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Abstract: Simultaneous localization and mapping (SLAM) techniques are widely researched, since
they allow the simultaneous creation of a map and the sensors’ pose estimation in an unknown
environment. Visual-based SLAM techniques play a significant role in this field, as they are based on
a low-cost and small sensor system, which guarantees those advantages compared to other sensor-
based SLAM techniques. The literature presents different approaches and methods to implement
visual-based SLAM systems. Among this variety of publications, a beginner in this domain may find
problems with identifying and analyzing the main algorithms and selecting the most appropriate
one according to his or her project constraints. Therefore, we present the three main visual-based
SLAM approaches (visual-only, visual-inertial, and RGB-D SLAM), providing a review of the main
algorithms of each approach through diagrams and flowcharts, and highlighting the main advantages
and disadvantages of each technique. Furthermore, we propose six criteria that ease the SLAM
algorithm’s analysis and consider both the software and hardware levels. In addition, we present
some major issues and future directions on visual-SLAM field, and provide a general overview of
some of the existing benchmark datasets. This work aims to be the first step for those initiating a
SLAM project to have a good perspective of SLAM techniques’ main elements and characteristics.

Keywords: embedded SLAM; evaluation criteria; RGB-D SLAM; visual-inertial SLAM; visual-SLAM;
3D reconstruction

1. Introduction

Simultaneous localization and mapping (SLAM) technology, first proposed by Smith
in 1986 [1], is used in an extensive range of applications, especially in the domain of
augmented reality (AR) [2–4] and robotics [5–7]. The SLAM process aims at mapping an
unknown environment and simultaneously locating a sensor system in this environment
through the signals provided by the sensor(s). In robotics, the construction of a map is a
crucial task, since it allows the visualization of landmarks, facilitating the environment’s
visualization. In addition, it can help in the state estimation of the robot, relocating it,
and decreasing estimation errors when re-visiting registered areas [8].

The map construction comes with two other tasks: localization and path planning.
According to Stachniss [9], the mapping problem may be described by examining three
questions considering the robot’s perspective: What does the world look like? Where am I?
and How can I reach a given location? The first question is clarified by the mapping task,
which searches to construct a map, i.e., a model of the environment. To do so, it requires
the location of the observed landmarks, i.e., the answer for the second question, provided
by the localization task. The localization task searches to determine the robot’s pose, i.e., its
orientation and position and, consequently, locates the robot on the map. Depending on
the first two tasks, the path planning clears up the last question, and seeks to estimate a
trajectory for the robot to achieve a given location. It relies on the current robot’s pose,
provided by the localization task, and on the environment’s characteristics, provided by the
mapping task. SLAM is a solution that integrates both the mapping and localization tasks.
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Visual-based SLAM algorithms can be considered especially attractive, due to their
sensor configuration simplicity, miniaturized size, and low cost. Therefore, numerous
visual-based techniques are proposed in the literature, which make the choice of the most
suitable one according to one’s project constraints difficult. The visual-based approaches
can be divided into three main categories: visual-only SLAM, visual-inertial (VI) SLAM,
and RGB-D SLAM. The first one refers to the SLAM techniques based only on 2D images
provided by a monocular or stereo camera. They present a higher technical difficulty due to
their limited visual input [10]. The robustness in the sensor’s tracking of the visual-SLAM
algorithms may be increased by adding an inertial measurement unit (IMU), which can
be found in their miniaturized size and low cost, while achieving high accuracy, essential
aspects to many applications that require lightweight design, such as autonomous race
cars [11]. In addition, visual-based SLAM systems may employ a depth sensor and process
the depth information by applying a RGB-D-based approach.

To obtain a general overview and an introduction to the SLAM problem, the work by
Durrant-White and Bailey [12,13] proposes a SLAM tutorial presenting from the problem
description to the environment representations. In addition, Cadena et al. [8] analyzes
the main open problems and future perspectives of the SLAM. Considering the reviews
and surveys of visual-based techniques, Yousif et al. [14] and Fuentes-Pacheco et al. [15]
present an overview of the main concepts used in the visual-only SLAM techniques and
the fundamental algorithms. Yousif et al. [14] also briefly describes the RGB-D-based
SLAM problem. Taketomi et al. [10] and Covolan et al. [3] present an overview of the
main concepts used in the visual-based SLAM approaches, focusing on visual-only and
RGB-D-based approaches and describing the main algorithms. The recent publication by
Servieres et al. [16] proposes a classification of the main visual-based SLAM algorithms
and performs a historical research.

Gui et al. [17] and Chen et al. [18] present the main concepts and algorithms of visual-
inertial SLAM and visual-inertial odometry approaches, considering the filtering-based and
optimization-based perspectives. In [17], the techniques up to 2015 are presented, while
in [18], the algorithms up to 2018 are also included. An overview of the main concepts and
techniques in visual-inertial navigation can also be found in [19]. Concerning the RGB-D
approaches, Chen et al. [20] presents a global perspective from the main concepts used in
RGB-D modeling. A recent survey by Zhang et al. [21] presents an overview of the main
concepts and describes the principal RGB-D-based SLAM algorithms. As one can see, there
are several reviews and surveys in the literature about visual-based SLAM techniques;
still, most of them are limited to just one or two of the three main approaches and do not
address the algorithms in detail. So, a review that addresses the three approaches and
the fundamental algorithms is necessary to help researchers and students to initiate their
works on visual-SLAM techniques to obtain an overview of this large domain.

Thus, this paper provides a review of the most representative visual-based SLAM
techniques and an overview of each method’s main advantages and disadvantages. This
article presents three main contributions: 1—An explanation of the most representative
visual-based SLAM algorithms through the construction of diagrams and flowcharts. This
approach will be helpful to the reader, as it provides an overview of the SLAM techniques
when initiating a project and allows the reader to have a first contact with the visual-based
SLAM algorithms. 2—As far as we know, this is the first review article that presents the
three main visual-based approaches, performing an individual analysis of each method
and a general analysis of the approaches. 3—Focusing on the readers initiating their
studies on the SLAM algorithms, we propose six main criteria to be observed in the
different techniques and implementations to be considered according to one’s application.
The requirements consider, from a software level, SLAM techniques, such as loop closure,
to a hardware-level approach, such as SLAM on SoC implementations.

This paper is organized as follows. Section 2 presents the main essential concepts
of the three selected approaches. Section 3 presents the six criteria that we established to
evaluate the SLAM algorithms and the most representative SLAM techniques according
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to the presented approaches. Section 4 presents some of the recent major issues faced by
the visual-SLAM community and points out future directions to deal with these problems.
Section 5 provides a general overview of some of the most significant publicly available
benchmark datasets. Finally, our conclusions are presented in Section 6.

2. Visual-Based SLAM Concepts

This section presents concepts related to visual-based SLAM and odometry algo-
rithms, and the main characteristics of the visual-based approaches covered in this paper.
The visual-based SLAM techniques use one or more cameras in the sensor system, receiving
2D images as the source of information. In general, the visual-based SLAM algorithms are
divided into three main threads: initialization, tracking, and mapping [10]. Figure 1 shows
a general view of the three main parts generally present in visual-based SLAM approaches.

Initialization

Tracking + MappingInput Data

 Determination of the
global coordinate 

system

Dense reconstruction

Sparse reconstruction

Semi-dense reconstruction

2D image

2D image + IMU data

2D image + depth data

+

+

Roll

Pitch

Yaw

Figure 1. General components of a visual-based SLAM. The depth and inertial data may be added to
the 2D visual input to generate a sparse map (generated with the ORB-SLAM3 algorithm [22] in the
MH_01 sequence [23]), semi-dense map (obtained with the LSD-SLAM [24] in the dataset provided
by the authors), and a dense reconstruction (Reprinted from [25]).

As one can see in the Figure, in visual-SLAM systems, the input can be a 2D image, both
a 2D image and IMU data, or a 2D image and depth data, depending on the used approach,
i.e., visual-only (Section 2.1), visual-inertial (Section 2.2), or RGB-D-based (Section 2.3),
respectively. The initialization determines the global coordinates and builds an initial
map, used to perform the two main steps: tracking and mapping. The tracking process is
responsible for the continuous estimation of the sensor’s pose. In general, the algorithm
establishes 2D–3D correspondences between the current frame and map, constituting a
problem called perspective-n-points. There are several ways to solve this problem, EPnP
being one of the most representative solutions [26]. The mapping process is in charge of
computing and expanding the 3D structure as the camera moves. The depth data computa-
tion differs according to the employed algorithm (Section 3 addresses individually each
algorithm providing detailed explanations). Finally, the mapping processes shall result in a
sparse, semi-dense, or dense 3D reconstruction, according to the implemented technique.

Although we mainly refer to the concepts as belonging to the SLAM methodology,
we consider, in this paper, both visual-SLAM and visual-odometry (VO) techniques, since
they are closely related. The VO algorithms also seek to estimate a robot’s position through
cameras as a source of information. The main difference between visual-SLAM and VO
lies in considering, or not, the global consistency of the estimated trajectory and map [14].



Robotics 2022, 11, 24 4 of 27

While VO performs only local optimizations, visual-SLAM algorithms also employ loop
closure detection (see Section 3), being capable of correcting drifts accumulated at the end
of the robot’s trajectory.

2.1. Visual-Only SLAM

The visual-only SLAM systems are based on 2D image processing. After the images’
acquisition from more than one point of view, the system performs the initialization process
to define a global coordinate system and reconstruct an initial map. In the feature-based
algorithms relying on filters (filtering-based algorithms), the first step consists of initializing
the map points with high uncertainty, which may converge later to their actual positions.
This procedure is followed by tracking, which attempts to estimate the camera pose.
Simultaneously, the mapping process includes new points in the 3D reconstruction as more
unknown scenes are observed.

The visual-only SLAM system may use a monocular or stereo camera. The monocular
camera-based SLAM is a well-explored domain given the small size of the sensor (the
smallest of all the presented approaches), its low price, easy calibration, and reduced power
consumption [27]. Despite these advantages, the monocular-based systems offer a higher
complexity in system’s initialization, since at least two different views are necessary to
determine an initial depth, and pose estimation and problems concerning drift and scale
estimation. This last problem may be compensated by stereo cameras, which present the
main advantage to feature the stereo view in only one frame. However, the sensor’s size is
more significant than a simple monocular camera. In addition, it requires more processing
for each frame, mainly due to the need for an image rectification process in the stereo
matching stage.

The visual-only SLAM category can be divided into two main methods: feature-based
and direct.

2.1.1. Feature-Based Methods

SLAM algorithms based on features consider a certain number of points of interest,
called keypoints. They can be detected in several images and matched by comparing their
descriptors; this process provides the camera pose estimation information. The descriptor
data and keypoint location compose the feature, i.e., the data used by the algorithm to
process the tracking and mapping. As the feature-based methods do not use all the frame
information, they are suitable to figure in embedded implementations. However, the feature
extraction may fail in a textureless environment [28], as well as it generates a sparse map,
providing less information than a dense one.

2.1.2. Direct Methods

In contrast with the feature-based methods, the direct methods use the sensor data
without pre-processing, considering pixels’ intensities, and minimizing the photometric er-
ror. There are many different algorithms based on this methodology, and depending on the
chosen technique, the reconstruction may be dense, semi-dense, or sparse. The reconstruc-
tion density is a substantial constraint to the algorithm’s real-time operation, since the joint
optimization of both structure and camera positions is more computationally expensive for
dense and semi-dense reconstructions than for a sparse one [29]. Figure 2 shows the main
difference between feature-based (indirect) and direct methods according to their front-end
and back-end, that is, the part of the algorithm responsible for sensor’s data abstraction
and the part responsible for the interpretation of the abstracted data, respectively.
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Input image Feature Processing Tracking and Sparse mapping

Front-end Back-end

Tracking and Sparse mapping

Front-end Back-end

Input image

Tracking and dense mapping

Back-end

Figure 2. General differences between feature-based and direct methods. Top: main steps followed by
the feature-based methods, resulting in a sparse reconstruction (map generated with the ORB-SLAM3
algorithm [22] in the MH_01/EuRoC sequence [23]). Bottom: main steps followed by a direct method,
that may result in a sparse (generated from the reconstruction of sequence_02/TUM MonoVO [30]
with the DSO algorithm [31]) or dense reconstruction (Reprinted from [25]), according to the chosen
technique.

2.2. Visual-Inertial SLAM

The VI-SLAM approach incorporates inertial measurements to estimate the structure
and the sensor pose. The inertial data are provided by the use of an inertial measurement
unit (IMU), which consists of a combination of gyroscope, accelerometer, and, additionally,
magnetometer devices. This way, the IMU is capable of providing information relative to
the angular rate (gyroscope) and acceleration (accelerometer) along the x-, y-, and z-axes,
and, additionally, the magnetic field around the device (magnometer). While adding an
IMU may increase the information richness of the environment and provide higher accuracy,
it also increases the algorithm’s complexity, especially during the initialization step, since,
besides the initial estimation of the camera pose, the algorithm also has to estimate the
IMU poses. VI-SLAM algorithms can be divided according to the type of fusion between
the camera and IMU data, which can be loosely or tightly coupled. The loosely coupled
methods do not merge the IMU states to estimate the full pose: instead, the IMU data are
used to estimate the orientation and changes in the sensor’s position [18]. On the other
side, the tightly coupled methods are based on the fusion of camera and IMU data into a
motion equation, resulting in a state estimation that considers both data.

In addition, VI-SLAM algorithms present different implementations according to their
back-end approach, which can be filtering-based or optimization-based. The front-end of
filtering-based approaches for VI-SLAM relies on feature extraction, while optimization-
based methods (also known as keyframe-based approaches) rely on global optimizations,
which increase the system’s accuracy, as well as the algorithm’s computational cost.
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2.3. RGB-D SLAM

SLAM systems based on RGB-D data started to attract more attention with the advent
of Microsoft’s Kinect in 2010. RGB-D sensors consist of a monocular RGB camera and a
depth sensor, allowing SLAM systems to directly acquire the depth information with a
feasible accuracy accomplished in real-time by low-cost hardware. As the RGB-D devices
directly provide the depth map to the SLAM systems, the general framework of SLAM
based on this approach differs from the other ones already presented.

Most of the RGB-D-based systems make use of the iterative closest point (ICP) al-
gorithm to locate the sensor, fusing the depth maps to obtain the reconstruction of the
whole structure. RGB-D systems present advantages such as providing color image data
and dense depth map without any pre-processing step, hence decreasing the complexity
of the SLAM initialization [10]. Despite this, this approach is most suitable to indoor
environments, and requires large memory and power consumption [32].

3. Visual-SLAM Algorithms

Each considered approach presented in Section 2 includes several algorithms, making
it difficult to select the most suitable SLAM or odometry algorithm according to one’s project
constraints. Therefore, we present the most representative algorithms of each approach,
selected based on literature feedback, to accomplish a brief review of each one, and a
systematic analysis based on six selected criteria that, in general, are presented as limiting
factors of SLAM projects. Besides the proposed criteria, it is also necessary to characterize
the scene and application, since some scenarios may present specific attributes that may
imply specific evaluation criteria, such as the analysis presented in [33]. The authors
consider the autonomous driving application characteristics, which implies a set of specific
criteria, such as the required accuracy, scalability, dynamicity, etc. Thus, considering the
general approach of the SLAM systems, we established six criteria that influence system
dimensioning, accuracy, and hardware implementation. They are: algorithm type, map
density, global optimization, loop closure, availability, and embedded implementations:

• Algorithm type: this criterion indicates the methodology adopted by the algorithm.
For the visual-only algorithms, we divide them into feature-based, hybrid, and direct
methods. Considering the visual-inertial algorithms, they must be filtering-based or
optimization-based methods. Lastly, the RGB-D approach can be divided concerning
their tracking method, which can be direct, hybrid, or feature-based.

• Map density: in general, dense reconstruction requires more computational resources
than a sparse one, having an impact on memory usage and computational cost. On the
other hand, it provides a more detailed and accurate reconstruction, which may be a
key factor in a SLAM project.

• Global optimization: SLAM algorithms may include global map optimization, which
refers to the technique that searches to compensate the accumulative error introduced
by the camera movement, considering the consistency of the entire structure.

• Loop closure: the loop closing detection refers to the capability of the SLAM algorithm
to identify the images that were previously detected by the algorithm to estimate and
correct the drift accumulated during the sensor movement.

• Availability: several SLAM algorithms are open source and made available by the
authors or have their implementations made available by third parties, facilitating
their usage and reproduction.

• Embedded implementations: the embedded SLAM implementation is an emerging
field used in several applications, especially in robotics and automobile domains. This
criterion depends on each algorithm’s hardware constraints and specificity, since there
must be a trade-off between algorithm architecture in terms of energy consumption,
memory, and processing usage. We assembled the main publications we found
presenting fully embedded SLAM systems in platforms such as microcontrollers and
FPGA boards.
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In the following, we present the selected SLAM algorithms considered the most repre-
sentative of each of the three presented approaches according to their publication years.

3.1. Visual-Only SLAM

The selected visual-only SLAM algorithms are presented in Figure 3 and explained in
the following subsections.

MonoSLAM

2007

PTAM
2007

DTAM

2011

SVO
2014

LSD-SLAM

2014

ORB-SLAM2

2017

CNN-VSLAM
2017

DSO

2018

Figure 3. Timeline representing the most representative visual-only SLAM algorithms.

3.1.1. MonoSLAM (2007)

The first monocular SLAM algorithm is MonoSLAM, which was proposed by David-
son et al. [27] in 2007. The first step of the algorithm consists of the system’s initialization.
Then, it updates the state vector considering a constant velocity motion model, where the
camera motion and environment structure are estimated in real-time using an extended
Kalman filter (EKF). The algorithm is represented by Figure 4. MonoSLAM operates in
real-time and was made available by the authors. Moreover, since MonoSLAM is based
on EKF, an already well-covered topic, several embedded implementations based on this
algorithm are found in the literature. In [34,35], Vincke et al. based their implementation on
the MonoSLAM algorithm, combining multiple sensors and a multi-processor architecture
to evaluate its implementation. In [34], the authors used an ARM + DSP + GPU architec-
ture (OMAP3530 architecture) to implement the localization, reconstruction, and feature
detection. They combine this architecture with a co-processor ATMega168 used for data
pre-processing and robot controlling. In [35], they based the architecture on a combination
of multi-CPUs + GPUs provided by the use of an OMAP4430 architecture. The authors
implemented the different tasks of the algorithms into both single-core and dual-core ARM
architecture, and compared their performances. In addition, they parallelized the matching
and initialization tasks using the ARM and NEON processors provided by the OMAP4430.

MonoSLAM requires a known target for the initialization step, which is not always
accessible. In addition, the algorithm’s complexity increases proportionally with the size
of the environment. This algorithm neither employs global optimization techniques nor
loop closure detection. At last, it only reconstructs a map of landmarks, which may be a
drawback regarding the applications that require a more accurate reconstruction.

Initialization
Prediction

Cinematic model
EKF

Tracking
Shi&Tomasi

Depth Estimation
Partticle Filter

Correlation

Correction
EKF

Noise addition

Figure 4. Diagram representing the MonoSLAM algorithm.

3.1.2. Parallel Tracking and Mapping (2007)

Another pioneer algorithm is the Parallel Tracking and Mapping (PTAM) [36] algo-
rithm. PTAM was the first algorithm to separate Tracking and Mapping into two different
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threads and to apply the concept of keyframes to the mapping thread. First, the mapping
thread performs the map initialization. New keyframes are added to the system as the
camera moves and the initial map is expanded. Triangulation between two consecutive
keyframes calculates the new point’s depth information. The tracking thread computes
the camera poses, and for each new frame, it estimates an initial pose for performing the
projection of the map points on the image. PTAM uses the correspondences to compute the
camera pose by minimizing the reprojection error. Figure 5 represents the steps performed
by the PTAM algorithm.

New Frame
Prior pose 
estimation

Coarsest-
scale feature 

searching

Camera 
pose 

updating

Final pose 
estimation

Map Points 
Projection

Fine-scale 
feature 

searching

New 
KeyFrame?

Update 
KeyFrame 

Data 
Association

Integrate 
KeyFrame 

Add new 
features

Locally 
Converged?

Globally 
Converged?

Local 
Bundle 

Adjustment

Global 
Bundle 

Adjustment
Repeat 
Cycle

Update Data 
Association

Tracking Thread

M
a
p
p
i
n
g
 

T
h
r
e
a
d

Yes

NoYes

NoNo

Yes

Figure 5. Diagram representing the PTAM algorithm.

PTAM allows the map representation by a large number of features and performs
global optimization. Despite these advantages, the PTAM algorithm presents a high com-
plexity due to the bundle adjustment step. In addition, it does not count with loop closure,
and the generated map is more suitable to identify landmarks. Furthermore, it requires the
user’s interaction to establish the initial keyframes, and it presents a non-negligible power
consumption, which makes it unsuitable for low-cost embedded systems [37].

3.1.3. Dense Tracking and Mapping (2011)

Dense tracking and mapping (DTAM), proposed by Newcombe et al. [38], was the
first fully direct method in the literature. The algorithm is divided into two main parts:
dense Mapping and dense tracking. The first stage searches to estimate the depth values by
defining data cost volume representing the average photometric error of multiple frames
computed for the inverse depth of the current frame. The inverse depth that minimizes
the photometric error is selected to integrate the reconstruction. In the dense tracking
stage, DTAM estimates the motion parameters by aligning an image from the dense model
projected in a virtual camera and the current frame. Figure 6 shows a general view of the
DTAM algorithm. The algorithm provides an accurate and detailed reconstruction, but this
level of density reconstruction impacts the computational cost to store and process the data.
As a consequence, to achieve real-time operation, the algorithm requires state-of-the-art
GPUs [10]. The authors in [39] employed a CPU + GPU architecture of different iPhone
models to implement a fully dense algorithm based on DTAM. They used the CPU for
the tracking task and the GPU for depth estimation and frame fusion. DTAM does not
implement loop closure techniques or global optimization.

New Frame
PTAM’s Tracking

Dense Tracking

Depth Map 
Estimation

Cost Volume

3D surface

Figure 6. Diagram representing the DTAM algorithm.
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3.1.4. Semi-Direct Visual Odometry (2014)

The semi-direct visual odometry (SVO) algorithm [40] combines the advantages of
both feature-based and direct methods. The algorithm is divided into two main threads:
motion estimation and mapping. The first thread searches to estimate the sensor’s motion
parameters, which consists of minimizing the photometric error. The mapping thread is
based on probabilistic depth filters, and it searches to estimate the optimum depth value for
each 2D feature. When the algorithm achieves a low uncertainty, it inserts the 3D point in
the reconstruction, as shown in Figure 7. SVO enables direct pixel correspondences and the
usage of a probabilistic mapping method. In addition, the algorithm is capable of operating
with a high frame rate, since it does not need to extract features for every frame [41], which
enables its operation in a low-cost embedded system, as with the embedded platform
considered by [40] that consists in an Odroid-U2. Nonetheless, SVO presents a limited
accuracy due to the short-term data association [22]. SVO does not implement global
optimization techniques or loop closure. The authors already proposed an extended
version of the SVO, SVO 2.0 [42], in which the algorithm is capable of processing stereo
data and IMU information.

Last Frame Image 
alignement Pose and 

Structure 
Refinement

Feature 
Alignment

 KeyFrame?

Motion Estimation Thread

New Frame

Frame Queue

Update 
Depth-filters No

Converged?

Yes: 
Insert 
Point

Feature 
Extraction YesInitialize 

Depth Filters

Map

Mapping Thread

Minimization of 
Photometric Error

Coordinates
 correspondences

FAST corner
Extraction

Bayesian 
framework

Figure 7. Diagram representing the SVO algorithm. Adapted from [40].

3.1.5. Large-Scale Direct Monocular SLAM (2014)

The large-scale direct monocular SLAM (LSD-SLAM) [24] is a direct algorithm that
performs a semi-dense reconstruction. The algorithm consists of three main steps: tracking,
depth map estimation, and map optimization. The first step minimizes the photometric
error to estimate the sensor’s pose. Next, the LSD-SLAM performs the keyframe selection
in the depth map estimation step. If it adds a new keyframe to the algorithm, it initializes
its depth map; otherwise, it refines the depth map of the current keyframe by performing
several small-baseline stereo comparisons. Finally, in the map optimization step, the LSD-
SLAM incorporates the new keyframe in the map and optimizes it by applying a pose–graph
optimization algorithm. Figure 8 illustrates the procedure. This technique allows the real-
time construction of large-scale maps and employs global optimization and loop closure.
In addition, by combining the absence of feature extraction, characteristic of the direct
methods, with a semi-dense reconstruction, this method improves its efficiency, enabling
embedded implementations. Boikos and Christos-Savvas in [29,43] used CPU + FPGA
architectures to implement the LSD-SLAM algorithm. In [29], the authors implemented
two accelerators on the FPGA to perform more expensive tasks of the tracking thread; that
is, Jacobian calculations, as well as residual and weight calculations. The ARM CPU was
used to implement the other tasks of the algorithm. In [43], the authors implement the
direct tracking thread on the FPGA, while the CPU was responsible for memory, hardware
control, and parameter setup. The LSD-SLAM map estimation is based essentially on
pose-graph optimization [22] and the algorithm achieved lower accuracy than others, such
as PTAM and ORB-SLAM [41].
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New Frame
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transformation

New KeyFrame?
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Estimate SIM3 edges
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Refine Keyframe
Small-baseline stereo
Merge into keyframe

Regularize depth mapTracking Depth map Estimation Map Optimization

Figure 8. Diagram representing the LSD-SLAM algorithm. Adapted from [24].

3.1.6. ORB-SLAM 2.0 (2017)

The ORB-SLAM2 algorithm [44], originated from ORB-SLAM [41], is considered the
state of the art of feature-based algorithms. It works in three parallel threads: tracking,
local mapping, and loop closing. The first thread locates the sensor by finding features
correspondences and minimizing the reprojection error. The local mapping thread is
responsible for the map management operations. The last thread, loop closing, is in charge
of detecting new loops and correcting the drift error in the loop. After processing the
three threads, the algorithm also considers the whole structure and estimated motion
consistency by performing a full bundle adjustment. Figure 9 represents the threads
that constitute the algorithm. ORB-SLAM2 considers the monocular, stereo and RGB-D
approaches, and implements global optimization and loop closure techniques. Nonetheless,
the tracking failure situation may lead to a lost state if the system does not recognize a
high-similarity frame [45]. In addition, this method needs to acquire the images with
the same frame rate as it processes them, which makes real-time operation in embedded
platforms difficult [46]. This is in spite of the fact that several embedded implementations
may be found in the literature. Yu et al. [47] used a CPU to run the ORB-SLAM algorithm
and Abouzahir et al. [46] implemented the algorithm in different CPU- and GPU-based
platforms, and evaluated the performance of each thread on the platforms.
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Figure 9. Diagram representing the ORB-SLAM 2.0 algorithm. Adapted from [41].

3.1.7. CNN-SLAM (2017)

CNN-SLAM [48] is one of the first works to present a real-time SLAM system based
on convolutional neural networks (CNN). The algorithm may be divided into two different
pipelines: one applied in every input frame and another in every keyframe. The first is
responsible for the camera pose estimation by minimizing the photometric error between
the current frame and the nearest keyframe. In parallel, for every keyframe, the depth is
predicted by a CNN. In addition, the algorithm predicts the semantic segmentation for each
frame. After these processing steps, the algorithm performs a pose-graph optimization to
obtain a globally optimized pose estimation, as shown in Figure 10.
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Figure 10. Diagram representing the CNN-SLAM algorithm. Adapted from [48].

This algorithm does not suffer from absolute scale limitation, since it uses depth pre-
diction to perform the scale estimation [48]. In addition, it counts with global optimization
and loop closure. The authors needed to employ a CPU+GPU architecture to run the
algorithm in real-time.

3.1.8. Direct Sparse Odometry (2018)

The direct sparse odometry (DSO) algorithm [31] combines a direct approach with a
sparse reconstruction. The DSO algorithm considers a window of the most recent frames. It
performs a continuous optimization by applying a local bundle adjustment that optimizes
the keyframes window and the inverse depth map. The algorithm divides the image into
several blocks and selects the highest intensity points. The DSO considers exposure time
and lens distortion in the optimization to increase the algorithm’s robustness. Initially,
this algorithm does not include global optimization or loop closure, but Xiang et al. [49]
proposed an extension of the DSO algorithm, including loop closure detection and pose-
graph optimization. The DSO main steps are represented in Figure 11.
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Figure 11. Diagram representing the DSO algorithm.

3.1.9. General Comments

In this Section, we presented the main visual-only-based SLAM algorithms. Table 1
summarizes the main characteristics and analyzed criteria for the presented visual-only
SLAM algorithms.

Table 1. Main aspects related to the visual-only SLAM approaches.

Method Type Map Density Global Optim. * Loop Closure Embed. Implem. ** Availability

MonoSLAM Feature-based Sparse No No [34,35] [50]
PTAM Feature-based Sparse Yes No [51] [52]
DTAM Direct Dense No No [39] [53]

SVO Hybrid Sparse No No [40] [54]
LSD Direct Semi-dense Yes Yes [29,43] [55]

ORB-SLAM Feature-based Sparse Yes Yes [46,47] [56]
CNN-SLAM Direct Semi-dense Yes Yes - [57]

DSO Direct Sparse No No - [58]

* Global Optimization. ** Embedded Implementation.
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The main benefits and drawbacks of each method were individually addressed. Con-
sidering a general point of view, the visual-only-based SLAM algorithms may be considered
a well-explored field, since most of the algorithms were made available by the authors,
which also had consequences for the embedded SLAM implementations found in the
literature. The embedded implementations presented in Table 1 consider the full SLAM
algorithms implementation and works that do not perform essential modifications in the
originally proposed technique. However, it is possible to find in the literature several
embedded implementations based on fundamental concepts of the presented algorithms.
For instance, the MonoSLAM principles have been used for the development and imple-
mentation of several other SLAM on SoC implementations, such as the heterogeneous
architecture recently proposed by Piat et al. [59]. Furthermore, the growing development
of the CNN-based SLAM algorithms can be noticed. Besides the presented CNN-SLAM,
other algorithms are found in the literature, such as the CNN-SVO [28] algorithm that
uses depth prediction to initialize the depth filters. Developments of the hardware imple-
mentations of CNN-based SLAM algorithms have been growing since the launch of the
AI accelerator Xilinx Deep-learning Processor Unit [60] in 2019. This hardware already
enabled the progress on embedded implementations of CNN-based algorithms: one ex-
ample is the work presented in [61] that uses an FPGA platform to perform a CNN-based
feature extractor.

3.2. Visual-Inertial SLAM

A timeline representing the selected visual-inertial algorithms is presented in Figure 12
and the algorithms are explained in the following subsections.

MSCKF

2007

OKVIS

2014

ROVIO

2015

VIORB

2017

VINS-Mono

2018
VI-DSO

ORB-SLAM3

2020

Figure 12. Timeline representing the most representative visual-inertial SLAM algorithms.

3.2.1. Multi-State Constraint Kalman Filter (2007)

The multi-state constraint Kalman filter (MSCKF) [62] can be implemented using both
monocular and stereo cameras [63]. The algorithm’s pipeline consists of three main steps:
propagation, image registration, and update. In the first step, the MSCKF considers the
discretization of a continuous-time IMU model to obtain the propagation of the filter state
and covariance. Then, the image registration performs the state augmentation each time
a new image is recorded. This estimation is added in the state and covariance matrix to
initiate the image processing module (feature extraction). Finally, the algorithm performs
the filter update. Figure 13 represents the algorithm. The MSCKF is considered one of the
fastest filter-based methods in the literature [64], a consequence of its low computational
cost [63], which makes this algorithm suitable for embedded implementations. Delmerico
and Scaramuzza [65] used different hardware platforms based on CPU architectures to
implement visual-inertial SLAM algorithms. The authors implemented the algorithm
in three different embedded boards—Intel NUC, Up Board, and ODROID. However,
the Jacobian calculations performed by the algorithm may cause inconsistency and loss of
accuracy [66].
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Figure 13. Diagram representing the MSCKF algorithm.

3.2.2. Open Keyframe-Based Visual-Inertial SLAM (2014)

Open Keyframe-based Visual-Inertial SLAM (OKVIS) [67] is an optimization-based
method. It combines the IMU data and reprojection terms into an objective function, allow-
ing the algorithm to jointly optimize both the weighted reprojection error and temporal
error from IMU. The algorithm builds a local map, and then the subsequent keyframes are
selected according to the keypoints match area. The algorithm can be depicted as shown in
Figure 14. The OKVIS algorithm presented a lower memory usage when compared with
other algorithms (this will be explained in the following subsections), such as VINS-Mono,
VIORB, and ROVIO [18], enabling its embedded implementation. Already mentioned,
the work of Delmerico and Scaramuzza [65] used different CPU platforms to implement
the OKVIS algorithm. However, to achieve real-time performance in the Up Board and
ODROID, the authors needed to reduce the number of keypoints, the keyframe window,
and the IMU-linked frames. Nikolic et al. [68] used an FPGA-CPU architecture to evaluate
the OKVIS algorithm’s performance. The authors took advantage of the logic blocks on
the FPGA to implement the image processing techniques and accelerated the keypoint
detection process. However, it was demonstrated that the algorithm is less accurate than
others [18].
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Figure 14. Diagram representing the OKVIS algorithm.

3.2.3. Robust Visual Inertial Odometry (2015)

The Robust Visual Inertial Odometry (ROVIO) algorithm [69] is another filter-based
method that uses the EKF approach, and similar to other filter-based methods, it uses the
IMU data to state propagation, and the camera data to filter update. However, besides per-
forming the feature extraction, ROVIO executes the extraction of multi-level patches around
the features, as illustrated by Figure 15. The patches are used by the prediction and update
step to obtain the innovation term, i.e., the calculation of the error between the frame and
the projection of the multi-level patch into the frame. The ROVIO algorithm achieves
good accuracy and robustness under a low resource utilization [18,65], being suitable for
embedded implementations [65]. However, the algorithm proved to be more sensitive to
per-frame processing time [65] and less accurate than other algorithms, such as VI-DSO [70].

3.2.4. Visual Inertial ORB-SLAM (2017)

The Visual-Inertial ORB-SLAM (VIORB) algorithm [71] is based on the already pre-
sented ORB-SLAM algorithm [44]. As such, the system also counts with three main threads:
tracking, local mapping, and loop closing. In VIORB, the tracking thread estimates the
sensor pose, velocity, and IMU biases. Additionally, this thread performs the joint optimiza-
tion of the reprojection error of the matched points and IMU error data. The local mapping
thread adopts a different culling policy considering the IMU operation. Finally, the loop
closing thread implements a place recognition module to identify the keyframes already
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visited by the sensors. Furthermore, the algorithm performs an optimization to minimize
the accumulated error. Figure 16 seeks to illustrate the main differences between the ORB-
SLAM algorithm (see Figure 9) and its visual-inertial version. The VIORB algorithm was
the first visual-inertial method to employ map reuse, and it presents high-performance
accuracy [64,70,72] and memory usage [18]. Nonetheless, the IMU initialization takes
between 10 to 15 s [71], and no embedded implementations were found. In [22], the authors
propose the ORB-SLAM3 algorithm, which is based on ORB-SLAM2 and VIORB algorithms.
The system presents a reduced initialization time compared to its predecessor, VIORB.
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Figure 15. Diagram representing the feature handling performed by the ROVIO algorithm. Adapted
from [69].
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Figure 16. Diagram representing the VIORB algorithm.

3.2.5. Monocular Visual-Inertial System (2018)

Monocular Visual-Inertial System (VINS-Mono) [73] is a monocular visual-inertial
state estimator. It starts with a measurement process responsible for features extraction and
tracking, and a pre-integration of the IMU data between the frames. Then, the algorithm
performs an initialization process to provide the initial values for a non-linear optimiza-
tion process that minimizes the visual and inertial errors. The VINS also implements a
relocalization and a pose-graph optimization module that merges the IMU measurements
and features observations. Figure 17 illustrates the VINS-Mono algorithm. The algorithm
can also be applied considering binocular and stereo approaches [74]. The VINS-Mono
already demonstrated to achieve high accuracy when compared to other algorithms. Yet, it
presented the highest memory usage when compared to algorithms such as ROVIO, VIORB,
and OKVIS [18]. This is despite the fact that, since it only considers pose and velocity from
the latest IMU states during the optimization process, this algorithm still demonstrated its
suitability in embedded implementations [73].
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Figure 17. Diagram representing the VINS-Mono algorithm.

3.2.6. Visual-Inertial Direct Sparse Odometry (2018)

The Visual-Inertial Direct Sparse Odometry (VI-DSO) algorithm [70] is based on the
already presented DSO algorithm [31]. The algorithm searches to minimize an energy
function that combines the photometric and inertial errors, which is built considering
a nonlinear dynamic model. Figure 18 shows an overview of the VI-DSO algorithm
that illustrates its main differences concerning the DSO technique. The VI-DSO is an
extension of DSO that considers the inertial information, which results in better accuracy
and robustness than the original DSO and other algorithms, like ROVIO [70]. However,
the initialization procedure relies on bundle adjustment, which makes the initialization
slow [22]. The algorithm does not perform global optimization and loop closure detection,
and embedded implementations were not found in the literature.
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Figure 18. Diagram representing the VI-DSO algorithm.

3.2.7. ORB-SLAM3 (2020)

The already mentioned ORB-SLAM3 algorithm [75] is a technique that combines the
ORB-SLAM and VIORB algorithms. As with its predecessors, the algorithm is divided into
three main threads: tracking, local mapping and, instead of loop closing, loop closing and
map merging. In addition, ORB-SLAM3 maintains a multi-map representation called Atlas,
which maintains an active map used by the tracking thread, and non-active maps used
for relocalization and place recognition. The first two threads follow the same principle
as VIORB, while map merging is added to the last thread. The loop closing and map
merging thread uses all the maps in Atlas to identify common parts and perform loop
correction or merge maps and change the active map, depending on the location of the
overlapped area. Another important aspect of ORB-SLAM3 concerns the proposed initial-
ization technique that relies on the Maximum-a-Posteriori algorithm individually applied
to the visual and inertial estimations, which are later jointly optimized. This algorithm can
be used with monocular, stereo, and RGB-D cameras, and implements global optimiza-
tions and loop closures techniques. However, authors in [76] demonstrated significant
errors results of ORB-SLAM3 online performance. In [77], the algorithm obtained a good
performance, but failed to process all the sequences, and obtained inaccurate estimates in
outdoor sequences.
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3.2.8. General Comments

This Section presented seven main visual-inertial SLAM algorithms, as long as an
individual analysis of each of them. Table 2 summarizes the main characteristics and
analyzed criteria for the presented visual-inertial SLAM algorithms.

Table 2. Main aspects related to the visual-inertial SLAM approaches. All approaches present tightly
coupled sensor fusion.

Method Type Map Density Global Optim. * Loop Closure Embed. Implem. ** Availability

MSCKF Filtering-based Sparse No No [65] [78,79]
OKVIS Optimization-based Sparse No No [65,68] [80]
ROVIO Filtering-based Sparse No No [65] [81]
VINS Optimization-based Sparse Yes Yes [65,74] [82]

VIORB Optimization-based Sparse Yes Yes - -
VI-DSO Optimization-based Sparse No No - [83]

ORB-SLAM3 Optimization-based Sparse Yes Yes - [84]

* Global Optimization. ** Embedded Implementation.

In a general analysis, the addition of an IMU to visual-based SLAM algorithms has the
primary purpose of increasing the system’s robustness, which was already demonstrated
to be true [2,22,70]. We observed greater literature feedback from the algorithms made
available by their authors, which directly influenced the embedded implementations found
in the literature. Unlike its visual-only version, we did not find an embedded version of
the VIORB algorithm, since the original article does not provide an open-source version,
and the more recent one, the open-source ORB-SLAM3, was recently published in 2020 [22].
As for the inertial version of the DSO algorithm, the authors do not provide an open-source
implementation; however, an implementation by third parties may be found [83], even
though it requires optimization. The visual-inertial SLAM-based approaches represent a
growing field, and several recent articles have been published, combining the IMU tech-
nologies with a large variety of sensors [85–87]. Limiting our research to the visual-SLAM
techniques, we could find several articles proposing solutions to increase the performance
of the VI-based SLAM algorithm’s initialization step [75,88,89].

3.3. RGB-D SLAM

The most representative SLAM algorithms based on RGB-D sensors, i.e., considering
RGB images and depth information directly, are presented in Figure 19, according to their
published years, and explained in the following subsections.

KinectFusion

2011

SLAM++

2013

RGBDSLAMv2

2014

ORB-SLAM2

2017

DVO

2013

Figure 19. Timeline representing the most representative RGB-D-based SLAM algorithms.

3.3.1. KinectFusion (2011)

The KinectFusion algorithm [90] was the first algorithm based on an RGB-D sensor
to operate in real-time. The algorithm includes four main steps: the measurement, pose
estimation, reconstruction update, and surface prediction. In the first step, the RGB image
and depth data are used to generate a vertex and a normal map. In the pose estimation step,
the algorithm applies the ICP alignment between the current surface and the predicted one
(provided by the previous step). Then, the reconstruction update step integrates the new
depth frame into the 3D reconstruction, which is raycasted into the new estimated frame
to obtain a new dense surface prediction. The KinectFusion algorithm is capable of good
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mapping in maximum medium-sized rooms [90]. However, it accumulates drift errors,
since it does not perform loop closing [91]. Nardi et al., in [92], propose an implementation
for the KinectFusion and test it in different CPU- and GPU-based platforms. Bodin et al. [93]
use the framework proposed by [92] to implement the KinectFusion in two different CPU
and GPU platforms. An overview of the steps performed by the algorithm is shown in
Figure 20.
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Figure 20. Diagram representing the KinectFusion algorithm. Adapted from [90].

3.3.2. SLAM++ (2013)

The SLAM++ algorithm [94] is an object-oriented SLAM algorithm that takes advan-
tage of previously known scenes containing repeated objects and structures, such as a
classroom. After the system initialization, SLAM++ operates in four steps: camera pose esti-
mation, object insertion, and pose update, pose–graph optimization, and surface rendering.
The first step estimates the current camera pose by applying the ICP algorithm, considering
dense multi-object prediction in the current SLAM graph. Next, the algorithm searches
to identify objects in the current frame using the database information. The third step
inserts the considered objects in the SLAM graph by performing a pose–graph optimization
operation. Finally, the algorithm renders the objects in the graph, as shown in Figure 21.
SLAM++ performs loop closure detection and, by considering the object’s repeatability, it
increases its efficiency and scene description. Nevertheless, the algorithm is most suitable
for already known scenes.
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Figure 21. Diagram representing the SLAM++ algorithm. Adapted from [94].

3.3.3. Dense Visual Odometry (2013)

The dense visual odometry SLAM (DVO-SLAM) algorithm, proposed by Kerl et al. [95],
is a keyframe-based technique. It minimizes the photometric error between the keyframes
to acquire the depth values and pixels coordinates, as well as camera motion. The algorithm
calculates, for each input frame, an entropy value that is compared to a threshold value.
The same principle is used for loop detection, although it uses a different threshold value.
The map is represented by a SLAM graph where the vertex has camera poses, and edges are
the transformations between keyframes. This algorithm is robust to textureless scenes and
performs loop closure detection. The map representation relies on a representation of the
keyframes, and the algorithm does not perform an explicit map reconstruction. Figure 22
shows an overview of the DVO algorithm.
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Figure 22. Diagram representing the DVO algorithm.

3.3.4. RGBDSLAMv2 (2014)

The RGBDSLAMv2 [96] is one of the most popular RGB-D-based algorithms and relies
on feature extraction. It performs the RANSAC algorithm to estimate the transformation
between the matched features and the ICP algorithm to obtain pose estimation. Finally,
the system executes a global optimization and loop closure to eliminate the accumulated
error. In addition, this method proposes using an environment measurement model (EMM)
to validate the transformations obtained between the frames. The algorithm is based on
SIFT features, which degrades its real-time performance. RGBDSLAMv2 presents a high
computation consumption and requires a slow movement by the sensor for its correct
operation [91]. Figure 23 represents the algorithm.
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Figure 23. Diagram representing the RGBDSLAMv2 algorithm. Adapted from [96].

3.3.5. General Comments

Section 3.3 individually presented the most representative RGB-D-based techniques.
Table 3 summarizes the main characteristics and analyzed criteria for the presented
algorithms.

Table 3. Main aspects related to the RGB-D-based SLAM approaches.

Method Tracking Method Map Density Loop Closure Embed. Implem. * Availability

KinectFusion Direct Dense No [92,93] [97]
SLAM++ Hybrid Dense Yes - -

RGBDSLAMv2 Feature-based Dense Yes - [98]
DVO Direct Dense Yes - [99]

ORB-SLAM 2.0 Feature-based Dense Yes - [56]

* Embedded Implementation.

RGB-D-based SLAM algorithms represent an alternative solution to the visual-only
and visual-inertial SLAM. In general, they construct dense maps, enabling them to represent
the environment in greater detail. In addition, it is a more robust approach regarding low-
texture environments thanks to the depth sensor. Concerning embedded implementations,
it is possible to find, in the literature, several solutions searching to accelerate parts of the
RGB-D-based algorithms that usually require more computation load, such as the ICP
algorithm. Beshaw et al. [100] and Williams et al. [101] propose different architectures
to accelerate the ICP algorithm, and Gautier et al. [102] implemented the ICP and the
volumetric integration algorithms in a heterogeneous architecture. Recent publications have
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focused on developing robust RGB-D SLAM algorithms considering dynamic environments
conditions [103–105].

4. Open Problems and Future Directions

Although the SLAM domain has been widely studied for years, there are still several
open problems. The current state of the art of SLAM and odometry algorithms increasingly
seeks to reinforce the algorithm’s robustness, optimize computational resources usage,
and evolve the environment’s understanding in the map representations [8]. Concerning the
robustness, SLAM and odometry techniques still present some major issues that undermine
algorithms’ robustness [8]. One of them is the tracking failure [106]; facing some challenges
or long-term scenarios, the algorithms may still fail to recognize and associate features in
the current received image, resulting in inaccurate pose estimation. This may have conse-
quences in loop closure techniques [107] and relocalizations [8,108]. As a solution to this
issue, authors have been exploring new methods to deal with the SLAM problem. Recent
works propose the incorporation of deep learning and spectral techniques [109,110] to
increase the system’s robustness; some main examples the deep-learning-based algorithms
are discussed in Section 4.1.

Another main issue that decreases the SLAM algorithms’ robustness is the assumption
of static scenarios, while the real world presents dynamic environments; this may cause
failures in tracking [111] and reconstruction [112]. Dealing with dynamic scenes may
be considered a challenge, since it requires the algorithm to detect the dynamic object,
avoid the tracking of the object, and exclude it from the map [113]. As mentioned in
Section 3.3.5, several works have been published proposing solutions to this central issue;
more representative examples are discussed in Section 4.3.

Besides the robustness, recent SLAM algorithms seek to consider the usage of the
computational resources [8]. This current topic leads to the open problem of memory usage
by map storage [8]. Storing the map in a long-term operation may considerably increase
the memory usage, which may have consequences for memory-limited systems operation,
e.g., embedded SLAM. However, it is already possible to find, in the literature, works
proposing solutions for this topic. One example is the work of Opdenbosch et al. [114], who
proposes an efficient map compression, and demonstrates its ability to significantly reduce
the map’s data and size without losing relevant information. In addition to map storage,
another major issue that influences resource usage is map sparsity. Dense and semi-dense
maps provide a more detailed representation of the environment, but this feature has con-
sequences for resource usage. It has already been demonstrated that sparse maps present
lower power consumption compared to semi-dense and dense ones—Wan et al. [115]. Con-
sequently, they may be more suitable for an embedded implementation, although they
provide fewer details.

Currently, the SLAM algorithms also seek to evolve our understanding of the environ-
ment in the performed reconstructions [8]. Besides obtaining the geometric information,
the algorithms obtain information about the environment by recognizing objects within it,
for example. An evolving SLAM category that enables this better environment abstraction
is the semantic-based SLAM. The semantic SLAM is a trending topic on SLAM, and some
main examples are discussed in Section 4.2. Following this, we briefly discuss some re-
cent and relevant articles that we believe are representatives as future directions of the
visual-SLAM and visual-odometry fields.

4.1. Deep Learning-Based Algorithms

One remarkable algorithm that incorporates deep learning concepts is the
UnDeepVO [116]. This monocular visual-odometry algorithm can perform pose and depth
estimation via a deep neural network. The authors train UnDeepVO with unsupervised
learning using stereo images; additionally, they consider both spatial and temporal dense
information in the loss function of the training. This method proved to be more accurate
and robust than other monocular methods, such as the ORB-SLAM (without loop closure).
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Recently, the same research group proposed the DeepSLAM [117]. The system considers a
tracking-net and mapping-net trained using unsupervised learning, and considering spatial
and temporal geometry in the loss function. The algorithm also contains a Loop-Net to
perform loop detection. DeepSLAM presented a better performance than other monocular
algorithms, as the ORB-SLAM, and better robustness than ORB-SLAM and LSD-SLAM.

Another relevant algorithm based on deep learning is the DF-SLAM [118]. DF-SLAM
follows a framework similar to ORB-SLAM, but instead of using the hand-made features,
explained in Section 2.1.1, it uses deep local features described by the TFeat network.
The authors provide several results comparing DF-SLAM to ORB-SLAM2; for most se-
quences, the proposed algorithm obtained a better performance. Recently, it is possible
to find, in the literature, several overviews [119–121] that address deep learning-based
algorithms applied to depth estimation and the main concepts of SLAM’s direction. More
methods that use deep learning techniques are discussed in Section 4.3 as a solution to
dynamic SLAM algorithms.

4.2. Semantic-Based Algorithms

Incorporating semantic information on the visual-SLAM problem is a growing field,
and has been attracting more attention in recent years. One important and recent study
in this area is presented in [122]. The authors propose a new methodology for data
association that incorporates information from an object detector, proposing a solution that
can represent both data association and landmark class in a factor graph solution. This
method presents reduced errors compared to other solutions incorporating semantic data
association techniques. More methods containing semantic data are discussed in Section 4.3
as a solution to dynamic SLAM algorithms. As this field grows, it is also necessary to
establish methods to validate the semantic-based algorithms. Authors in [123] introduce a
new synthetically generated benchmark dataset that, besides the traditional ground truth
of the trajectory, contains semantic labels, information about the scene composition, ground
truth 3D models, and the pose of the objects. In addition, they propose evaluation metrics
that may assess the semantic-based algorithms’ performance.

4.3. Dynamic SLAM Algorithms

Research studies into the SLAM algorithms considering dynamic environments are
essential to increase the algorithms’ robustness to more realistic situations. Firstly, in [124],
then in [125], Sun et al. propose a motion removal technique to deal with the environment’s
dynamicity in RGB-D approach. In [125], the removal algorithm may be divided into two
parts; first, it identifies the moving object and updates the foreground model using the
error caused by the object in the image. Then, it performs the foreground segmentation.
The algorithm obtained better performance, especially in high-dynamics environments,
than some state-of-the-art techniques, such as DVO.

An essential algorithm robust to dynamic scenes is the Dynamic-SLAM proposed by
Xiao et al. [126]; this method incorporates both deep learning and semantic techniques.
The system employs a CNN to detect dynamic objects at a semantic level; it separates the
dynamics and statics features, considering the dynamic ones as outliers. In addition, they
propose a compensation algorithm to increase the detection accuracy and a feature-based
framework. The tracking thread incorporates the semantic data, discarding or reserving
the features. Dynamic-SLAM presented a greater accuracy than other methods such as
LSD-SLAM, SVO, and PTAM; and better robustness compared to ORB-SLAM2.

DynaSLAM II [127] is another relevant method that incorporates semantic segmen-
tation to track dynamic objects. This algorithm is based on ORB-SLAM2 and performs
semantic segmentation and feature extraction at each new frame. This algorithm does not
make assumptions about the dynamic objects and performs the data association of dynamic
and static features. Static features are used to estimate the initial camera poses, and then
trajectories, bounding boxes, and 3D points are optimized. DynaSLAMII showed to present
a performance comparable to other state-of-the-art algorithms, such as the ORB-SLAM2.
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5. Datasets and Benchmarking

Among all the SLAM algorithms in the literature, it is essential to achieve a fair
comparison between them to determine which one presents a better performance in cer-
tain situations. Several benchmarking datasets with different characteristics are proposed
in the literature to explore the SLAM capabilities and robustness. Here, we present the
publicly available benchmark dataset used to evaluate the presented SLAM algorithms in
their original articles.

The TUM RGB-D dataset [128] consists of several image sequences containing color
and depth images recorded in indoor environments with a Microsoft Kinetic in two different
platforms: robot and handheld. The system was synchronized with a motion-capture
system to provide the ground truth. In addition, the authors propose two metrics to evaluate
the local accuracy and the global consistency of the trajectory; they are relative pose error
and absolute trajectory error, respectively. The KITTI dataset [129] contains outdoor
sequences recorded by color and grayscale stereo cameras. The KITTI also present data
from a 3D laser scanner and the ground truth provided by an INS/GPS. The sensor system
is synchronized and mounted on a car. In addition, the authors provide tracklets for a
dynamic objects classification and benchmarks to evaluate robotics tasks, such as visual
odometry and SLAM.

Another main benchmark dataset is the ICL-NUIM [130]. The dataset focuses on
RGB-D algorithms and provides data for the evaluation of the 3D reconstruction through
eight synthetically generated indoor scenes. A handheld RGB-D camera generates the
sequences, and the ground truth consists of a 3D surface model and the estimated trajectory
by a SLAM algorithm [131]. The EuRoC benchmark dataset [23] is widely used to evaluate
visual-only and visual-inertial SLAM and odometry algorithms. The data were collected in
two indoor environments by a micro aerial vehicle (MAV), and it provides eleven sequences
of stereo images and IMU data. The ground truth is obtained by a total station and a motion
capture system.

A dataset commonly used to evaluate monocular systems is the TUM MonoVO [30].
It contains several photometrically calibrated indoor and outdoor sequences provided by
two handheld non-stereo monocular cameras. Due to the variety of the scenes, the authors
do not provide a ground-truth from the poses, but they perform large sequences that start
and end at the same position, allowing the evaluation of the loop drifts. Lastly, a dataset
provided for visual-inertial systems evaluation is the TUM VI dataset [132]. It provides
several indoor and outdoor sequences captured by a stereo camera synchronized with an
IMU. The sensor system is handheld, and, as for the TUM MonoVO, it was impossible to
establish the ground truth for the entire sequences. However, they provide the ground
truth via a motion capture system for the beginning and end of the system.

Table 4 summarizes the main benchmark datasets characteristics presented in this work.

Table 4. Main aspects related to the presented benchmark datasets.

Dataset Year Env. * Platform Sensor System Ground-truth Availability

TUM RGB-D 2012 Indoor Robot/Handheld RGB-D camera Motion capture [133]
KITTI 2013 Outdoor Car Stereo-cameras INS/GPS [134]

3D laser scanner
ICL-NUIM 2014 Indoor Handheld RGB-D camera 3D surface model [135]

SLAM estimation
EuRoC 2016 Indoor MAV Stereo-cameras Total Station [136]

IMU Motion capture
TUM MonoVO 2016 Indoor/Outdoor Handheld Non-stereo cameras - [137]

TUM VI 2018 Indoor/Outdoor Handheld Stereo-camera Motion capture [138]
IMU (partially)

* Environment: indoor or outdoor.
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6. Conclusions

The visual-based SLAM techniques represent a wide field of research thanks to their
robustness and accuracy provided by a cheap and small sensor system. The literature
presents many different visual-SLAM algorithms that make researchers’ choices difficult,
without criteria, when it comes to evaluating their benefits and drawbacks. In this paper,
we introduced the main visual-based SLAM approaches and a brief description and sys-
tematic analyses of a set of the most exemplary techniques of each approach. To guide the
choices among all the algorithms, we proposed six criteria that are limiting factors to several
SLAM projects: the algorithm type, the density of the reconstructed map, the presence
of global optimizations and loop closures techniques, its availability, and the embedded
implementations already performed. Researchers can consider each criterion according
to their application, and obtain an initial analysis from the presented paper. In addition,
we presented some major issues, suggested future directions for the field, and discussed
the main benchmarking datasets for visual-SLAM and odometry algorithms evaluation.
Regarding future works, we will apply the proposed criteria analysis to nuclear decommis-
sioning scenarios. The best SLAM algorithm shall be selected after considering the variety
of features and specificities that this environment and application possess.
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