Supplementary materials

Scheme S1. The proposed catalytic mechanism of GGT enzymes.

Scheme S2. The proposed mechanism for intramolecular autocatalytic processing of *Bl*GGT.

Protein	Nucleotide sequence $(5' \rightarrow 3')$	Codon change
∧M462(f)	AAAAGGCCGCTTTCAAGCACGCCGACGATC	-
$\Delta W 402(1)$	GTATTC	
∆M462(r)	GAATACGATCGTCGGCGTGCTTGAAAGCGGC	-
	CTTTT	
∧\$461-462(f)	AATAAAAGGCCGCTTTCAACGCCGACGATC	-
$\Delta 3401-402(1)$	GTATTC	
∆S461-462(r)	GAATACGATCGTCGGCGTTGAAAGCGGCCTT	-
	TTATT	
△S460-462(f)	CCGAATAAAAGGCCGCTTACGCCGACGATC	-
()	GTATTC	
∆S460-462(r)	GAATACGATCGTCGGCGTAAGCGGCCTTTTA	-
	TTCGG	
△P464(f)	CCGCTTTCAAGCATGACGACGATCGTATTCA	-
	AAGAT	
△P464(r)	ATCTTTGAATACGATCGTCGTCATGCTTGAAA	-
()	GCGG	
P458A(f)	CCGAATAAAAGG <u>GCG</u> CTTTCAAGCATG	CCG→GCG
P458A(r)	CATGCTTGAAAG <u>CGC</u> CCTTTTATTCGG	
L459A(f)	AATAAAAGGCCG <u>GCT</u> TCAAGCATGACG	CTT→GCT
L459A(r)	CGTCATGCTTGA <u>AGC</u> CGGCCTTTTATT	
S460A(f)	AAAAGGCCGCTT <u>GCA</u> AGCATGACGCCG	TCA→GCA
S460A(r)	CGGCGTCATGCT <u>TGC</u> AAGCGGCCTTTT	
S461A(f)	AGGCCGCTTTCA <u>GCC</u> ATGACGCCGACG	AGC→GCC
S461A(r)	CGTCGGCGTCAT <u>GGC</u> TGAAAGCGGCCT	
M462A(f)	CCGCTTTCAAGC <u>GCG</u> ACGCCGACGATC	ACG→GCG
M462A(r)	GATCGTCGGCGT <u>CGC</u> GCTTGAAAGCGG	
P464A(f)	TCAAGCATGACG <u>GCG</u> ACGATCGTATTC	CCG→GCG
P464A(r)	GAATACGATCGT <u>CGC</u> CGTCATGCTTGA	

 Table S1
 Overlapping complementary primers used in the site-directed mutagenesis

Fig. S1. Local environments surrounding the highly conserved PLSSMXP region of *BI*GGT. (**A**) The self-activation environment of the T399A-*BI*GGT structure (PDB 4Y23). The carbon skeleton of the PLSSMXP segment is highlighted in green color. The hydrogen bonds are indicated by pink dashed lines. (**B**) The interaction environment of the *BI*GGT structure complexed with L-Glu (PDB 4OTU). The carbon skeleton of the PLSSMXP segment is highlighted in green color. The hydrogen bonds are bonds are indicated by pink dashed lines.

Hydrogen bond	<i>Ec</i> GGT	S462A-EcGGT	S463A-EcGGT
LigandAsn411	\checkmark	\checkmark	\checkmark
LigandGln430	\checkmark	\checkmark	\checkmark
LigandAsp433	\checkmark	\checkmark	\checkmark
LigandSer462_1	\checkmark	×	\checkmark
LigandSer462_2	\checkmark	×	\checkmark
LigandSer463	\checkmark	×	\checkmark
LigandGly483	\checkmark	\checkmark	\checkmark
LigandGly484	\checkmark	\checkmark	\checkmark
Arg114Asp433	\checkmark	\checkmark	\checkmark
Arg114Leu461	\checkmark	×	×
Arg109Glu438	\checkmark	\checkmark	\checkmark
Thr391Thr409_1	\checkmark	\checkmark	\checkmark
Thr391Thr409_2	\checkmark	\checkmark	\checkmark
Thr409Asn411	\checkmark	\checkmark	\checkmark
Gln430Asp433	\checkmark	\checkmark	×
Asn411Tyr444	\checkmark	\checkmark	\checkmark
Ser462Met464	\checkmark	×	×

Table S2. Comparison of hydrogen-bond interactions in the enzymatic pockets of *Ec*GGT and the predictive S451A-*Ec*GGT and S452A-*Ec*GGT models

Symbols: $\sqrt{}$, interaction; ×, no interaction.

Table S3. Comparison of the hydrogen-bond interactions in the enzymatic pockets of *Hs*GGT and the predictive S451A-*Hs*GGT and S452A-*Hs*GGT models

Hydrogen bond	EcGGT	S451A-HsGGT	S452A-HsGGT
LigandThr399	\checkmark	\checkmark	\checkmark
LigandAsn401	\checkmark	\checkmark	\checkmark
LigandGlu420	\checkmark	\checkmark	\checkmark
LigandSer451_1	\checkmark	×	\checkmark
LigandSer451_2	\checkmark	×	\checkmark
Arg107Asp423	\checkmark	\checkmark	\checkmark
Thr381Thr399_1	\checkmark	\checkmark	\checkmark
Thr381Thr399_2	\checkmark	\checkmark	\checkmark
Thr381Thr399_3	\checkmark	\checkmark	\checkmark
Ser451Met453	\checkmark	\checkmark	\checkmark
Gln430Asp433	\checkmark	×	\checkmark

Asn411Tyr444	\checkmark	\checkmark	
Gly474Gly475	\checkmark	\checkmark	\checkmark

Symbols: $\sqrt{}$, interaction; ×, no interaction.

Table S4. Comparison of the hydrogen-bond interactions in the enzymatic pockets of *Bl*GGT and the predictive S460A and S461A models

Hydrogen Bond	BlGGT	S460A	S461A
LigandAsp441	\checkmark	\checkmark	\checkmark
LigandGlu438	\checkmark	\checkmark	\checkmark
LigandSer460_1	\checkmark	\checkmark	\checkmark
LigandSer460_2	\checkmark	×	\checkmark
LigandGly482	\checkmark	\checkmark	\checkmark
Arg109Asp441	\checkmark	\checkmark	\checkmark
Arg109Glu438	\checkmark	\checkmark	\checkmark
Thr399Thr417_1	\checkmark	\checkmark	\checkmark
Thr399Thr417_2	\checkmark	\checkmark	\checkmark
Thr417Glu419	\checkmark	\checkmark	\checkmark
Glu438Asp441	\checkmark	\checkmark	\checkmark
Ser460Met462	\checkmark	\checkmark	\checkmark

Symbols: $\sqrt{}$, interaction; ×, no interaction.

Fig. S2. Intrinsic fluorescence (**A**) and Far-UV (**B**) spectra, and thermal unfolding curves (**C**) of *BI*GGT, S460A and S461A.

Fig. S3. The catalytic environments of P458A (A), L459A (B), and M462A (C). The catalytic environments were plotted by the program PyMOL (<u>https://pymol.org</u>). Critical residues Arg109, Thr399, His401, Thr415, Thr417, Glu419, Glu438, Gly481, Gly482, and Arg571 are shown. The carbon skeleton of the PLSSMXP sequence is highlighted in green color. The hydrogen bonds are indicated by pink dashed lines.