Supplementary Material

Jedelská et al. – S-nitrosation in tomato root under abiotic stress

Genes	GenBank	Primers	Product length (bp)
FF1~	NIM 001247106	fwd: 5'-GGTCATCATCATGAACCATCC-3'	
EFIQ	INM_001247100	rev: 5'-CATACCAGCATCACCGTTCTT-3'	175
GAPDH	1102208	fwd: 5'-AACCGGTGTCTTCACTGACAAGGA-3'	
	093208	rev: 5'-CACCCACAACAACATGGGAGCAT-3'	110
	A V074905	fwd: 5'-GAGGACCTGATGTTCCCTTTC-3'	
ΑΡΧ	A Y 974805	rev: 5'-AAGGTATGGGCACCAGAGAGT-3'	169
NADPH oxidase	A E099276	fwd: 5'-CGGATGGAATGAAGTTGAAAA-3'	
	AFU88276	rev: 5'-AAGCATCAAACAATTCCAACG-3'	206

Supplementary Table S1. Primers used for gene expression analysis by qPCR.

Parameter	S. lycopersicum	S. habrochaites
	cv. Amateur	
Epicotyl length (cm)	5.05 ± 0.71	2.41 ± 0.27
Root length (cm)	9.65 ± 0.56	7.67 ± 0.43
Root weight (g)	0.18 ± 0.01	0.06 ± 0.003
NO level (rel. u.)	32.24 ± 2.76	19.64 ± 1.28
ONOO ⁻ level (rel. u.)	23.17 ± 3.08	21.01 ± 0.73
ROS level (rel. u.)	6.93 ± 0.13	8.63 ± 0.46
GSNOR activity (nmol·min ⁻¹ ·g ⁻¹ FW)	11.02 ± 1.28	5.89 ± 0.72
Nitrosothiols level (nmol mg ⁻¹ protein)	20.00 ± 1.89	8.09 ± 2.18
APX activity (μ mol·min ⁻¹ ·g ⁻¹ FW)	242.29 ± 21.92	224.43 ± 16.12
NADPH oxidase activity (μ mol·min ⁻¹ ·g ⁻¹ FW)	87.48 ± 0.12	69.99 ± 0.29
APX expression	1.28 ± 0.04	1.06 ± 0.01
NADPH oxidase expression	$0.78 \pm 0.03*$	$1.48 \pm 0.02*$

Supplementary Table S2. Comparison of physiological and biochemical parameters determined in 9-day seedlings of *Solanum* spp. genotypes. Data represent means \pm SD (n \geq 3).

* gene expression was normalized to the expression levels of *GAPDH* and *EF1-* α

Supplementary Figure S1. Representative images of 9-day seedlings of *Solanum* spp. genotypes. (A) *Solanum lycopersicum* cv. Amateur; (B) *Solanum habrochaites*.

В

Α

Supplementary Figure S2. Effect of RNS modulators supplementation to the growth media on protein nitration in roots of *Solanum* spp.. Plants of *Solanum* spp. were grown on media supplemented with 1 μ M N6022; 100 μ M GSNO; 100 μ M GSNO + 1 μ M N6022; 100 μ M PTIO; or 100 μ M PTIO + 1 μ M N6022. (A) Levels of nitrated proteins were analysed in root extracts (100 μ g of protein per lane) by SDS-PAGE and Western blot analysis using a mouse polyclonal antibody against 3-nitrotyrosine. Commercial nitrated BSA (NO₂-BSA, 10 μ g), served as the positive control (not shown). (B) Band intensities on Western blot images were analysed using ImageJ 1.33 software. Values indicate a relative increase of each immunoreactive band compared to the control, to which the value of 1 was assigned. N.d., not detected. Data represent means \pm SD ($n \ge 3$).

			S. lyce	opersic	eum cv. 4	Amate	S. habrochaites							
kDa		С	N6022	GSNO	GSNO + N6022	PTIO	PTIO + N6022	С	N6022	GSNO	GSNO + N6022	PTIO	PTIO + N6022	
150- 100-	-	-	E		H		E	-	-	-	-	100	alla a	
75-	•		-		Ħ		-	1			朝		-	
50-		6 A						B ia			-		-	
37-			L.			T		100						
25-			1			1	-		1000		N. C. S. S.	Jon Di		

В

S. lycopersicum cv. Amateur

Band (kDa)	N6022	GSNO	GSNO +N6022	ΡΤΙΟ	PTIO +N6022	
100	n.d.	n.d.	n.d.	n.d.	n.d.	
75	2.8 ± 0.06	2.5 ± 0.17	3.5 ± 0.01	2.7 ± 0.01	3 ± 0.30	
40	3.6 ± 0.05	2.2 ± 0.2	2.8 ± 0.01	4.2 ± 0.30	2.5 ± 0.08	

	S. habrochaites											
Band (kDa)	N6022	GSNO	GSNO +N6022	PTIO	PTIO +N6022							
100	1.6 ± 0.05	2.3 ± 0.05	4 ± 0.06	1.9 ± 0.02	5.2 ± 0.40							
75	1.11 ± 0.02	1.3 ± 0.02	1.2 ± 0.03	3.8 ± 0.20	1.2 ± 0.04							
40	1.2 ± 0.01	1.1 ± 0.09	1.7 ± 0.03	2.1 ± 0.01	1.4 ± 0.02							

А

Supplementary Figure S3. Detection of S-nitrosated and total APX and NADPH oxidase protein levels in tomato roots exposed to RNS modulators. For the purification of the S-nitrosated proteins from tomato roots, proteins extracted from tomato roots (5 mg) were subjected to the biotin switch method, followed by purification using neutravidin-affinity chromatography. Purified fractions were then analysed by SDS-PAGE (100 µg of protein per lane), followed by Western blotting and immunodetection with anti-APX (1:1000) or anti-NADPH-oxidase (1:1000) antibodies. Detection of total APX and NADPH oxidase protein level was performed by immunoblot analysis using the corresponding antibody with the same dilution as for APX-SNO or NADPH-oxidase-SNO. Roots of tomato genotypes (A) *S. lycopersicum* cv. Amateur, (B) *S. habrochaites* were grown on medium supplemented with 1 µM N6022, 100 µM GSNO, 100 µM PTIO or 1 µM N6022+100 µM GSNO, 1 µM N6022+100 µM PTIO for 9 days. Actin is included as a protein loading control. (C, D) Band intensities were analysed using ImageJ 1.33 software. Values indicate a relative increase of each immunoreactive band compared to the control, to which the value of 1 was assigned. Significantly different means from the control are denoted by asterisks (ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001).

Supplementary Figure S4. Protein nitration in roots of *Solanum* spp. genotypes exposed to cadmium or salinity stress. (A) Levels of nitrated proteins were analysed in root extracts (100 µg of protein per lane) from plants of *Solanum* spp. exposed to 50-100-150 µM CdCl₂ and 100 µM CdCl₂+1 µM N6022, or 50-100-150 mM NaCl and 100 mM NaCl+1 µM N6022, by SDS-PAGE and Western blot analysis using a mouse polyclonal antibody against 3-nitrotyrosine. Commercial nitrated BSA (NO₂-BSA, 10 µg), served as the positive control (not shown). (B) Band intensities on Western blots were analysed using ImageJ 1.33 software. Values indicate a relative increase of each immunoreactive band compared to the control, to which the value of 1 was assigned. N.d., not detected. Data represent means \pm SD ($n \ge 3$).

			S. lycopersicum cv. Amateur									S. habrochaites							
			CdCl ₂ (µM)			NaCl (mM)				CdCl ₂ (µM)			NaCl (mM)						
kDa		С	50	100	150	100+I	50	100	150	100+I	С	50	100	150	100+I	50	100	150	100+I
150- 100-	=	-	1	1	H		1	1	Π	15	11		-	-	-	H	-		-1
75-	-	10	#	-#	-	÷.	븕	4	4	4	₿C)	1	1	61	14	P			-
50-	-		-	10	10	12	19	100	12	N III				1					-
37-	-	1	*		*	<u>.</u>	Ħ				818 ·							-	
25-	-	the.	×.	63	83	64			13	D.		an l						÷	

В

S. lycopersicum cv. Amateur												
CdCl ₂ NaCl												
Band	d 50M 100M		150M	100 µM	50 mM)		100 mM				
(kDa)	30 µ1vi	100 µ.vi	150 µIVI	+1 μM N6022	50 IIIVI		150 milvi	+ 1 μM N6022				
100	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.				
75	1.9 ± 0.01	2.8 ± 0.3	2.3 ± 0.1	2.8 ± 0.2	1.9 ± 0.05	2.2 ± 0.02	3.2 ± 0.5	2.3 ± 0.05				
40	1.3 ± 0.01	2.1 ± 0.08	1.6 ± 0.01	1.6 ± 0.2	1.1 ± 0.07	1.2 ± 0.01	2.6 ± 0.09	2.8 ± 0.2				

S. habrochaites											
			CdCl ₂		NaCl						
Band (kDa)	50 µM	100 µM	150 µM	100 μM + 1 μM N6022	50 mM	100 mM	150 mM	100 mM + 1 μM N6022			
100	1.6 ± 0.08	2 ± 0.03	2.7 ± 0.12	2.2 ± 0.01	2.7 ± 0.1	2.9 ± 0.01	2.8 ± 0.2	3.1 ± 0.2			
75	1.7 ± 0.03	2.1 ± 0.07	2.2 ± 0.06	1.9 ± 0.01	2.3 ± 0.02	1.9 ± 0.04	2.9 ± 0.04	2.7 ± 0.02			
40	1.2 ± 0.03	1.6 ± 0.05	1.8 ± 0.1	1.7 ± 0.01	2.1 ± 0.2	1.5 ± 0.1	2 ± 0.1	2.2 ± 0.06			

Supplementary Figure S5. Detection of S-nitrosated and total APX and NADPH oxidase protein levels in tomato roots exposed to cadmium stress. For the purification of S-nitrosated proteins from tomato roots, extracted proteins (5 mg) were subjected to the biotin switch method, followed by purification using neutravidin-affinity chromatography. Purified fractions were then analysed by SDS-PAGE (100 µg of protein per lane), followed by immunoblotting with anti-APX (1:1000) or anti-NADPH-oxidase (1:1000) antibodies. Detection of total APX and NADPH oxidase protein expression level was performed by immunoblot analysis using corresponding antibodies with the same dilution as for APX-SNO or NADPH-oxidase-SNO. Roots of tomato genotypes (A) *S. lycopersicum* cv. Amateur, (B) *S. habrochaites* were grown on medium supplemented with 50, 100, 150 µM CdCl₂ or 100 µM CdCl₂+1 µM N6022 for 9 days. Actin was included as a protein loading control. (C, D) Band intensities on Western blots were analysed using ImageJ 1.33 software. Values indicate a relative increase of each immunoreactive band compared to unstressed control, to which the value of 1 was assigned. Significantly different means from the control are denoted by asterisks (ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001).

7

Supplementary Figure S6. Detection of S-nitrosated and total APX and NADPH oxidase protein levels in tomato roots exposed to salinity stress. For the purification of S-nitrosated proteins from tomato roots, extracted proteins (5 mg) were subjected to the biotin switch method, followed by purification using neutravidin affinity chromatography. Purified fractions were then analysed by SDS-PAGE (100 µg of protein per lane), followed by immunoblotting with anti-APX (1:1000) or anti-NADPH-oxidase (1:1000) antibodies. Detection of total APX and NADPH oxidase protein expression level was performed by immunoblot analysis using corresponding antibodies with the same dilution as for APX-SNO or NADPH-oxidase-SNO. Roots of tomato genotypes (A) *S. lycopersicum* cv. Amateur, (B) *S. habrochaites* were grown on medium supplemented with 50, 100, 150 mM NaCl or 100 mM NaCl+1 µM N6022 for 9 days. Actin was included as a protein loading control. (C, D) Band intensities on Western blots were analysed using ImageJ 1.33 software. Values indicate a relative increase of each immunoreactive band compared to the unstressed control, to which the value of 1 was assigned. Significantly different means from the control are denoted by asterisks (ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.001).

В

А

Supplementary Figure S7. ROS levels in roots of *Solanum* spp. genotypes exposed to cadmium or salinity stress. Fluorescent probe H_2DCF DA in 20 μ M concentration was used for the detection of ROS in apical parts of roots. Green fluorescence signal detected by fluorescence microscopy corresponds to intracellular ROS levels. As a negative control, roots were incubated with 20 mM ascorbate (images not shown). Scale bar = 200 μ m.

