analysis. Samples were collected in triplicate. The three pecan genotypes used in this study
were planted at Jiande (29◦ N, 119◦ W), China. Total RNA was extracted from different tissues using
the RNAprep Pure Plant Kit (Tiangen, Beijing, China). The quality of the RNA was confirmed by a
Quawell Q5000 spectrophotometer (Quawell Technology, Inc., San Jose, CA, USA) and electrophoresis
through a 1% agarose gel. One microgram of the total RNA was reverse-transcribed into cDNA using
the PrimeScript 1st Strand cDNA Synthesis Kit (Takara, Dalian, China).

3.2. TPC, TFC, and CTC Detection

The samples of different developmental stages of kernels were dried using a freeze dryer (FreeZone,
Labconco Corp., Kansas City, MO, USA) for 96 h. The kernels were fully grinded and then defatted.
The phenolic compounds extraction and the detection of TPC, TFC, and CTC were performed as
described previously [7]. A similar analysis was also performed in our previous RNASeq paper [10].
The TPC was measured by the Folin–Ciocalteu method, and gallic acid equivalents (GAE) were used
as the standard measurements. The TFC was detected using a 723N spectrophotometer (Shanghai
Precision and Scientific Instrument Co. Ltd., Shanghai, China) at a wavelength of 510 nm, and the results
were expressed in catechin equivalents (CE). The CTC was detected by a 723N spectrophotometer at a
wavelength of 500 nm, and the results were expressed in CE.
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3.3. Cloning and Bioinformatics Analysis of CiCHSs

Three unigenes with strong homology to chalcone synthase genes were selected from our
previous study [10]. In that study, the transcriptomic profiles of pecan kernels (from a strain of
“YLC28”) in four developmental stages were analyzed. In total, 36 differentially expressed putative
flavonoid-related structural genes were isolated, including three phenylalanine ammonia-lyases (PALs),
three CHSs, two chalcone-flavanone isomerases (CHIs), one flavanone 3-hydroxylase (F3H), two
flavonoid 3′-hydroxylases (F3′Hs), two flavonoid 3′,5′-hydroxylases (F3′5′Hs), one dihydroflavonol
4-reductase (DFR), one anthocyanidin synthase (ANS), two leucoanthocyanidin reductases (LARs),
and two anthocyanidin reductases (ANRs). The ORFs of the putative CHSs were predicted using a
DNAstar software Editseq program (DNASTAR, Inc., Madison, WI). Respective gene specific primers
were designed based on the 5′-UTR and 3′-UTR of the three genes, using Primer 5.0 software (Premier
Biosoft International, Palo Alto, CA, USA). The cDNA derived from “YLC28” kernels was used
to clone full-length cDNAs of the CiCHSs. PCRs were performed using the KOD FX polymerase
(Toyobo, Osaka, Japan). The 50 µL reaction volume contained 1 µL KOD FX polymerase, 25 µL
2 × PCR buffer for KOD FX, 10 µL dNTP (2.0 mM), 0.75 µL each primer (100 µM), 500 ng cDNA
and ddH2O up to 50 µL. The PCR program was as follows: an initial denaturation step at 94 ◦C
for 2 min, followed by 35 cycles of 98 ◦C for 10 s, 56 ◦C for 30 s and 68 ◦C for 1 min, and a final
extension at 68 ◦C for 7 min. PCR products were electrophoresed on a 1% agarose gel, stained with
GenGreen solution and purified using a TIANgel Midi Purification Kit (Tiangen, Beijing, China).
Then, the target fragments were inserted into the pMD18-T vector (TaKaRa, Dalian, China) and
transformed into Escherichia coli DH5α cells. Positive recombinant plasmids were sequenced using
M13 primers in both directions. After that, the full-length cDNAs of the CiCHSs were obtained
after aligning the sequencing results to the target unigenes. The open reading frames (ORFs) and
amino acid sequences of each gene were predicted using the EditSeq program (DNASTAR, Inc.,
Madison, WI, USA). Theoretical molecular weight (MW) and isoelectronic point (pI) were calculated
using the ProtParam tool (http://web.expasy.org/protparam/). A multiple sequence alignment was
generated using DNAMAN software (www.lynnon.com). Conserved domains of the CiCHSs were
predicted using InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/). Because maize and Populus are
excellent model species, the distributions of CHSs in their genomes have been fully investigated [27,28].
A phylogenetic tree was constructed using three CiCHS-derived amino acid sequences and CHSs
from maize [28] and Populus [27] with ClustalX 2.0 (http://www.clustal.org/) and MEGA 5.0 software
(www.megasoftware.net) using a neighbor-joining method with 1000 bootstrap replicates. The online
software of MEME (http://meme-suite.org/tools/meme) and SMART (http://smart.embl-heidelberg.de/)
was used to predict the conserved domains of each CHS.

3.4. Expression Patterns of CiCHSs

One microgram of total RNA of each sample, including seven different developmental stages of
embryo and six different tissue types, were used for first-strand cDNA synthesis with a PrimeScript
1st Strand cDNA Synthesis Kit (Takara, Dalian, China). The primers of CiCHS2 and CiCHS3 came
from our laboratory previously [10]. Gene-specific primers of CiCHS1 were designed using Primer
5.0 (Table S1). Expression profiles of CiCHSs were detected using qRT-PCR on a QuantStudio 7 Flex
Real-Time PCR System (Applied Biosystems) and were normalized to the 18s RNA housekeeping
gene [45]. The qRT-PCR reactions were performed according to the PrimeScript RT reagent qPCR Kit
manual (TaKaRa, Dalian, China). The 20 µL reaction volume contained 10 µL of 2 × SBYR Premix Ex
Taq II, 0.4 µL of 50 × ROX reference Dye, 0.4 µL of each primer (10 µM) and 80 ng of cDNA. The PCR
program was 95 ◦C for 30 s; 40 cycles of 95 ◦C for 5 s and 61 ◦C for 34 s; and a dissociation stage.
The relative expression of the CiCHSs was calculated using the 2−∆∆Ct method. Each reaction was
performed in 3 biological replicates. The expression patterns of CiCHS2 and CiCHS3 at four time points
(August 29, September 12, September 26, and October 10) of “YLC28” were analyzed in our previous
study [10].

http://web.expasy.org/protparam/
www.lynnon.com
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.clustal.org
www.megasoftware.net
http://meme-suite.org/tools/meme
http://smart.embl-heidelberg.de/
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3.5. Correlation Analysis

The correlation analysis between the change in phenolic content and gene expression
patterns was performed using R package ‘Hmisc’ (http://CRAN.R-project.org/package=Hmisc) and
‘PerformanceAnalytics’ (http://CRAN.R-project.org/package=PerformanceAnalytics).

4. Conclusions

Three pecan CiCHS genes were isolated and characterized for the first time in this study.
The full-length cDNA of the three CiCHSs were 1258 bp to 1432 bp, the predicted amino acids
ranged from 389 to 394. The three CiCHSs shared two conserved domains of “Chal_sti_synt_N”
and “Chal_sti_synt_C” with CHSs from maize and Populus. Multiple alignment analysis confirmed
that CiCHSs share much of their identity with TT4 and CsCHS. The expression levels of CiCHS2
and CiCHS3 in various pecan tissues were dramatically higher than that of CiCHS1. CiCHS2 and
CiCHS3 exhibited the highest expression levels in the initial development stages of kernels, and were
differentially expressed across the kernel development. However, slight expression changes were
observed for CiCHS1. These findings indicated that CiCHS2 and CiCHS3 might be associated with the
accumulation of phenolic components in pecan kernels, and this information will promote quality
breeding in this plant. High correlation coefficients were observed between the expression values of
CiCHS2 and CiCHS3 and TPC. These findings indicated that CiCHS2 and CiCHS3 might be associated
with phenolic components accumulation in pecan kernels, and this information will promote quality
breeding in this plant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/9/6/236/s1,
Table S1. Specific primers used in this study, Figure S1. The target PCR products of three full-length cDNA of
CiCHSs, Figure S2. Full-length cDNA sequences of 3 CiCHSs.

Author Contributions: C.Z. and X.Y. designed experiments. C.Z. conducted experiments. H.R., K.W., and J.C.
analyzed data. C.Z. written articles.

Funding: This research was funded by Fundamental Research Funds of CAF No. CAFYBB2018SY013, and the
National Natural Science Foundation of China No. 31800575.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Villarreal-Lozoya, J.E.; Lombardini, L.; Cisneros-Zevallos, L. Phytochemical constituents and antioxidant
capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem. 2007, 102, 1241–1249.
[CrossRef]

2. De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Chapter 12—Phenolic
Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead
Publishing: Duxford, UK, 2019; pp. 253–271.

3. Liu, G.; Guasch-Ferré, M.; Hu, Y.; Li, Y.; Hu Frank, B.; Rimm Eric, B.; Manson JoAnn, E.; Rexrode Kathryn, M.;
Sun, Q. Nut consumption in relation to cardiovascular disease incidence and mortality among patients with
diabetes mellitus. Circ. Res. 2019, 124, 920–929. [CrossRef] [PubMed]

4. Kornsteiner, M.; Wagner, K.-H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types.
Food Chem. 2006, 98, 381–387. [CrossRef]

5. Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols:
An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112. [CrossRef] [PubMed]

6. Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic changes in phenolics and antioxidant
capacity during pecan (Carya illinoinensis) kernel ripening and its phenolics profiles. Molecules 2018, 23, 435.
[CrossRef] [PubMed]

7. De la Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and
shells of mexican pecan (Carya illinoinensis). J. Agric. Food. Chem. 2011, 59, 152–162. [CrossRef]

http://CRAN.R-project.org/package=Hmisc
http://CRAN.R-project.org/package=PerformanceAnalytics
http://www.mdpi.com/2218-273X/9/6/236/s1
http://dx.doi.org/10.1016/j.foodchem.2006.07.024
http://dx.doi.org/10.1161/CIRCRESAHA.118.314316
http://www.ncbi.nlm.nih.gov/pubmed/30776978
http://dx.doi.org/10.1016/j.foodchem.2005.07.033
http://dx.doi.org/10.1038/ejcn.2010.221
http://www.ncbi.nlm.nih.gov/pubmed/21045839
http://dx.doi.org/10.3390/molecules23020435
http://www.ncbi.nlm.nih.gov/pubmed/29462910
http://dx.doi.org/10.1021/jf1034306


Biomolecules 2019, 9, 236 11 of 12

8. Malik, N.S.; Perez, J.L.; Lombardini, L.; Cornacchia, R.; Cisneros-Zevallos, L.; Braford, J. Phenolic compounds
and fatty acid composition of organic and conventional grown pecan kernels. J. Sci. Food Agric. 2009, 89,
2207–2213. [CrossRef]

9. Robbins, K.S.; Ma, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Separation and characterization of phenolic
compounds from U.S. pecans by liquid chromatography–tandem mass spectrometry. J. Agric. Food. Chem.
2014, 62, 4332–4341. [CrossRef] [PubMed]

10. Zhang, C.; Yao, X.; Ren, H.; Chang, J.; Wang, K. RNA-Seq reveals flavonoid biosynthesis-related genes in
pecan (Carya illinoinensis) kernels. J. Agric. Food. Chem. 2019, 67, 148–158. [CrossRef]

11. Dao, T.T.H.; Linthorst, H.J.M.; Verpoorte, R. Chalcone synthase and its functions in plant resistance.
Phytochem. Rev. 2011, 10, 397. [CrossRef]

12. El Euch, C.; Jay-Allemand, C.; Pastuglia, M.; Doumas, P.; Charpentier, J.P.; Capelli, P.; Jouanin, L. Expression
of antisense chalcone synthase RNA in transgenic hybrid walnut microcuttings. Effect on flavonoid content
and rooting ability. Plant Mol. Biol. 1998, 38, 467–479. [CrossRef] [PubMed]

13. Eloy, N.B.; Voorend, W.; Lan, W.; Saleme, M.L.; Cesarino, I.; Vanholme, R.; Smith, R.A.; Goeminne, G.;
Pallidis, A.; Morreel, K.; et al. Silencing chalcone synthase in maize impedes the incorporation of tricin into
lignin and increases lignin content. Plant Physiol. 2017, 173, 998–1016. [CrossRef] [PubMed]

14. Rahnama, H.; Razi, Z.; Dadgar, M.N.; Hasanloo, T. Enhanced production of flavonolignans in hairy root
cultures of Silybum marianum by over-expression of chalcone synthase gene. J. Plant Biochem. Biot. 2013, 22,
138–143. [CrossRef]
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