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Abstract: In recent years, the increasing popularity of multi-vehicle missions has been accompanied
by a growing interest in the development of control strategies to ensure safety in these scenarios. In
this work, we propose a control framework for coordination and collision avoidance in cooperative
multi-vehicle missions based on a speed adjustment approach. The overall problem is decoupled in a
coordination problem, in order to ensure coordination and inter-vehicle safety among the agents,
and a collision-avoidance problem to guarantee the avoidance of non-cooperative moving obstacles.
We model the network over which the cooperative vehicles communicate using tools from graph
theory, and take communication losses and time delays into account. Finally, through a rigorous
Lyapunov analysis, we provide performance bounds and demonstrate the efficacy of the algorithms
with numerical and experimental results.

Keywords: collision avoidance; multi-vehicle coordination; autonomous systems

1. Introduction

Multi-vehicle cooperative missions have become the focus of many researches, because
they allow for the completion of tasks in a faster, safer, and more efficient way than
single vehicle missions. Therefore, many efforts have been devoted to developing control
algorithms for such missions. Examples can be found in several different applications,
such as logistic tasks in industrial warehouses, where Automated Guided Vehicles (AGV)
transport and handle products [1]; search and rescue missions, where drones cooperatively
search large portions of territory to aid people in distress [2,3]; and, surveillance, where
UAVs gather images and information about specific targets or areas [4,5], etc.

In missions involving unmanned vehicles, safety is one of the main concerns and
collision avoidance algorithms play an important role toward the safe execution of the
tasks. Some of the techniques for collision avoidance found in the literature include (i) tra-
jectory planning, where agents’ trajectories are planned to create collision-free paths [6–8];
(ii) velocity obstacle (VO) methods, where the set of velocities that will result in collisions
is defined, and the vehicle’s velocity is adjusted accordingly [9–11]; (iii) machine learning
based methods, such as deep reinforcement learning [12,13]; (iv) and game theory [14–16].
Many of the proposed solutions can only guarantee safety in a narrow range of scenarios
(e.g., static or slow moving obstacles), and are not always well suited for multi-vehicle
missions, as they do not ensure safety among agents.

Multi-vehicle missions pose an extra challenge, as they require control strategies to
ensure safety against pop-up moving obstacles as well as inter-vehicle safety. In other
words, when one vehicle deviates from its nominal trajectory in order to avert collision with
an external obstacle, it must simultaneously consider the presence of cooperative vehicles
sharing the same space. Some of the well known approaches that simultaneously address
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both of the requirements are based on potential fields, where agents are treated as charged
particles and repel other cooperative or non-cooperative vehicles [17–21]. However, these
techniques are often conservative, and they only provide guaranteed safety within small
subsets of initial conditions and vehicle dynamics.

In this work, we consider scenarios in which it is undesirable for a vehicle to deviate
from its nominal trajectory and, if possible, it is preferred to perform collision avoidance
against moving obstacles by only changing the speed of the agents. Examples of such
scenarios include, but are not limited to, air traffic management, where the direction
taken by the aircraft is fixed and the speed can be varied within a feasibility range, and
highway driving, where vehicles driving can vary their speeds while remaining in their
lane. To address the problem at hand, the research group previously introduced a coop-
erative control framework for collision avoidance [22–24]. With this framework, safety is
achieved by decoupling the cooperative collision avoidance problem into a coordination
problem [25,26] to ensure inter-vehicle safety, and a collision-avoidance problem [23] to
guarantee safety against dynamic obstacles. It is shown, using tools from graph theory
and Lyapunov analysis, that safe operations are guaranteed under realistic assumptions
on the communication network over which the vehicles communicate. Nevertheless, one
main limitation of this work lies in the assumption that all of the agents are equipped with
sensors that are able to measure position and speed of the obstacle in real-time. It is often
more realistic to assume that only a subset of the vehicles (the leaders of the mission) have
the necessary on-board equipment to acquire such information.

Concerning coordination, in [25], the authors introduce a time-critical coordination
algorithm for the control of multiple vehicles. This time-coordination algorithm is based on
a leader-follower structure and allows for a fleet of fixed-wing UAVs to coordinate with each
other at a desired constant pace, known to the leaders only. One key limitation of the work
in [25] lies in the assumption that the speed of the vehicles under consideration must be
lower bounded by a positive constant. Therefore, making this algorithm not employable in
missions involves vehicles that allow the existence of zero velocity vectors. In Refs. [26–28],
the authors depart from [25], and propose a decentralized time-coordination algorithm that
guarantees coordination for a broader class of vehicles. Coupled with trajectory generation
methods, this time-coordination algorithm ensures spatial separation between the agents
and, thus, guarantees inter-vehicle safety throughout the mission. On the other hand, in
this work it is assumed that the coordination variables and the desired mission pace are
known by all of the agents and not only to a subset of leaders.

Motivated by these ideas, we build on previous results on time-coordination [26–29],
and propose a Lyapunov-based method to the cooperative collision avoidance problem.
This work departs from previous solutions to this problem [22–24] by adopting a new
time-coordination algorithm for inter-vehicle safety. The main novelty of this method
concerns the structure of the control system. Conversely from the solutions that were
proposed in [26–28], this algorithm relies on a leader-follower structure and can be applied
to a wide range of autonomous missions. In the proposed scenario, once a possible collision
with a non-cooperative obstacle is detected by mission’s leaders (or virtual leaders), these
deviate from their nominal trajectory, while the followers, who have no information about
the position of the obstacle, are also able to avoid the collision by coordinating with
the leaders. Furthermore, we have extended the theoretical results in [24] and provided
rigorous performance bounds. It is shown that the coordination and safety guarantees
hold even in the presence of communication faults. When combined with trajectory
generation algorithms [30,31] and trajectory tracking algorithms [25,32], the control laws
that are proposed in this work provide a Cooperative Control Framework that enables
safe operations for all agents. Figure 1 presents a schematic of the Cooperative Control
Framework.

The paper is organized as follows: Section 2 presents the cooperative control frame-
work that this work is based on. A formulation of the time-coordination problem is given
in Section 3, while the collision-avoidance problem is stated in Section 4. A mathematical
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formulation of the proposed control laws is given in Section 5. Section 6 presents the main
results, while the efficacy of the algorithms is demonstrated through the experimental
results presented in Section 7. Finally, the conclusions are given Section 8.

Figure 1. Cooperative control framework.

2. Cooperative Control Framework

The cooperative control framework comprises (i) an offline optimal motion plan-
ning module that generates feasible paths for multiple vehicle missions, (ii) tracking
algorithms that enable the vehicles to track virtual targets moving along these paths, (iii)
time-coordination algorithms that adjust the rate of progression of the virtual target to
follow a desired mission pace and to achieve inter-vehicle coordination, and (iv) collision-
avoidance algorithms that adjust the desired pace of the mission to avert collisions with
pop-up obstacles and uncooperative vehicles. The framework, which builds on the plan-
ning and control framework for multi-vehicle missions presented in previous work [33], is
depicted in Figure 1 for the leader and follower, respectively. The present paper is focused
on time-coordination and collision-avoidance. Nevertheless, for the sake of clarity and
completeness, the remainder of this section introduces the optimal motion planning and
virtual target tracking problems.

2.1. Optimal Motion Planning

Given a cooperative multi-vehicle mission involving N vehicles, the optimal motion
planning problem can be defined as follows:

Problem 1 (Optimal motion planning). Compute N desired trajectories pi(t) : [0, tf]→ Rd,
d ∈ {2, 3}, i ∈ {1, 2, . . . , N}, which minimize a given cost function, and satisfy boundary
conditions, feasibility constraints, and mission-specific constraints.

In the above problem definition, the boundary constraints are the predefined initial
and final conditions on trajectories, such as initial and final positions, speeds, and heading
angles. The feasibility constraints include vehicle dynamics and input bounds, as well
as constraints dealing with the avoidance of obstacles and spatial deconfliction between
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trajectories to avoid inter-vehicle collisions and ensure the safe simultaneous operation in
a common airspace, i.e.,

‖pi(t)− pj(t)‖ ≥ dsafe, (1)

for all i, j ∈ {1, . . . , N}, i 6= j, with dsafe > 0. Finally, further mission-specific constraints,
such as simultaneous or sequential arrival, can be imposed.

2.2. Virtual Target Tracking

Let the virtual time γi(t), t ≥ 0, be a temporal variable that is defined as follows:

γi : R+ → [0, t f ] , ∀i = 1 , ... , N . (2)

Let pi(γi(t)) be the virtual target that is assigned to the ith vehicle. Here, pi(t) is the
ith trajectory generated at the motion planning level. With this definition, the virtual time
is a variable, which conversely to the clock time, can be stretched or compressed to adjust the
progression of the virtual target along the geometric path pi(·), in order to achieve some
objectives, e.g., coordination or collision avoidance, as we will see later. Notice that, when
γ̇i(t) ≡ 1, then the progression of the virtual time is equal to the progression of the clock
time.

On the other hand, γ̇i(t) > 1 implies that the virtual target that is assigned to the ith
vehicle is moving faster than the nominal trajectory generated by the trajectory generation
algorithm. Similarly, γ̇i(t) < 1 implies a slower execution of the mission. With this setup,
let the equations of motion of the ith vehicle be given by{

˙̂xi(t) = fi(x̂i(t), ûi(t)) , x̂i(0) = x̂i,0

p̂i(t) = gi(x̂i(t)) ,
(3)

where p̂i(t) is the actual ith vehicle’s position, x̂i is the state of the vehicle (e.g., position,
attitude, velocity, etc.), ûi(t)) is the control input, and fi(·) and gi(·) are vectors of nonlinear
functions describing the vehicle’s dynamics. Subsequently, the objective of the virtual
target tracking problem can be stated as follows:

Problem 2 (Virtual target tracking). Design a control law for ûi(t) such that the virtual target
tracking error

xTT,i(t) , pi(γi(t))− p̂i(t) (4)

converges to a neighborhood of zero.

Finally, feasibility constraints must be imposed to ensure that the problem above can
be solved. In addition to the vehicles’ dynamics constraints, which are taken into account
in Problem 1, it is necessary to ensure that the bounds on the dynamics of the virtual
time are enforced, so that the virtual targets can be tracked by the agents. In particular, a
virtual target can be tracked by the ith vehicle if its trajectory pi(t), i = 1, . . . , N is a feasible
solutions of Problem 1, and the derivatives of its virtual time satisfy

1− γ̇i,max ≤ γ̇i(t) ≤ 1 + γ̇i,max, (5)

|γ̈i(t)| ≤ γ̈i,max, (6)

with 0 < γ̇i,max < 1 and γ̈i,max > 0.
As it will become clear later, the dynamics of the virtual time (in particular, its second

derivative γ̈i(t)) are explicitly used as control input to achieve time coordination and
collision avoidance. For this reason, when deriving control laws for γ̈i(t), the bounds in (6)
will be taken into consideration.
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3. Time Coordination Problem

Recall that, at time t, the virtual target to be tracked by ith vehicle is given by pi(γi(t)),
where the path pi(·) is given by the optimal motion planning algorithm, and γi(t) is the
virtual time. The virtual time and its derivatives play an important role in defining the
time-coordination problem. In fact, because the virtual target is parameterized by γi(t),
and the trajectories pi(t) satisfy spatial deconfliction constraints (see Equation (1)) and
mission-specific requirements (e.g., simultaneous time of arrival, see Section 2), we say
that, at time t, the vehicles are coordinated and inter-vehicle safety is guaranteed, if

γi(t) = γj(t), i, j ∈ {1, 2, · · · , N}. (7)

Furthermore, they are all progressing at the same desired pace, if

γ̇i(t) = γ̇d(t), i ∈ {1, 2, · · · , N}, (8)

where γ̇d(t) > 0 represents the desired pace of the mission. We recall that γ̇d(t) = 1 means
that the vehicles are required to proceed along the assigned trajectories at the rate that was
established at the motion planning level.

As it will be clear later, the desired pace of the mission γ̇d(t) is used as an extra degree
of freedom by the collision-avoidance algorithm to adjust the rate of the mission in order
to avert collision with obstacles, and it is set to 1 if no obstacle is present.

With this setup, the time-coordination problem can be defined as that of designing
control laws for γ̈i(t) that ensure the satisfaction of Equations (7) and (8). To achieve
this objective, information between the vehicles must be exchanged during the mission
execution. Thus, we first state a set of assumptions that the communication network,
over which the vehicles communicate, must satisfy in order to provide a mathematical
formulation of the problem at hand. In what follows, tools from graph theory are used
to formulate these assumptions. In particular, consider the Laplacian matrix for the time-
varying communication graph Γ(t), L(t) ∈ RN×N , and let Q ∈ R(N−1)×N be a matrix that
satisfies the following:

Q1N = 0 , QQ> = IN−1 , Q>Q = IN −
1
N

1N1>N . (9)

Remark 1. In [25], the existence of a matrix Q that satisfies the above properties is demonstrated.
An iterative procedure to compute the matrix Q is presented in [26].

Let L̄(t) = QL(t)Q>. The matrix L̄(t) has the same eigenvalues as the Laplacian
matrix, but without the first eigenvalue λ1 = 0. The following is assumed in terms of the
communication graph.

Assumption 1.

• The ith vehicle can only communicate with a neighboring set of vehicles, here referred to as Ni.
• The communication between the vehicles is bidirectional and with no time delays.
• The connectivity of the communication graph Γ(t) satisfies the Persistency of Excitation

(PE)-like condition: ∫ t+T

t
L̄(τ)dτ ≥ µIN−1, t ≥ 0, (10)

with T > 0 and µ = (0, 1].

Notice that the condition given by Equation (10) implies that the graph Γ(t) must be
connected in an integral sense, therefore allowing the graph to be disconnected point-wise
in time. In this sense, the assumption above captures packet dropouts, communication
losses, and switching topologies.
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Finally, let NL ≤ N be the number of vehicles elected as leaders (and N − NL the
number of followers). We assume that the desired mission pace γ̇d(t) is known to the
leaders only, e.g., vehicles k = {1, . . . , NL}. Thus, one of the main challenges is ensuring
the satisfaction of Equation (8) for all i ∈ {1, 2, · · · , NL, · · · , N}, with the desired pace γ̇d(t)
only being known to a subset of vehicles.

Letting γ(t) = [γ1(t), . . . γN(t)]>, γ̇(t) = [γ̇1(t), . . . γ̇N(t)]>, we define the time coor-
dination errors as

ξ(t) = Qγ(t), z(t) = γ̇(t)− γ̇d(t)1N . (11)

Notice that ξ(t) = 0 implies that γi(t) = γj(t) (see Equation (9)). Subsequently, the
time-coordination problem can be formulated, as follows.

Problem 3 (Time coordination). Consider a cooperative mission with N vehicles. Assume that
the vehicles are equipped with optimal motion planning and virtual target tracking algorithms
that solve Problems 1 and 2, respectively. Finally, assume that the vehicles are supported by a
communication network that satisfies Assumption 1, and that the desired mission pace is known to
a subset of NL ≤ N vehicles only (leaders). Then, the objective of time-coordination is to design
control laws for γ̈i(t), for all i ∈ {1, . . . , N}, such that the time-coordination errors ξ(t) and z(t)
defined in Equation (11) converge to a neighborhood of zero.

4. Collision Avoidance Problem

Consider a non-cooperative vehicle (or an obstacle) with nominal position p̂o(t) and
speed satisfying ‖ ˙̂po(t)‖ > 0 for all t ≥ 0. Furthermore, let there be values of the virtual
time γ∗,i ∈ [0, tf] and (clock) time t∗ ∈ [0, ∞), such that

‖pi(γ∗,i)− p̂o(t∗)‖ ≤ dsafe, (12)

with dsafe > 0. We recall that the planned position of the ith vehicle is given by pi(γi(t)).
Thus, Equation (12) implies that a collision between the obstacle and vehicle i occurs if
γi(t∗) ≈ γ∗,i, and it is the objective of the collision-avoidance algorithm to ensure that
this condition is never met. Moreover, in order to take possible speed variations in the
obstacle’s trajectory into consideration, let its trajectory be reparameterized using the
virtual time variable γo(t). Similarly to the vehicles’ trajectories, γ̇o(t) = 1 indicates that
the obstacle is moving according to its nominal trajectory. Subsequently, the trajectory of
the non-cooperative vehicle can be rewritten as

po(γo(t)) = p̂o(γo(t)− γ∗,i + t∗), γo(t) ∈ [γo(0), ∞). (13)

Assuming that the instantaneous speed of the obstacle can be measured (no such
assumptions are made for the acceleration),the pace of the obstacle can be characterized as
the ratio between the obstacle’s actual and nominal speed. In particular, we have

γ̇o(t) =
‖ ṗo(t)‖∥∥∥ dp̂o(γ−γ∗,i+t∗)

dγ |γ=γo(t)

∥∥∥ , γo(0) = γ∗,i − t∗ . (14)

With this setup, assumptions on the dynamics of the obstacle can be formulated in
terms of its virtual time. In particular, the following is assumed about the obstacle’s speed
and acceleration:

1− γ̇o,max ≤ γ̇o(t) ≤ 1 + γ̇o,max,

|γ̈o(t)| ≤ γ̈o,max, (15)

for some γ̇o,max and γ̈o,max.
Finally, we define
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γδ,i(t) = γi(t)− γo(t),

as the difference in virtual time between the ith vehicle and the obstacle. From (13), it
follows that if γδ,i(t) = 0, with γi(t) = γo(t) = γ∗,i, then ‖pi(γi(t))− po(γo(t))‖ ≤ dsafe,
where pi(γi(t)) is the trajectory of the ith vehicle and dsafe is the required safety distance
between the vehicle and the obstacle. Instead, keeping |γδ,i(t)| � 0 ensures that the vehicle
and obstacle will reach the impact location at different times, therefore avoiding a collision.
Thus, γδ,i(t) 6= 0 is a sufficient condition for ensuring safety. With this setup, we assume
the existence of a minimum virtual time separation that guarantees collision avoidance.
This is summarized in the following two cases:

1. There exists γsafe > 0 such that, if

γδ,i(t) = γi(t)− γo(t) ≥ γsafe, (16)

for all γi(t) ∈ [0, tf], then

‖pi(γi(t))− po(γo(t))‖ > dsafe, γi(t) ∈ [0, tf].

2. There exists γsafe < 0 such that, if

γδ,i(t) = γi(t)− γo(t) ≤ γsafe, (17)

for all γi(t) ∈ [0, tf], then

‖pi(γi(t))− po(γo(t))‖ > dsafe, γi(t) ∈ [0, tf].

Recall, from Section 3, that the rate of progression of the virtual times γi(t), i ∈
{1, . . . , N} (and, thus, the speed of the vehicles) can be controlled by adjusting γ̇d(t). In
fact, the use of the desired mission pace γ̇d(t) becomes important in the presence of external
obstacles to ensure that conditions (16) or (17) are satisfied for all t ≥ 0. This leads to the
formulation of the collision avoidance problem.

Problem 4 (Collision avoidance). Consider a cooperative mission with N vehicles. Assume that
the vehicles are equipped with optimal motion planning and virtual target tracking algorithms that
solve Problems 1 and 2, respectively, and with a time-coordination algorithm that solves Problem
3. Assume the presence of an obstacle with dynamics that satisfy the bounds in Equation (15) for
some γ̇o,max and γ̈o,max. Subsequently, the objective of the collision-avoidance algorithm is to design
control laws for γ̇d(t), such that the safety conditions that are given by Equations (16) or (17) are
satisfied for all t ≥ 0.

Remark 2. In this paper, we only consider the scenario in which one obstacle is present.

Remark 3. In practice, the leaders can be "virtual", e.g., ground stations. Therefore, we believe
that it is reasonable to assume that most of the computations and sensing necessary to guarantee
collision avoidance can be performed by the leaders.

5. Control Law

This section provides a control strategy to solve the time-coordination and collision-
avoidance problems.

5.1. Time-Coordination Control Law

To solve Problem 3, we let the evolution of the virtual time (for leaders and followers,
respectively) be governed by:



Robotics 2021, 10, 34 8 of 23

γ̈i(t) = −b(γ̇i(t)− γ̇d(t))− a ∑
j∈Ni

(γi(t)− γj(t)),

i ∈ {1, . . . , NL},

γ̈i(t) = −b(γ̇i(t)− χI,i(t))− a ∑
j∈Ni

(γi(t)− γj(t)),

χ̇I,i(t) = −k ∑
j∈Ni

(γi(t)− γj(t)), i ∈ {NL + 1, . . . , N},

(18)

γi(0) = 0, γ̇i(0) = 1, χI,i(0) = 1,

where a, b, and k are the positive coordination control gains and γ̇d(t) is a desired mission
pace satisfying

1− γ̇d,max ≤ γ̇d(t) ≤ 1 + γ̇d,max, (19)

|γ̈d(t)| ≤ γ̈d,max, (20)

for some γ̇d,max, γ̈d,max > 0. The desired pace γ̇d(t) will be defined later when introducing
the collision avoidance algorithm, and can now be considered as a desired time-varying
value that is to be tracked by γ̇i(t), i = 1, . . . , N.
The time-coordination control law can also be written in matrix form as

γ̈(t) = −aLγ(t)− b
[

D>γ̇(t)− γ̇d(t)1NL

C>γ̇(t)− χI(t)

]
χ̇I(t) = −kC>Lγ(t),

(21)

γ(0) = 0N , γ̇(0) = 1N , χI(0) = 1N−NL ,

where

C> =
[
0 IN−NL

]
,

D> =
[
INL 0

]
.

The objective of the time-coordination control law is to ensure that Equations (7) and
(8) are satisfied at all times, even if the desired mission pace γ̇d(t) is known by the leaders
only, as was mentioned earlier. For this reason, we introduce the term χI(t), which plays
the role of an integral term ensuring satisfaction of Equation (8).

5.2. Collision-Avoidance Control Law

To solve Problem 4, the proposed collision-avoidance method uses γ̇d(t) as a control
input to appropriately adjust the speed of the mission. We formulate control laws based on
two cases.

5.2.1. Case 1: Collision Avoidance by Setting γδ,i(t) > γsafe

In this scenario, the collision between the ith vehicle and an obstacle can be avoided
by maintaining the virtual time γi(t) larger than γo(t) by a value that is greater or equal to
γsafe. Therefore, we let γ̇d(t) be governed by
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γ̇d(t) = 1 +


0, ω(t) < 1− η,
(ω(t)− 1)ρ(ω(t)), 1− η ≤ ω(t) ≤ 1,
ω(t)− 1, ω(t) > 1,

(22)

where

ω(t) =
γsafe + ε

γδ,i(t)
γ̇o(t),

ε > 0 is a design parameter, and η > 0 is a small positive number. Lastly, ρ : [1− η, 1]→
[0, 1] is a smooth function (an example for ρ is ρ(x) = 1− 3

(
x−1

η

)2
− 2
(

x−1
η

)3
) that satisfies

ρ(1− η) = 0,
dρ(1− η)

dω
= 0,

ρ(1) = 1,
dρ(1− η)

dω
= 0.

In the remainder of this section, we describe the physical meaning of the proposed
control laws. We note that, in (22), γ̇d(t) is a C1-continuous approximation of a max
function and satisfies

γ̇d(t) ≈ max{1, ω(t)} = max
{

1,
γsafe + ε

γδ,i(t)
γ̇o(t)

}
. (23)

This is motivated by the fact that γδ,i(0) is initially already greater than γsafe. Thus,
the pace of the mission may need to be increased, but never decreased. To this end, γ̇d(t) is
defined such that the right hand side of (23) is guaranteed to be always greater or equal
to 1.

In the case in which ω(t) ≥ 1, the pace of the mission is adjusted as

γ̇d(t) ≈ ω(t) =
γsafe + ε

γδ,i(t)
γ̇o(t).

This implies that, if γδ,i(t) < γsafe + ε, the proposed control law ensures that γ̇d(t)
(and, consequently, γ̇i(t)) are greater than γ̇o(t), which, in turn, cause γδ,i(t) to increase.

Conversely, using the fact that γ̇d(t) is bounded from below (see Equation (23)), if
γδ,i(t) > γsafe + ε, then γ̇d(t) ≈ ω(t) < γ̇o(t), which implies that γ̇d(t) is guaranteed to
remain in a neighbourhood of 1.

5.2.2. Case 2: Collision Avoidance by Setting γδ,i(t) < γsafe

In this case, the vehicle can avoid the obstacle by maintaining γi(t) lower than γo(t)
by a value lower or equal to γsafe. The pace of the mission may need to be decreased to
achieve this.

The proposed control law is given, as follows:

γ̇d(t) = 1 +


ω(t)− 1, ω(t) < 1,
(ω(t)− 1)ρ(ω(t)), 1 ≤ ω(t) ≤ 1 + η,
0, 1 + η < ω(t),

where ω(t) is now defined as

ω(t) =
γδ,i(t)

γsafe − ε
γ̇o(t),

ε > 0 is a design parameter and η is a small positive number. Finally, ρ : [1, 1 + η]→ [0, 1]
is a smooth function that satisfies
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ρ(1) = 1,
dρ(1)

dω
= 0,

ρ(1 + η) = 0,
dρ(1 + η)

dω
= 0.

6. Main Results
6.1. Time Coordination

Recall that the time-coordination objective is captured by the error variables ξ(t)
and z(t) defined in Equation (11), and the time-coordination control law is given by
Equation (21). Let us define the time-coordination error vector, as follows:

xTC(t) = [ξ(t)>, z(t)>, (χI(t)− γ̇d(t)1N−NL)
>]>.

Subsequently, the following theorem summarizes one of the main results of this paper.

Theorem 1. Consider a cooperative mission involving N vehicles, with NL vehicles elected as
leaders. Let the vehicles be equipped with optimal motion planning and virtual target tracking
algorithms that solve Problems 1 and 2, respectively. Assume that the vehicles are supported by
a communication network that satisfies Assumption 1, and that the desired mission pace γ̇d(t)
is known to a subset of NL ≤ N vehicles only (leaders). Let the evolution of the virtual time be
governed by the control law that is given by (21). Let the time coordination error vector at time
t = 0, i.e., xTC(0), and the dynamic limits of the desired mission pace (see Equations (19) and (20))
satisfy

γ̇d,max < γ̇max , (24)

and

max
{
‖xTC(0)‖, γ̈d,max

}
< min

{ γ̇max − γ̇d,max

κ1 + κ2
,

γ̈max

3bκ1 + 3bκ2 + 1

}
, (25)

for given γ̇max, γ̈max > 0 and for some positive constants κ1 and κ2. Subsequently:

1. There exist time-coordination control gains a, b and k, such that the time-coordination error
vector is bounded by

||xTC(t)|| ≤κ1||xTC(0)||e−λTCt + κ2 sup
t≥0

(|γ̈d(t)|), (26)

with rate of convergence satisfying

λTC <
NL
N

1
4b

µ

T
(
1 + a

b NT
)2 .

2. The feasibility bounds that are introduced in Equations (5) and (6) are never violated.

Proof. The proof of Theorem 1 is given in Appendix A, while a derivation of the dynamics
is given in Appendix C.

Remark 4. For the sake of simplicity, in this paper we assume that the vehicles are able to perfectly
track their virtual targets, i.e., xTT,i(t) = 0 (see Equation (4)). However, if this is not true, it can
be demonstrated that similar coordination results can be achieved by adding an additional term in
Equation (22) in order to take the tracking error into account. We refer the reader to [24], where the
problem of coordination in the presence of tracking errors is addressed.
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Remark 5. We note that the rate of convergence is directly affected by the total number of vehicles,
the number of leaders, and by the quality of the communication network (i.e., the parameters µ and
T). Coordination is achieved with a slower rate of convergence in the case of switching topologies,
dropouts, and communication delays, as emphasized by Theorem 1.

6.2. Collision Avoidance

The second and final result of this paper is summarized in the following theorem.

Theorem 2. Let the desired pace of the mission γ̇d(t) be governed by Equation (22). Let the
dynamics of the obstacle satisfy the following

γ̇o,max ≤
γsafe

γsafe + ε

(
1 + γ̇max −

γsafe + ε

γsafe

)
,

γ̈var ≤ γ̈max,

where

κ1‖xTC(0)‖+ κ2 sup
t′∈[0,tα ]

(|γ̈d,max(t′)|) ≤ ε ≤ γsafeγ̇max,

0 ≤ ||xTC(0)|| ≤
γ̇max − κ2γ̈var

κ1
,

with γ̈var given in Equation (A19). Moreover, assume that the collision avoidance error at time
t = 0 satisfies γδ,i(0) > γsafe, with γsafe satisfying

γsafe
2 −

η̄γ̈d,max(1 + γ̇o,max)

γ̈max
γsafe −

η̄γ̈d,max(1 + γ̇o,max)ε

γ̈max
> 0. (27)

Then:

1. Collision avoidance is guaranteed for all t ≥ 0, i.e.

γδ,i(t) ≥ γsafe, t ∈ [0, ∞). (28)

2. The dynamic limits of γd(t), namely γ̇d,max and γ̈d,max, satisfy the bounds given by Equa-
tions (24) and (25).

Proof. Appendix B provides the proof of Theorem 2.

Remark 6. We notice that the second result above—Theorem 2—guarantees that the dynamics of
the desired mission pace never violate the assumptions of Theorem 1. In turn, Theorem 2 implies
that time coordination and collision avoidance are both guaranteed with the control laws given by
Equations (21)—coordination—and (22)—collision avoidance.

Remark 7. For the sake of brevity, Theorem 2 has only focused on the control law of
Section 5.2.1, i.e., case 1. However, identical results can be concluded for the control law of
Section 5.2.2, i.e., case 2.

7. Experimental Results
7.1. Time Coordination

The time-coordination algorithm is demonstrated with the use of two AR Drones
2.0 [34]. The drones need to follow a circular trajectory with a radius of 1.5 m, such that they
maintain a constant phase shift between each other and are able to guarantee inter-vehicle
safety. The total time of the mission is t f = 60 s and γ̇i,max = 0.25, γ̇d,max = 0.2, γ̈i,max = 0.1
and γ̈d,max = 0.1.
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The trajectories are generated with the use of the trajectory generation algorithm that
is described in Section 2.1, and they are formulated as follows:

x1(γ1(t)) = 1.5 cos (0.15γ1(t)),

y1(γ1(t)) = 1.5 sin (0.15γ1(t)) ,

x2(γ2(t)) = 1.5 cos (0.15γ2(t) + π),

y2(γ2(t)) = 1.5 sin (0.15γ2(t) + π).

(29)

The drones are enabled to follow their desired orbits by virtue of a simple PID-based
trajectory tracking algorithm (see [26]). Finally, the quadrotors are equipped with the
time-coordination algorithm that is proposed in this paper (see Equation (21)). The virtual
target tracking and time-coordination algorithms are implemented on MATLAB Simulink,
and run on a Lenovo ThinkPad P52 laptop with an Intel 8th generation i7 core. Real-time
position measurements are performed using Vicon Motion Capture, and communicated to
the controllers using the MATLAB ROS Toolbox. Finally, commands velocities in the x, y,
and z directions are sent to the drones through ROS.

For this mission scenario, the drones are required to maintain a phase shift of π
rad. Vehicle 1 is elected as leader while vehicle 2 is the follower. The drones initially
start moving according to a desired mission pace of γ̇d = 1, but, as can be seen from
Figure 2, the pace of the mission is decreased twice during the course of the mission. In
fact, at t ≈ 23 s, the pace is decreased to γ̇d(t) = 0.9, and at t ≈ 44s it is decreased again to
γ̇d(t) = 0.8. The value of γ̇d is only communicated to the leader, but the time-coordination
algorithm ensures that the pace of the follower also converges to the desired pace of the
mission. Furthermore, Figure 3 demonstrates the time-coordination, which shows the
convergence of the virtual times to the same values, i.e., γ1(t) = γ2(t). From the definition
of the desired drones’ trajectories described in (29), it follows that, if γ1(t) = γ2(t), then
the desired phase shift between the drones is maintained. This can also be noticed from
Figure 4. Here, the positions of the drones at three different time instances are shown. It can
be seen that the drones are able to maintain a phase coordination throughout the mission.

 

Figure 2. Evolution of the pace of the mission on the left, and coordination error between leader and
follower on the right.

 

Figure 3. Evolution of the virtual time on the left, and coordination error between leader and follower
on the right.
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Figure 4. Evolution of mission at three different time instants. The trajectory of the leader is shown
in blue while the trajectories of follower is shown in red.

7.2. Collision Avoidance

The efficacy of the collision-avoidance algorithm is demonstrated with experimental
results involving three Turtlebot3 Burger ground robots [35] and one AR Drone 2.0. The
mission requires the ground robots to cooperatively move along a circular trajectory with a
radius of 1.5 m, while the drone is hovering. The drone is elected as a (virtual) leader while
the robots are followers. Figure 5 shows the experimental setup for this mission, which is
identical to the one used for the previous experiment.

The agents’ trajectories are planned offline, such that a minimum safety distance
dsafe = 0.4 m is maintained at all time, and γsafe = −2 s, t f = 80s, γ̇i,max = 0.2, γ̇d,max = 0.2,
γ̈i,max = 0.1 and γ̈d,max = 0.1.

The evolution of the mission can be seen in Figure 6. In the considered scenario, a
dynamic obstacle is moving towards the vehicles. At t ≈ 15 s, the obstacle starts decreasing
its speed and now poses a threat to ground robot 1, which is shown by the blue circle in
Figure 6. However, all three ground robots are able to avoid the collision, as it can be seen
in the second panel of Figure 6, by virtue of the collision-avoidance algorithm. This can be
better seen in Figure 7. The figure on the left shows the distance between the ground robots
and the obstacle. It can be noticed that all the vehicles are able to successfully avoid the
obstacle. However, this is not true in the case in which the collision-avoidance algorithm
was not used, as shown by the light blue line. Furthermore, the right panel of Figure 7
shows the inter-vehicle distances between the ground robots. It can be noticed that, by
virtue of the time-coordination algorithm, the agents are able to maintain a safe distance
throughout the mission.

Figure 8 shows the evolution of γδ,i(t), which in this case is the difference in virtual
time between the leader and the obstacle, throughout the mission. At t ≈ 15 s, when the
obstacle starts to decrease its speed, γδ,1(t) begins to increase. However, with the use of the
collision-avoidance algorithm, γδ,1(t) converges to a value that is less than γsafe = −2 s,
guaranteeing that a minimum safe distance is kept and the collision can be avoided. The
value of γsafe is calculated based on the average nominal linear and angular velocities of a
Turtlebot3 Burger and it is selected to achieve dsafe = 0.4 m.

The top row of Figure 9 shows the evolution of the pace of the mission. Initially, the
desired pace is γ̇d = 1, which indicates an ideal evolution of the mission. However, when
the obstacle starts to endanger one of the vehicles, the pace of the mission is decreased to
γ̇d ≈ 0.9, according to the control law that is presented in this article. The bottom row of
Figure 9 presents the evolution of the virtual time. It can be seen that, even with the
collision-avoidance algorithm in use, the vehicles maintain time-coordination with γ1(t) =
γ2(t) = γ3(t) = γ4(t). We note that, at t = 65 s, the collision-avoidance algorithm is turned
off, and γδ,i(t) = −3 s and γ̇d = 1. However, this does not affect collision-avoidance, as
the obstacle has already left the impact area. Lastly, Figure 9 shows the evolution of the
coordination errors. It can be noticed that, despite changes in the desired pace throughout
the mission, the coordination errors are quickly driven to 0.

It is highlighted here that only the drone is able to detect changes in the speed profile
of the obstacle, but, by virtue of the combined action of the time-coordination and collision-
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avoidance algorithms, the ground robots are able to avoid the impact, even without
knowing the actual position and speed of the obstacle.

Figure 5. Experimental setup for the collision-avoidance experiment.

Figure 6. Evolution of mission at three different time instants. The trajectory of the leader is shown in
cyan while the trajectories of the three robots are shown in blue, green, and yellow, and the trajectory
of the obstacle is shown in red. The nominal positions of the vehicles are also shown in a lighter
shade of the color.

 

Figure 7. The figure on the left shows the distance between the ground robots and the obstacle
shown as solid blue, yellow, and green lines along with the minimum required safety distance shown
by the red dashed line. The light blue line shows the distance for robot 1 if the collision-avoidance
algorithm was not used. We note that the distance between the leader and the obstacle is omitted,
since a collision between the two is impossible. The figure on the right shows the inter-vehicle
distances between the followers, along with the minimum safe distance being shown by the dashed
red line.
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Figure 8. Evolution of γδ(t).  
Figure 9. Evolution of the pace of the mission (top row), and evolution of the virtual time (bottom
row) for case 2.

8. Conclusions

In this paper, we propose a collision-avoidance method that is based on a leader-
follower time-coordination algorithm. The time-coordination algorithm ensures that all of
the the vehicles are able to not only coordinate with each other, but follow a desired mission
pace, which is known to to be a subset of vehicles only. Furthermore, the collision-avoidance
algorithm relies on the knowledge of the nominal trajectory of obstacles and takes bounded
deviations in their speed profiles into account. Together, the time-coordination and collision
avoidance algorithms guarantee the safe execution of cooperative multi-vehicle missions in
the presence of moving obstacles. A rigorous mathematical analysis, as well as experimental
results, are provided to demonstrate the efficacy of the algorithm.
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Appendix A. Proof of Theorem 1

First, consider the following system:
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φ̇(t) = − a
b

L̄φ(t) , (A1)

where the matrix L̄ satisfies the (PE)-like condition. Equation (A1) can be shown to be
Globally Uniformly Exponentially Stable [36] (Lemma 5):

||φ(t)|| ≤ kλ||φ(0)||e−γλt ,

with kλ = 1 and γλ ≥ γ̄λ = a
b

Nµ

T(1+ a
b NT)2 . Using [37] (Theorem 4.14), we can imply that

there exists a continuously differentiable, symmetric, positive definite matrix P(t) that
satisfies the inequalities:

0 < c̄1 I ,
c̄3

2N
I ≤ P(t) ≤ c̄4

2γλ
I , c̄2 I,

Ṗ− a
b

L̄P− a
b

PL̄ ≤ −c̄3 I .
(A2)

The time-coordination states can be redefined as:

x̄TC = [χ>, z>, ζ>]> , (A3)

where

χ = bξ + Qz,

z = γ̇− γ̇d1N ,

ζ = χI − γ̇d1N−NL −
k
a

C>Q>χ, (A4)

with dynamics given by:

χ̇ = − a
b L̄χ + bk

a QCC>Q>χ + a
b L̄Qz + bQCζ,

ż = −(bI − a
b L)z− a

b LQ>χ + bk
a CC>Q>χ

+bCζ − γ̈d1N ,

ζ̇ = − kb
a C>Q>QCζ − bk2

a2 C>Q>QCC>Q>χ

−γ̈d1N−NL .

(A5)

Consider the following Lyapunov candidate function:

V = χ>Pχ +
β

2
z>z +

a2

k2 ζ>
(

C>Q>CQ
)−1

ζ = x̄>TCWx̄TC , (A6)

where β > 0, P was introduced above, λmin
(
C>Q>CQ

)
= NL

N and

W =

P 0 0
0 β

2 I 0
0 0 a2

k2

(
C>Q>CQ

)−1

 .

Using (A5), the time derivative of (A6) can be computed to yield:
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V̇ = χ>P
(
− a

b
L̄χ +

bk
a

QCC>Q>χ +
a
b

L̄Qz + bQCζ

)
+
(
− a

b
χ> L̄ +

bk
a

χ>QCC>Q> +
a
b

z> L̄Q>

+ bζ>C>Q>
)

Pχ + χ> Ṗχ + βz>
(
−
(

bI − a
b

L
)

z

− a
b

LQ>χ +
bk
a

CC>Q>χ + bCζ − γ̈d1N

)
+

a2

k2

(
− kb

a
ζ>C>Q>QC− bk2

a2 χ>QCC>Q>QC

− 1N−NL
>γ̈d

)
(C>Q>QC)−1ζ

+
a2

k2 ζ>(C>Q>QC)−1
(
− kb

a
C>Q>QCζ

− bk2

a2 C>Q>QCC>Q>χ− γ̈d1N−NL

)
.

Finally, using the fact that ||L|| ≤ N, the above inequality implies

V̇ ≤χ>
(

Ṗ− a
b

PL̄− a
b

L̄P + 2
kb
a

QCC>Q>P
)

χ

− βz>
(

bI − a
b

L
)

z− a2

k2 ζ>
(

2
kb
a

)
ζ

+

(
2

a
b

N||P||+ β
kb
a
+ β

a
b

N
)
||χ||||z||

+
(

2b||P||+ 2b
)
||χ||||z||+ βb||z||||ζ||

+
(

β
√

N + 2
a2

k2

√
N − NL

NL
N

)
||x̄TC|||γ̈d(t)|.

Using (A2), and after straightforward computations, we obtain:

V̇ ≤−
(

c̄3 − 2
bk
a

c̄2

)
||χ||2 − β

(
b− a

b
N
)
||z||2

− 2
ba
k
||ζ||2 +

(
2

a
b

Nc̄2 + β
kb
a
+ β

a
b

N
)
||χ||||z||

+ (2bc̄2 + 2b)||χ||||ζ||+ βb||z||||ζ||+ η||x̄TC|||γ̈d(t)|,

where η = β
√

N + 2 a2

k2

√
N − NL

NL
N . Finally, using c̄2 = c̄4

2γ̄λ
, letting c̄4 = c̄3, we get

V̇ ≤−
(

c̄3 − 2
bk
a

c̄3

γλ

)
||χ||2 − β

(
b− a

b
N
)
||z||2

− 2
kb
a
||ζ||2 +

(
aNc̄3

bγλ
+ β

kb
a
+ β

a
b

N
)
||χ||||z||

+

(
bc̄3

γλ
+ 2b

)
||χ||||ζ||+ βb||z||||ζ||+ η||x̄TC|||γ̈d(t)|,

if
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M−2λTCW ≥
c̄3 − bk

a
c̄3
γ̄λ
− c̄3

γ̄λ
λTC −

(
a
b

Nc̄3
γ̄λ

+ β kb
a + β a

b N
)

−
(

bc̄3
γ̄λ

+ 2b
)

−
(

a
b

Nc̄3
γ̄λ

+ β kb
a + β a

b N
)

β
(
b− a

b N
)
− βλTC −βb

−
(

bc̄3
γ̄λ

+ 2b
)

−βb 2 ba
k − 2 a2

k2
N
NL

λTC

 ≥ 0.
(A7)

Then, the time derivative of the Lyapunov function is bounded as follows:

V̇ ≤− 2λTCV +

(
β
√

N + 2
a2

k2

√
NL

NL
N

)
||x̄TC|||γ̈d(t)|. (A8)

It can be demonstrated that by setting a = b
N , k = 1

4
γ̄λ
bN , λTC = δγ̄λ, β = 2c̄3

γ̄λ
, c̄3 = k

a

and δ < NL
N

1
4b , inequality (A7) holds for sufficiently large values of b. Therefore, one can

conclude that the system (A5) is input to state stable, and the following bound holds:

||x̄TC(t)|| ≤

√√√√√max
(

c̄2, β1
2 , a2

k2
N
NL

)
min

(
c̄1, β1

2 , a2

k2

) ||x̄TC(0)||e−λTCt

+

√√√√√max
(

c̄2, β1
2 , a2

k2
N
NL

)
min

(
c̄1, β1

2 , a2

k2

) η

2γ̄λ min
(

c̄1, β1
2 , a2

k2

) sup
t≥0
|γ̈d(t)| .

(A9)

Finally, from the definition

x̄TC , SxTC , S =

 bIN−1 Q 0
0 IN 0

− k
a C>Q> 0 IN−NL

 ,

we can conclude that

||xTC(t)|| ≤κ1||xTC(0)||e−λTCt + κ2 sup
t≥0

(|γ̈d(t)|) , (A10)

with

κ1 = ||S−1||

√√√√√max
(

c̄2, β1
2 , a2

k2
N
NL

)
min

(
c̄1, β1

2 , a2

k2

) ||S||, (A11)

and

κ2 = ||S−1||

√√√√√max
(

c̄2, β1
2 , a2

k2
N
NL

)
min

(
c̄1, β1

2 , a2

k2

) β
√

N + 2 a2

k2

√
N − NL

NL
N

2γ̄λ min
(

c̄1, β1
2 , a2

k2

) . (A12)

In conclusion, we need to demonstrate that γ̇i and γ̈i ∀i ∈ {1 . . . , N}, satisfy the
inequalities shown in (5) and (6). From Equation (A10) it follows that
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|γ̇i(t)− 1| ≤ |γ̇d(t)− 1|+ κ1||xTC(0)||e−λTCt + κ2 sup
t≥0

(|γ̈d(t)|).

Using (19) and (20), we can write the equation above as

|γ̇i(t)− 1| ≤ γ̇d,max + (κ1 + κ2)max{‖xTC(0)‖, γ̈d,max}. (A13)

Finally, the assumptions given by Equations (24) and (25) allow us to conclude that
inequality (5) holds. Now we consider bounds on γ̈i(t). From Equation (A23) we get

|γ̈i| ≤ b||z||+ b||ζ||++aN max
j∈Ni
|γi(t)− γj(t)|.

Recalling that b = aN, it follows that

|γ̈i(t)| ≤ 3b‖xTC(t)‖.

Using (A10), it can be seen that γ̈i(t) remains bounded as follows

|γ̈i(t)| ≤(3bκ1 + 3bκ2 + 1)max
{
‖xTC(0)‖, γ̈d,max

}
. (A14)

The above inequality, together with Equations (24) and (25), imply that inequality (6)
holds, which completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

First, we demonstrate the feasibility of the collision-avoidance algorithm showing that
inequalities (24) and (25) hold. Using (22) and (24), we obtain

γ̇d ≤
γsafe + ε

γsafe
(1 + γ̇o,max).

Choosing a value of γ̇o,max that satisfy the following

γ̇o,max ≤
γsafe

γsafe + ε

(
1 + γ̇max −

γsafe + ε

γsafe

)
, (A15)

with ε < γsafeγ̇max, we can demonstrate that inequality (24) is not violated for every given
value of γ̇d.

Furthermore, using a similar method, we consider the bound for γ̈d,max

γ̈d ≤ η̄

(
γsafe + ε

γ2
safe

(κ1||xTC(0)||+ κ2γ̈d,max +

∣∣∣∣γsafe + ε

γsafe
− 1
∣∣∣∣γ̇o,max

))
(1 + γ̇o,max)

+
γsafe + ε

γsafe
γ̈o,max,

(A16)

where

η̄ = max

{
1, max

ω′∈[1−η,1]

∣∣∣∣ρ(ω′)− dρ(ω′)

dω′
+ ω′

dρ(ω′)

dω′

∣∣∣∣
}

. (A17)

Choosing a value of γsafe that satisfies the following
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γsafe
2 −

η̄γ̈d,max(1 + γ̇o,max)

γ̈max
γsafe −

η̄γ̈d,max(1 + γ̇o,max)ε

γ̈max
> 0, (A18)

it can be shown that γ̈d remains bounded as follows

γ̈d ≤ η̄
(γsafe + ε

γ2
safe

(κ1||xTC(0)||+ κ2γ̈d,max|
γsafe + ε

γsafe
− 1|γ̇o,max)

)
(1 + γ̇o,max)

+
γsafe + ε

γsafe
γ̈o,max := γ̈var < γ̈max,

(A19)

and thus inequality (25) is not violated.
Finally, to demonstrate collision avoidance, we show that Equation (28) is satisfied for

all t ≥ 0. Recall that by assumption γδ,i(t) ≥ γsafe for some interval t ∈ [0, tα] (case 1). We
perform a proof by contradiction, therefore we now assume that

γδ,i(tα) = γsafe, γ̇δ,i(tα) < 0. (A20)

In what follows we demonstrate (A20) to be false. First, we bound γ̇δ,i from below
as follows:

γ̇δ,i(t) = γ̇i(t)− γ̇o(t) = γ̇d(t)− γ̇o(t) + γ̇i(t)− γ̇d(t)

≥ γ̇d(t)− γ̇o(t)− |γ̇i(t)− γ̇d(t)|.

From Equation (A10), it follows that at t = tα. We have

γ̇δi (t
α) ≥ γ̇d(tα)− γ̇o(tα)− κ1‖xTC(0)‖ − κ2 sup

t′∈[0,tα ]

(|γ̈d,max(t′)|).

Using the definition of γ̇d(t), we have

γ̇δi (t
α) ≥ γsafe + ε

γδ,i(tα)
γ̇o(tα)− γ̇o(tα)− κ1‖xTC(0)‖ − κ2 sup

t′∈[0,tα ]

(|γ̈d,max|).

Since γδ,i(t) ≥ γsafe for t ∈ [0, tα], γδ,i(tα) = γsafe and γ̇o(t′) ≤ γ̇o,max + 1, it follows
that

γ̇δi (t
α) ≥ γsafe + ε

γsafe
(γ̇o,max + 1)− (γ̇o,max + 1)− κ1‖xTC(0)‖ − κ2 sup

t′∈[0,tα ]

(|γ̈d,max|).

By defining

εmin = γsafe(κ1‖xTC(0)‖+ κ2 sup
t′∈[0,tα ]

(|γ̈d,max|)), (A21)

with

0 < ||xTC(0)|| <
γ̇max − κ2γ̈var

κ1
, (A22)

it follows that if ε ≥ εmin, as it is assumed in the theorem, then

γ̇δi (t
α) ≥ 0,
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which contradicts (A20), completing the proof.

Appendix C. Proof of Equation (A5)

Consider the following time coordination control law:

γ̈ = −aLγ− b
[

D>γ̇− γ̇d1NL

C>γ̇− χI

]
= − a

b
LQ>χ +

a
b

LQ>Qz− bz + bCζ +
kb
a

CC>Q>χ, (A23)

where

χ̇I = −kC>Lγ. (A24)

Consider the following time coordination error vector:

χ = bξ + Qz ,

and notice that

ξ =
1
b

χ− 1
b

Qz. (A25)

Using (A4), the time derivative of χ can be written as

χ̇ = bQγ̇ + Q(γ̈− γ̈d1N).

Recalling the properties of matrix Q, the equation above can be simplified to

χ̇ = bQγ̇ + Qγ̈.

Using (A23), it follows that:

χ̇ = − a
b

L̄χ +
bk
a

QCC>Q>χ +
a
b

L̄Qz + bQCζ.

Then, using a similar approach as the one followed above, we derive the dynamics of
z and ζ. Using (A4), we obtain

ż =− (bI − a
b

L)z− a
b

LQ>χ +
bk
a

CC>Q>χ + bCζ − γ̈d1N .

Using (A4), (A24) and (A25), we obtain

ζ̇ =− kC>LQ>
(

1
b

χ− 1
b

Qz
)
− γ̈d1N−NL −

k
a

C>Q>χ̇.

After straightforward computations, the dynamics of ζ can be written as

ζ̇ = − kb
a

C>Q>QCζ − bk2

a2 C>Q>QCC>Q>χ− γ̈d1N−NL .

Thus, the dynamics presented in (A5) are derived.
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