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Abstract: We propose a method to achieve autonomous gait transition according to speed for a
quadruped robot pacing at medium speeds. We verified its effectiveness through experiments with
the simulation model and the robot we developed. In our proposed method, a central pattern
generator (CPG) is applied to each leg. Each leg is controlled by a PD controller based on output from
the CPG. The four CPGs are coupled, and a hard-wired CPG network generates a pace pattern by
default. In addition, we feed the body tilt back to the CPGs in order to adapt to the body oscillation
that changes according to the speed. As a result, our model and robot achieve stable changes in speed
while autonomously generating a walk at low speeds and a rotary gallop at high speeds, despite the
fact that the walk and rotary gallop are not preprogramed. The body tilt angle feedback is the only
factor involved in the autonomous generation of gaits, so it can be easily used for various quadruped
robots. Therefore, it is expected that the proposed method will be an effective control method for
quadruped robots.

Keywords: quadruped robot; gait transition; central pattern generator; vestibular sensory feedback

1. Introduction

Quadruped mammals choose a gait according to their speed [1]. Most quadruped
mammals choose a walk at low speeds, while at medium and high speeds the chosen
gait varies depending on species. A chosen gait may be a trot or pace at medium speeds
and a transverse gallop or rotary gallop at high speeds. Specifically, cats change their gait
from walk to trot to transverse gallop according to speed [1], whereas greyhounds change
their gait from walk to pace to rotary gallop according to speed [2,3]. Furthermore, the
locomotion of quadruped robots and quadruped simulation models has been achieved by
using mammals’ gaits as a basis [4-19].

It has been reported that quadruped mammals such as cats can change their gait even
without a brain, even though the principle of gait transition is not clear. Grillner [20] and
Golubitsky et al. [21] reported that gait transition occurs as a result of each leg swing-
ing reflexively with a central pattern generator (CPG), which is a neural circuit existing
in the spinal cord. Based on this, there are quadruped simulation models [22-26] and
quadruped robots [23,24,27-30] that autonomously produce gaits not defined by CPG.
These autonomously modify the phase differences between the four legs by using external
factors such as sensory feedback and, as a result, some gaits emerge. However, the range of
speeds of these studies is limited.

The first study that achieved autonomous gait transition from low to high speed was
our simulation study [31]. We achieved autonomous gait transition from walk to trot to
transverse gallop using a quadruped simulation model. The basic gait is set to trot by the
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CPG network with mutual inhibitory coupling between the CPGs of each leg. Despite
this setting, the quadruped simulation model generated the walk at low speeds and the
transverse gallop at high speeds, even though it was not defined in the program by feeding
the body tilt back to the CPG. In this paper, this feedback is called vestibular modulation.
In addition, the quadruped robot “Spinalbot” achieved gait transition from walk to trot
to transverse gallop similar to the simulation result by applying a similar method [32].
Moreover, based on the same concept, a quadruped simulation model feeding the leg load
back to the CPG achieved gait transition [33]. Owaki et al. achieved gait transition from
walk to trot to transverse gallop using a quadruped robot with CPG and feeding the leg
load back to the CPG [34].

As mentioned above, mainly only quadruped robots that achieve gait transition with
the basic gait set to trot have been developed. Although not as common, quadruped robots
with the basic gait set to pace have also been developed [35-38]. However, it has been
reported that the pace is an effective gait [2] and that trot and pace at medium speeds are
selected according to the differences in body structure. In particular, pace is an effective
gait on long-legged quadruped robots because interference between fore and hind legs
rarely occurs as the ipsilateral legs swing simultaneously. Therefore, the purpose of this
study is to propose a gait transition method for a quadruped robot pacing at medium
speeds. We applied the gait transition method with the basic gait set to trot to Spinalbot
with pace as the basic gait. Specifically, each leg of Spinalbot was equipped with a CPG, and
the CPG network was set to a pace pattern through mutual excitatory coupling between
the CPGs of the fore and hind legs and mutual inhibitory coupling between the CPGs
of the left and right legs. As a result, Spinalbot locomoted at a pace without vestibular
modulation. However, running with a flight phase at a pace was unstable. One of the
issues is that body oscillation and leg oscillation are not coordinated. Therefore, we applied
vestibular modulation to Spinalbot to coordinate the two oscillations. As a result, the gait
autonomously transitioned from walk to pace to rotary gallop according to the speed, and
it was found from the results that stable locomotion is possible even at high speeds.

It has been reported that rotary gallop, as appearing in this paper, and transverse
gallop, as appearing in our previous studies [31,32], have different roles as follows. The
advantages of transverse gallop are high stability and reduced energy consumption. The
disadvantage of transverse gallop is that the leading legs are the same between the fore legs
and the hind legs, therefore the leading legs must be changed when turning, the start of
turning is delayed, and there is a lack of agility. By contrast, the advantage of rotary gallop
is that the leading legs are different between the fore legs and the hind legs, respectively,
so it is unnecessary to change the leading legs, regardless of the turning direction, and
there is high maneuverability. Therefore, it is assumed that rotary gallop is preferred for
quadruped robots that are required to turn. In addition, the maximum running speed
by rotary gallop tends to increase; hence, it is assumed that rotary gallop is preferred for
quadruped robots that are required to locomote at high speed. Although rotary gallop has
many advantages, only a few quadruped robots using rotary gallop have been developed,
such as Scout II, which was developed by Smith et al. [39].

As mentioned above, it is expected that our motion generation method would be
effective not only as a method for enabling a gait transition from walk to trot to transverse
gallop but also as a simple general-purpose method enabling gait transition from walk to
pace to rotary gallop similar to a greyhound for a quadruped robot. As these gait transitions
can be achieved by applying an inexpensive inclination sensor, the method is considered to
be applicable to various quadruped robots.

The structures of both the simulation model and robot are presented in Section 2.
Section 3 describes the control method, including the configuration of the CPG and sensory
feedback. The achievement of gait transition by the simulation model is shown in Section 4.2
and the experimental results of the robot are shown in Section 4.3. The principle by which
walk and rotary gallop appear is explained in Section 5. Finally, in Section 6, we present
our conclusions and future work.
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2. Spinalbot Quadruped Robot and Simulated Model

Figure 1 shows the “Spinalbot” quadruped robot and model that we developed.
Spinalbot is a simple structure with a rigid torso. All legs have the same structure and two
joints: a rotary joint around the pitch axis (shoulder/hip) and a linear joint (elbow /knee).
The model weighs 7.8 kg, the body weighs 7.0 kg, and each leg weighs 0.2 kg. The robot
weighs 11.8 kg, the body weighs 9.7 kg, and each leg weighs 0.51 kg. The rotation joints are
driven by DC motors (150 W, RE40, Maxon Co., Sachseln, Switzerland) with a reduction
ratio of 19.3:1. The linear joints are driven by pneumatic actuators (CG3BN25-50, SMC
Co., Tokyo, Japan) and used as a variable elastic mechanism. The amount of air supplied
from the air compressor (0.4 MPa at walking, 0.6 MPa at running) in the cylinder of the
pneumatic actuator is modified by the solenoid valve (VZ212-5MZ-M5, SMC Co., Tokyo,
Japan), therefore the air pressure in the cylinder is adjusted to be low at low speeds and
high at high speeds. Each leg is designed based on a spring-loaded inverted pendulum
(SLIP) model [40]. The SLIP model is a simple model of the body of an animal during
locomotion.

Shoulder/hip rotary joint

Shoulder/hip rotary joint

Elbow/knee linear joint Elbow/knee lincar joint

(a) (b)

Figure 1. Robot (a) and simulated (b) model of Spinalbot.

Spinalbot is equipped with an encoder combined with a DC motor for acquiring
the rotary joint angle. It is possible to measure the body tilt by using an inclination
sensor combined with a gyro sensor (ENC-03R C/D, Murata Co., Kyoto, Japan) and an
accelerometer (SCA61T-FA1H1G, VTI Technologies Co., Vantaa, Finland). The pressure
sensors (FlexiForce A201-25, Nitta Co., Osaka, Japan) are equipped on the feet and are used
as a binary sensor for acquiring the touch information.

Spinalbot is controlled by a robot controller network connecting with a sampling time
of 2 ms and connected power supplies, motor drivers, and the air compressor installed
outside. Experiments are carried out with both the simulation and the robot constrained in
the sagittal plane. The pitch vibration of the torso when running at a gallop is large, while
the roll vibration is small. Therefore, it is considered that the experiment in the sagittal
plane has little effect on the emergence of gait. Robot experiments are performed on a
treadmill with the speed controlled by the experimenter.

3. Motion Generation Control

The CPG neural circuit of quadruped mammals generates the locomotion rhythm
according to the locomotion state. As shown in Figure 2, Spinalbot achieves walking and
running by using a control method combining a CPG generating a rhythm pattern and
a PD controller. The method is the same as in the previous studies [31,32] except for the
coupling between the CPGs.
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Figure 2. Neural configuration.
3.1. Rhythm Generation
3.1.1. CPG Model and CPG Network

The CPG models proposed by Matsuoka [41] generate the thythm of each leg. The
CPG model is represented by the following equations:
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The subscripts e and f denote the extensor and flexor, respectively, i is the number of
the leg (1: left fore; 2: left hind; 3: right fore; and 4: right hind). The variables v,. fi and
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Up.f; are the fatigue state and inner state of each neuron of each leg, respectively; y,. fi is
the output of the neuron; y; is the output of the CPG of each leg; s is a driving input; b is a
fatigue coefficient; -y is the connection strength between the extensor neuron and the flexor
neuron; « and f are the connection strengths between the neurons of each leg; and T, and
T, are time constants.

The CPG output of each leg is represented by:

Yi = Yfi = Yei 8)

In order to synchronize the CPG oscillations of each leg and the leg oscillation based
on the biological findings [42], the rotary angles are fed back to the CPGs of each leg as

shown below:
flei = kl(Gi — 90), and

fli = —k1(6; — 6o),
where k; is gain, 6; is the present angle of the rotary joint of each leg, and 6 is the origin
angle of each leg. The rotational direction of the rotary joint is shown in Figure 3.

©)

Figure 3. Diagram of leg motion and body tilt.

As shown in Figure 2, the CPG network is constructed by coupling the CPGs of each
leg with coupling coefficients « and . As a result, the CPG network generates a pace
pattern that swings the ipsilateral legs simultaneously so as not to couple the diagonal
legs [43]. As the values of « and j are not changed, the coupling state is unchanged and
the basic gait is a pace.

3.1.2. Vestibular Modulation

Based on the finding by Roberts [44], the body tilt around the pitch axis is fed back to
the CPGs for vestibular modulation, as shown below:

f2,i = o(leg)ka,
f2fi = —o(leg)ka¢, and (10)
o(leg) = { 1, if legisa foreleg (i =1or3)
—1, if legis a hindleg (i =2or4) ’

where k7 is gain and ¢ is the present body tilt angle around pitch axis. Therefore, the stance
phases of the leg on the side toward which the body is inclined are extended and the swing
phases of the leg on the side toward which the body is not inclined are extended.



Robotics 2022, 11, 3

6 of 22

7
Stoppers:
<\

) Compressed air

(a)

3.2. Leg Motion Generation

Each leg is controlled on the basis of the CPG outputs. As shown in the lower side of
Figure 2, the phase (stance phase or swing phase) of each leg is determined on the basis of
the CPG outputs. When the flexor neuron of the CPG is activated (y; > 0), the phase is the
swing phase. By contrast, when the extensor neuron of the CPG is activated (y; < 0), the
phase is the stance phase. The rotary joint (shoulder/hip) of each leg is controlled to the
desired angle according to the phase by the PD controller with:

T = K;i sw,st(gdi sw,st Gi) - Kzl)—i sw,stei (11)
where 1; is the torque output; K;i sw,st and K3, o, o, are the proportional and derivative gains
in the swing and stance phases, respectively; 0;; s, s is the desired angle of the rotary joint;
and 6; is the present angle of the rotary joint. Specifically, the rotary joint is swung forward
with 6., as the desired angle during the swing phase and backward with 0;.; as the
desired angle during the stance phase.

Regarding the elbow /knee joint of each leg, the linear joint of the simulated model is
PD-controlled with: _

Fy = Kb st (Lai swst — Li) = Kb g ot Li (12)

vi sw,st

where F; is the force output; Kﬁi sw,st and KL sw,st are the proportional and derivative gains
in the swing and stance phases, respectively; Lg; g, s is the desired length of the linear joint;
and L; is the present length of the linear joint. Specifically, each leg is shortened to L;.q,
as the desired length during the swing phase and extended to L;.¢; as the desired length
during the stance phase.

The length and stiffness of the linear joint of the robot are modified by controlling
inflow and discharge of air using a solenoid valve. Figure 4a shows the structure of the
pneumatic actuator. There are two inflow/outflow ports on the top and on the bottom, and
the pneumatic actuator is driven by putting compressed air in the chambers. As shown in
Figure 4b, the chamber at the top of the cylinder is opened and the compressed air is put in
the chamber at the bottom of the cylinder, and the leg is retracted to Ljj.s;, = 175 mm in the
swing phase. As shown in Figure 4c, the compressed air is put in the chamber at the top of
the cylinder for T seconds and the chamber at the bottom of the cylinder is opened. Despite
the value of T, the leg is extended to Lg;.o; = 225 mm. After T seconds, the chamber at the
top of the cylinder is closed, as shown in Figure 4d, and the air quantity in the cylinder is
kept constant. Therefore, the leg in the stance phase functions as an air spring. The elastic
force of this air spring is modified by the value of T. To change the stiffness of each leg, the
elastic force is modified by increasing T according to the speed. Figure 5 shows the elastic
forces of the leg when T = 54 ms, which was used when Spinalbot galloped at a speed of
1.2 m/s. Figure 4c shows this experimental state. Figure 5 indicates that sufficient elastic
force can be obtained for running.

:* Open

 Open m Open
— P = O

T Open
i~ 3

Lai.sw

Lai.st Lai-st

= -_—

(b) (©) ()

Figure 4. Diagram of the linear join: (a) a general diagram, (b) a state in the swing phase, (c) a state
in the stance phase, and (d) a setting to measure the stiffness for Figure 5.



Robotics 2022, 11, 3

7 of 22

340
320 —
300 —
280
260
240 —

Repulsive force F (N)

220 —
200 —

180 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Retracted length x (mm)

Figure 5. Stiffness of the linear joint in the stance phase when T = 54 ms.

4. Results

The Spinalbot quadruped robot achieved autonomous gait transition with the pro-
posed method. In addition, the simulation model under the ideal environment where the
joint frictions of each leg are the same and rolling does not occur achieved the same gait
transition, and the reliability of the experimental results was demonstrated. Video records
are available in the Supplementary Materials (Video S1).

4.1. Speed Parameter

The values of each control parameter, as shown in Table 1, were the same in all
legs and were unchanged during the experiment. The CPG network parameters were
experimentally determined. Although it is possible to use an optimization algorithm [45],
the CPG parameters had high robustness, as shown in Section 4.4, and it was possible
to easily determine the parameters that achieved gait transition even by manual tuning.
The values of « and  were set to generate a pace. The propulsive force was modified by
changing the values of the parameters—the parameter for determining the leg cycle, T;; the
desired angle of the rotary joint, 04 s, 5t; the proportional gain of the rotary joint, K;i sw,st
; o in the simulation)—other than those
parameters shown in Table 1, and the speed was changed. In this paper, these parameters
were called “speed parameters”. As the speed parameters were also the same in all legs,
in the experiment without vestibular modulation (Equation (10)), the phase differences
between the four legs were not modified by changing the values of the speed parameters.
The procedures for changing the values of the speed parameters in the simulation and in the
experiment with Spinalbot are shown in Figures 6 and 7, respectively. The speed parameters
were modified for each of the low- to medium-speed experiments ((a) of Figures 6 and 7)
and the medium- to high-speed experiments ((b) of Figures 6 and 7). The speed parameter
contributes not only to speed change but also to posture stability. There were differences in
mechanical features (e.g., size, weight, and viscous friction) between the simulation model
and the robot. The sizes could not be matched due to mechanical constraints caused by the
size of the devices and actuators. Moreover, in the simulation, it was difficult to model the
viscous friction of the rotary joint and the pneumatic characteristics of the linear joint of the
robot. For these reasons, the mechanical parameters differed between the simulation model
and the robot. Therefore, there was a difference in the speed parameter. Furthermore,
because it was modified according to the speed parameter, there was a difference in the

the parameter for determining the stiffness, T (K]I;
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CPG parameter. The reason each parameter changes stepwise is that the speed can be
increased almost smoothly, even when changing the parameters step by step at an arbitrary
time. The values of each parameter were experimentally determined so that stable walking
and running were possible in each speed range.

Table 1. Parameters.
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Figure 7. Values of the speed parameters for the robot (a) at low to medium speeds and (b) at medium
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In general, although it is known that the change in the walking and running cycles
is caused by the adjustment of the driving input to the CPGs (s in Equations (1) and (4)),
in this paper, T, was modified to adjust the leg oscillation cycle because the influence
of s in Equations (1) and (4) on the cycle is larger than that of T, in the CPG model of

Matsuoka [41].
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The value of k; is divided into low to medium speed and medium to high speed,
but gait transition is possible even with the same value. In this paper, as shown in
Sections 4.2 and 4.3, the value of k; was set separately so that the phase difference be-
tween the legs was the largest to clarify the differences between the emergent gaits. The
effect of the value of k; on locomotion, including emergent gaits, is described in Section 4.4.

4.2. Simulated Results

We observed the emergence of different gaits by changing the speed. LE, LH, RF, and
RH represent left foreleg, left hind leg, right foreleg, and right hind leg, respectively.

4.2.1. Gait Transition from Walking to Pacing with Vestibular Modulation in Simulation

In the walking experiment in the simulation, the same results as in the experiment
with the robot were obtained. Table 1 shows the parameters at 0.8 m/s. By changing the
speed parameters as shown in Figure 6a, we allowed the quadruped model to locomote at
low to medium speeds. Regardless of the value of each parameter, the speed parameters
were the same for the four legs, and the connection strength between CPGs («, ) was set so
that no gait other than pace appeared when vestibular modulation was not applied (k; = 0)
at all speeds. It was confirmed by experiments that no gait other than pacing appeared in
walking without vestibular modulation, and that changes in the values of speed parameters
had no effect on gait transition.

By contrast, only k, was changed and we allowed the quadruped model to locomote
with vestibular modulation (k; = 9.6) from low to medium speeds, as shown in Figure 8.
In this case, different gaits appeared at low speeds. The gait at medium speeds was a pace,
but at low speeds walking emerged. As the speed increased, the gait shifted from walking
to pacing. At low speeds (0.08 to 0.4 m/s of Figure 8), walking in which the leg moves in
the order LF-RH—RF—LH, as shown in Figure 9a, emerged. At medium speeds (0.4 to
0.58 m/s of Figure 8), as shown in Figure 9b, the gait shifted to pacing in which the leg
moves simultaneously with the pair of LF and LH and with the pair of RF and RH, and the
pairs moved in reverse. As shown in Figure 9a,b, the body tilt angle during walking was
larger than that during pacing. This phenomenon is an important factor in the emergence
of walking and the transition to pacing.

0.6

» walk P pace -

0.5
1
1
= 04 ,
g :
2 03 |
0] 1
o |
0.2 .
:
1
0.1 :
1

0 | | | | | |

0 2 4 6 8 10

Time (s)

Figure 8. Speeds during gait transition from walking to pacing in the simulation.

4.2.2. Gait Transition from Pacing to Galloping with Vestibular Modulation in Simulation

In the running experiment in the simulation, the same results as achieved in the
experiment with the robot were obtained. By changing the speed parameters as shown in
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CPG outputs y,

Body tilt ¢ (rad)

Figure 6b, we allowed the quadruped model to locomote at medium to high speeds. As in
Section 4.2.1, it was confirmed by experiments that no gait other than pacing appeared in
running without vestibular modulation. By contrast, when only k, was changed and we
allowed the quadruped model to locomote with vestibular modulation from medium to
high speeds, as shown Figure 10, galloping appeared at high speeds. This means that a gait
transition from a pace at medium speeds to a rotary gallop at high speeds was achieved.
At medium speeds (0.8 to 1.0 m/s of Figure 10), as shown in Figure 11a, the gait shifted
to pacing in which the leg moved simultaneously with the pair of LF and LH and with
the pair of RF and RH, respectively, and the pairs moved in reverse. At high speeds (1.0
to 1.65 m/s of Figure 10), the gait shifted to a rotary gallop in which the leg moved in the
order LF-RF—RH—LH, as shown Figure 11b. As shown in Figure 11a,b, the body tilt angle
during galloping was larger than that during pacing. As shown in Figure 11 and Figure 15,
the same phenomenon as in the robot experiment appeared, indicating that the change in
the vibration of the trunk according to the speed is the factor of gait emergence even in the
ideal state of simulation.

CPG outputs y;

LF LF

{LH

RF

S[[p00g
s[Bpo0y
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Time (s) Time (s)

(a) (b)

Figure 9. Simulated results for walking and pacing at low and medium speeds, respectively: (a) a
walk at 0.2 m/s and (b) a pace at 0.5 m/s. LF, LH, RF, and RH represent left foreleg, left hind leg,
right foreleg, and right hind leg, respectively. CPG outputs are colored as follows: LF: blue; LH: red;
RF: green; and RH: purple. The footfalls are indicated by thick line segments. The black wavy line
represents body tilt (positive when facing down).
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Figure 10. Speeds during gait transition from pacing to galloping in the simulation.
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Figure 11. Simulated results for pacing and galloping at medium and high speeds, respectively: (a) a
pace at 0.9 m/s and (b) a rotary gallop at 1.6 m/s. LF, LH, RF, and RH represent left foreleg, left hind
leg, right foreleg, and right hind leg, respectively. CPG outputs are colored as follows: LF: blue; LH:
red; RF: green; and RH: purple. The footfalls are indicated by thick line segments. The black wavy
line represents body tilt (positive when facing down).

4.3. Experimental Results
4.3.1. Gait Transition from Walking to Pacing with Vestibular Modulation

By changing the speed parameters as shown in Figure 7a, we allowed Spinalbot to
locomote at low to medium speeds. It was possible to increase the speed even when using
values other than those shown in Figure 7a. Regardless of the value of each parameter, the
speed parameters were the same for the four legs, and the connection strength between
CPGs (&, B) was set so that no gait other than pace appeared when vestibular modulation
was not applied (k; = 0) at all speeds. For this reason, it was confirmed through experi-
mentation that the change in the speed parameter does not affect the gait transition without
vestibular modulation.

By contrast, only k, was changed, and we allowed Spinalbot with vestibular mod-
ulation (k; = 15.0) to locomote from low to medium speeds, as shown in Figure 12. In
this case, different gaits appeared according to the speed. Walking emerged at low speeds,
and the gait shifted to pacing as the speed increased. At low speeds (0.15 to 0.23 m/s
of Figure 12), walking in which the leg moved in the order LF-RH—-RF—LH, as shown
in Figure 13a, emerged. At medium speeds (0.23 to 0.35 m/s of Figure 12), as shown in
Figure 13b, the gait shifted to pacing in which the leg moved simultaneously with the pair
of LF and LH and with the pair of RF and RH, respectively, and the pairs moving in reverse.
As in Section 4.2.1, and as shown in Figure 13a,b, the body tilt angle during walking was
larger than that during pacing.
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Figure 12. Speeds during gait transition from walking to pacing.
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Figure 13. Experimental results for walking and pacing at low and medium speeds, respectively:
(a) awalk at 0.17 m/s and (b) a pace at 0.29 m/s. LE, LH, RF, and RH represent left foreleg, left hind
leg, right foreleg, and right hind leg, respectively. CPG outputs are colored as follows: LF: blue; LH:
red; RF: green; and RH: purple. The footfalls are indicated by thick line segments. The black wavy
line represents body tilt (positive when facing down).

4.3.2. Gait Transition from Pacing to Galloping with Vestibular Modulation

By changing the speed parameter as shown in Figure 7b, we allowed Spinalbot to
locomote at medium to high speeds. As in Section 4.3.1, it was confirmed by experiments
that no gait other than pacing appeared in running without vestibular modulation, and
that changes in the values of speed parameters had no effect on gait transition.

When locomoting Spinalbot without vestibular modulation using the speed param-
eters shown in Figure 7b, the gait was a pace at all speeds, but running with a flight
phase became unstable. By contrast, only k, was changed, and we allowed Spinalbot with
vestibular modulation (k, = 17.5) from medium to high speeds as shown in Figure 14. In
this case, different gaits appeared at high speeds. Although the value of k; is different from
that in Section 4.3.1, gait transition is possible with the same value; however, the value was
changed so that the phase difference between legs become more prominent. The gait at
medium speeds was a pace, but at high speeds, when a flight phase is generated, a gait
transition to rotary gallop occurred and stable running became possible. At medium speeds
(0.5to 0.7 m/s of Figure 14), the gait is a pace, as shown in Figure 15a. At high speeds (0.7



Robotics 2022, 11, 3

13 of 22

CPG outputs y;

to 1.2 m/s of Figure 14), the gait shifts to a rotary gallop in which the leg moves in the
order LF-LH—-RH—REF, as shown in Figure 15b. As shown in Figure 15a,b, the body tilt
angle during galloping was larger than that during pacing. As shown in Figures 11 and 15,
the same phenomenon as in the simulation appeared, indicating that the change in the
vibration of the trunk according to the speed is the factor of gait emergence.
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Figure 14. Speeds during gait transition from pacing to galloping.
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Figure 15. Experimental results for pacing and galloping at medium and high speeds, respectively:
(a) a pace at 0.5 m/s and (b) a rotary gallop at 1.0 m/s. LF, LH, RE, and RH represent left foreleg, left
hind leg, right foreleg, and right hind leg, respectively. CPG outputs are colored as follows: LF: blue;
LH: red; RF: green; and RH: purple. The footfalls are indicated by thick line segments. The black
wavy line represents body tilt (positive when facing down).

4.4. Vestibular Modulation Level

We investigated the effect of vestibular modulation (k; = 0 or k, # 0) in simulation.
Figure 16 shows the relationship between the proportional gain of the rotary joint and
the maximum speed. First, the orange plots show the maximum speed when only K;i st
was changed in various parameters that achieve locomotion at 12 s while galloping in
Figure 10. Rotary gallop emerged in all cases where K/; ;, was between 16 and 30 Nm/rad
without changing k, and stable running was possible. In addition, the maximum speed
increased according to the value of K;l- - The blue plots show the results of a similar

simulation without vestibular modulation. In the section where K;i s = 23 Nm/rad or
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;l. s but it did not increase after that.

The leg swing speed increased according to the proportional gain, but it is considered that
the effective propulsive force decreased because the body vibration and the leg vibration
did not synchronize without vestibular modulation. Furthermore, regardless of K;i & the
maximum speed was higher with vestibular modulation than without. From these results,
k; is robust to the proportional gain, which is one of the speed parameters, in terms of

achieving gait transition.

less, the maximum speed increased according to K

L7

rotary gallop (k, = 9.6

1.6
1.5 —
1.4
1.3 — pace (k, = 0)
1.2

Maximum speed (m/s)

1.1

| | | | | | |
1
15 17 19 21 23 25 27 29 31

Proportional gain Kp; ¢, (Nm/rad)

Figure 16. Relationship between the speed parameter and maximum speed. The plot shows the
maximum speed at each proportional gain. The plot colors are as follows: with vestibular modulation:
orange; without vestibular modulation: blue.

Furthermore, we investigated the relationship between k; and the phase difference
between the legs. Figure 17 shows the results when only k, was changed in various
parameters that achieved locomotion at 12 s while galloping in Figure 10. The red plots
show the phase difference between the left foreleg and the right foreleg, and the blue plots
show the phase difference between the left foreleg and the left hind leg. When the value is
low (ky <'5), the influence of vestibular feedback is small and a pace is kept. On the other
hand, if the value is high (k; > 17), the influence of vestibular feedback becomes very large
and, instead of a rotary gallop, a bound appears in which the phase of the foreleg and the
phase of the hind leg are opposite and the phase of the left leg and the phase of the right
leg are in phase. However, Figure 17 shows that the value of k, was robust in the wide
range. At 0.4 m/s or less, walking appeared in the range of k; from 1 to 19, but at less than
1, only a pace appeared.
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Figure 17. Relationship between the vestibular modulation level and phase difference. The plot
shows the phase difference at each vestibular modulation level k;. The red plot shows the phase
difference between the left foreleg and the right foreleg (LF—RF). The blue plot shows the phase
difference between the left foreleg and the left hind leg (LF—LH).

5. Discussion

The ipsilateral pairs should have been in phase because the CPGs were coupled
to produce a pace. However, due to the effect of the body tilt angle feedback, a phase
difference occurred between the two legs and, consequently, walking and galloping, which
are different gaits from pace, appeared. The results of both the simulation experiments and
the robot experiments show that the appearance of either walking or galloping depends on
the difference in the ratio of the vibration frequency of each leg to the vibration frequency
of the body. The details are described below.

5.1. Principle Emergence of Walking

Figure 18a shows the CPG outputs, the footfalls, and the body tilt when locomoting in
a pace immediately before the transition to walk. In addition, Figure 18b shows the data for
walking. As shown in (A) of Figure 18a, the torso is tilted forward during the support phase
of the left foreleg and the left hind leg. As shown in (A’) of Figure 18b, the extensor neuron
of the left foreleg is activated by the effect of vestibular feedback and, consequently, the
support phase of the left foreleg is extended (C). By contrast, the left hind leg is switched
to the swing phase because the flexor neuron is activated (E). As a result, in Figure 18a,
the left foreleg and the left hind leg touch the ground at the same time, but in Figure 18b,
the left hind leg and the left foreleg touch in this order. As shown in (B) of Figure 18a, the
torso is tilted forward in the support phase of the right foreleg and the right hind leg, as in
(A). As shown in (B’) of Figure 18b, the extensor neuron of the right foreleg is activated by
the effect of vestibular feedback and, consequently, the support phase of the right foreleg
is extended (D). However, the right hind leg is switched to the swing phase because the
flexor neuron is activated (F). As a result, in Figure 18a, the right foreleg and right hind
leg touch the ground at the same time, but in Figure 18b, the right hind leg and the right
foreleg touch in this order. As described above, as a result of autonomously modifying the
CPG outputs according to the body tilt angle, a walk appeared as shown in Figure 18b.
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Figure 18. Experimental results for (a) a pace at a speed of 0.1 m/s and (b) a walk at a speed of
0.17 m/s. CPG outputs are colored as follows: LF: blue; LH: red; RF: green; and RH: purple. The
footfalls are indicated by the thick line segments. The black trajectory represents the body tilt. A,
A’, B, and B’ indicate periods while tilting forward. C and D indicate that the extensor neurons are
activated. E and F indicate that the flexor neurons are activated.

5.2. Principle Emergence of Galloping

Figure 19a shows the CPG outputs, the footfalls, and the body tilt when locomoting
in a pace immediately before the transition to a gallop. In addition, Figure 19b shows the
data for galloping. As shown in (H) of Figure 19a, the torso is tilted forward during the
support phase of the right foreleg and the right hind leg. As shown in (H’) of Figure 19b,
the extensor neuron of the right foreleg is activated by the effect of vestibular feedback
and, as a result, the support phase of the right foreleg is extended (J). By contrast, the
right hind leg is switched to the swing phase because the flexor neuron is activated (L). As
shown in (G) of Figure 19a, when traveling at a pace, the center of vibration of the torso
tends to be biased forward; therefore, the torso does not tilt backward, but, as a result, it
transitions to a rotary gallop. This is because the torso tilts greatly forward when the right
fore and hind legs are supported, and the left foreleg and right foreleg approach the same
phase by modifying with vestibular feedback. Therefore, a strong recoil occurs because
of the kicking of the two forelegs. As a result, the torso also tilts backward. Therefore, as
shown in (G’) of Figure 19b, the flexor neuron of the left foreleg is activated by the effect
of vestibular feedback and, as a result, the left foreleg is switched to the swing phase (K).
Finally, regarding the left hind leg, the extensor neuron is activated, and the support phase
of the left hind leg is extended (I). As described above, a rotary gallop that tilts backward
appears, as shown in Figure 19b.

5.3. Difference between Factors behind Emergence of Walking and Galloping

A walk and a rotary gallop emerge in the same way, using vestibular feedback. As
shown Figure 20, it was found that the two types of gaits were derived from the fact that
the ratio of the vibration frequency of the torso to the vibration frequency of each leg
differed between walking and running. At low speeds, the leg elasticity is set to be low to
avoid chattering when the leg touches the ground; therefore, the ratio was 2:1, as shown in
Figures 9a and 13a. This means that the torso vibrates twice in one cycle of leg vibration
with the same tendency, as shown in (A) and (B) of Figure 18a, and in (A’) and (B’) of
Figure 18b. Specifically, as shown in Figure 201, when the pair of the left foreleg and left
hind leg (1st lateral pair) is in the stance phase, the body tilts down. Therefore, the leg
phase switches from the stance phase to the swing phase in the order of the left hind leg
and the left foreleg. Similar to the 1st lateral pair, the body tilts down when the pair of the
right foreleg and the right hind leg (2nd lateral pair) is in the stance phase. Therefore, the
leg phase switches from the stance phase to the swing phase in the order of the right hind
leg and the right foreleg. The result is a walk.
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Figure 19. Experimental results for (a) a pace at a speed of 0.6 m/s and (b) a rotary gallop at a speed
of 0.7 m/s. CPG outputs are colored as follows: LF: blue; LH: red; RF: green; and RH: purple. The
footfalls are indicated by the thick line segments. The black trajectory represents the body tilt. G
and G’ indicate periods while tilting backward. H and H’ indicate periods while tilting forward. I
and J indicate that the extensor neurons are activated. K and L indicate that the flexor neurons are
activated.
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Figure 20. The principle of gait generation and transition: (I) walk, (II) pace, (III) rotary gallop. The
order of switching from the stance phase to swing phase in the lateral pair is listed below the robot
diagram.

On the other hand, the leg elasticity can be set to high to allow large jumps at high
speeds. As a result, the repulsive force of the leg due to the contraction of the leg during
the support phase increases, and it becomes possible to make a large jump and run. Conse-
quently, the torso vibrates once in one cycle of leg vibration (sinking, lifting, and jumping)
and, at high speeds, the ratio of the torso vibration frequency to the leg vibration frequency
was 1:1, as shown in Figures 11b and 15b. Specifically, as shown in Figure 20III, when the
pair of the right foreleg and the right hind leg (2nd lateral pair) is in the stance phase, the
body tilts down. Therefore, the leg phase switches from the stance phase to the swing
phase in the order of the right hind leg and the right foreleg. Due to the influence of the
phase difference that occurred in the 2nd lateral pair, the body tilts backward when the pair
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of the left foreleg and the left hind leg (1st lateral pair) is in the stance phase. Therefore,
the effect of vestibular feedback is reversed compared to the 2nd lateral pair, and the leg
phase switches from the stance phase to the swing phase in the order of the left foreleg and
the left hind leg. The result is a rotary gallop. In this way, as the body vibration frequency
differs depending on the speed range, the effect of vestibular feedback is the same for the
1st lateral pair and 2nd lateral pair at low speeds, but the opposite at high speeds. This
is the reason different gaits emerge with the same method. The difference in the ratio of
the body vibration frequency to the leg vibration frequency depending on the speed range
has also been pointed out in a previous study [31]. Geyer et al. clarified that the ratio in
bipedal locomotion is 2:1 when walking and 1:1 when running [40]. If the ipsilateral legs
are regarded as one leg in a pace, then the movement of Spinalbot is similar to bipedal
walking. In addition, as shown in Sections 4.2 and 4.3, the body vibration becomes very
small at medium speeds. As shown in Figure 201I, the effect of vestibular feedback is very
small in both the 1st lateral pair and 2nd lateral pair. As a result, the phase difference
between the foreleg and hind leg becomes very small in both pairs, and the gait becomes
the default gait pace. By changing the speed parameters as shown in Figures 6 and 7, the leg
elasticity and leg cycle are different at each speed, so the dynamics of the physical model
change according to the speed. Specifically, the ratio of body vibration to leg vibration
was 2:1 at low speeds and 1:1 at high speeds, and the body vibration was very small at
medium speeds. It is considered that the CPG of each leg was modified according to the
change in body vibration through the body tilt angle feedback and, as a result, different
gaits appeared in each speed range.

5.4. Transition Speed

In the simulation, as shown in Figure 8, the gait transitioned to a pace at 0.4 m/s and,
in Figure 10, it transitioned to a rotary gallop at 1.0 m/s. In the robot experiment, as shown
in Figure 12, the gait transitioned to a pace at 0.23 m/s and, in Figure 14, it transitioned to a
rotary gallop at 0.7 m/s. The factor that determines the transition speed is considered to
be mechanical features. The vibration frequency of the torso differs depending on the size
of the body, and it is fed back to the CPG, which is a factor that determines the transition
speed. The effect of the speed parameter on transition speed has been investigated by
Fukuoka et al. [46]. According to the survey, even if the acceleration was changed by
changing the speed parameter, the transition speed did not change. Other parameters need
to be investigated, but at least they do not depend on acceleration. In addition, Habu et al.
reported the relationship between the type of terrain and the transition speed [45] and,
when climbing a slope, trotting is maintained even at the speed at which a walk appears
on flat ground. Therefore, the transition speed is considered to be affected by the type of
terrain; however, note that the experimental results shown in Sections 4.2 and 4.3 were
carried out on flat ground.

5.5. Related Works

According to our research, a quadruped robot that achieves gait transitions between
walk, pace, and rotary gallop has not yet been developed. Owaki et al. [47] achieved an
autonomous gait transition between walk, pace, and rotary gallop according to speed
with a quadruped simulation model by feeding back the leg load and neck joint angle to
the CPG. However, the gait transition is determined by the movement of the head and
neck via the neck joint angle feedback, and therefore depends on the model shape (neck
length and elastic force of the neck joint). By contrast, our proposed method (vestibular
modulation) is versatile because the gait transition is caused by only the body tilt angle
feedback; therefore, it can be applied to robots without a head and neck. In addition, even if
the robot mechanism is the same, it is possible to achieve both gait transitions between walk,
trot, and transverse gallop and between walk, pace, and rotary gallop just by rearranging
the underlying CPG network. This was demonstrated in the actual robot Spinalbot, which
showed its high versatility. Furthermore, the sensor for measuring the body tilt angle is
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inexpensive, and because it is mounted on the body, the impact received by the legs is not
easily transmitted; therefore, it is considered to be excellent in mounting.

Suzuki et al. reported that a walk is generated by feedback of the joint torque to
the CPG, and that the speed increased and the energy consumption improved [48]. We
have achieved similar results in our previous work [32], which demonstrated that when
the gait transitioned from a trot to a gallop, the speed increased sharply and the energy
consumption decreased. A similar effect is expected in the gait transition from a pace to a
rotary gallop.

6. Conclusions

We achieved an autonomous gait transition between walk, pace, and rotary gallop
using a quadruped robot with a pace as the basic gait. By simply controlling the quadruped
robot with a simple method that combined central pattern generators (CPG) and feeding
the body tilt back to the CPG, walk and rotary gallop (which are not specified in the
program) emerged and autonomous gait transitions were achieved. The appearance of
walk and rotary gallop is the result of modifying the phase of each leg according to the
body vibration that changes due to the change in velocity. We have already reported that
walk and transverse gallop emerge autonomously from a CPG network with a basic gait
set to trot by using a similar method. Furthermore, in this paper, we reported that the
same gait transition phenomenon as that observed in an actual animal can be achieved
just by setting the CPG network so that the basic gait is a pace. Therefore, our proposed
method is considered to be effective for quadruped robots where the basic gaits are both
trot and pace.

By changing the value of the CPG parameter, it may be possible to change the default
gait to another gait. However, we proposed a method in which the default gait is trot or
pace, and the gait autonomously transitioned according to the locomotion state. Quadruped
robots such as Spot [19], which will soon be put into practical use, uses a trot; however,
autonomously changing its gait could make walking more stable. We consider that the
transition from pace in this paper has the same effect. Therefore, we consider that the
achievement of transitions from trot and pace, of which we claim, is sufficiently practical
for quadruped robots. In our previous works [32], we showed that it is possible to stabilize
the posture at high speeds, reduce energy consumption, and adapt to rough terrain by
making a gait transition from trot to transverse gallop. The same effects are expected by
making a gait transition from pace to rotary gallop.

As shown in Figures 10 and 14, it cannot be said that the maximum speed is fast. The
reason the maximum speed is limited is that Spinalbot does not have a spine and that each
leg has one rotary joint. Possibilities for increasing the maximum speed are the addition of
a spine and the adoption of three-joint legs, as in animals.

There are studies that achieve complex locomotion by machine learning methods [49,50].
They perform the adjustment or optimization of control parameters, including CPG param-
eters, by a learning method based on a lot of sensing information. As a result, advanced
locomotions (e.g., turning) are achieved. In our achievements, learning based on sensory
information was not applied, but the emergence of the two gaits and the stable running was
achieved. By combining the proposed method of the autonomous leg phase modulation
with the methods to determine the motion plan by machine learning, more advanced
locomotions such as turning and climbing are expected. Furthermore, a method has been
proposed to achieve walking by learning in a simulation and implementing the result on
a robot [51,52]. This method reduces the number of sensors and does not require many
experiments, but it does not allow it to run through unperceived obstacles. In our previous
work [32], we achieved galloping on unperceived rough terrain without learning. Further-
more, our proposed method only uses a single sensor unit to measure the body tilt angle
and can therefore contribute not only to achieving gait transition but also to adapting to
unperceived environments.



Robotics 2022, 11, 3 20 of 22

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/robotics11010003/s1, Video S1: Gait transition experiments.

Author Contributions: Conceptualization, Y.F.; data curation, T.F.,, S.M. and Y.H.; formal analysis,
T.E; funding acquisition, Y.E; investigation, T.F., S.M. and Y.H.; methodology, T.F. and Y.H.; project
administration, Y.F; software, T.F. and Y.H.; validation, Y.E; visualization, T.F; writing—original draft,
T.E,; writing—review and editing, T.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Japan Society for the Promotion of Science (Grant-in-Aid
for Scientific Research (C), Grant Number: 18K11489).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Yoshikazu Mori, Naoji Shiroma, and Kousuke Inoue for
their valuable comments and advice. We would like to thank our colleges for their contribution to
the results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Muybridge, E. Animal in Motion; Dover Publications: New York, NY, USA, 1957.

2. Hildebrand, M. The adaptive significance of tetrapod gait selection. Am. Zool. 1980, 20, 255-267. [CrossRef]

3. Hudson, PE.; Corr, S.A.; Wilson, A.M. High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Cains
familiaris): Spatio-temporal and kinetic characteristics. J. Exp. Biol. 2012, 215, 2425-2434. [CrossRef] [PubMed]

4. Schmiedeler, ].P.; Waldron, K.J. The mechanics of quadrupedal galloping and the future of legged vehicles. Int. J. Robot. Res. 1999,
18,1224-1234. [CrossRef]

5. Hawker, G.; Buehler, M. Quadruped trotting with passive knees: Design, control, and experiments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24-28 April 2000; pp. 24-28.

6.  Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R. BigDog, the rough-terrain quadruped robot. In Proceedings of the 17th World
Congress. The International Federation of Automatic Control (IFAC), Seoul, Korea, 6-11 July 2008; Volume 41, pp. 10822-10825.

7. Nakatani, K.; Sugimoto, Y.; Osuka, K. Demonstration and analysis of quadrupedal passive dynamic walking. Adv. Robot. 2009, 23,
483-501. [CrossRef]

8.  Santos, C.P; Matos, V. Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. Robot.
Auton. Syst. 2011, 59, 620-634. [CrossRef]

9.  Moro, EL.; Sprowitz, A.; Tuleu, A.; Vespignani, M.; Tsagarakis, N.G.; [jspeert, A.].; Caldwell, D.G. Horse-like walking, trotting
and galloping derived from kinematic motion primitives(kMPs) and their application to walk/trot transitions in a compliant
quadruped robot. Biol. Cybern. 2013, 107, 309-320. [CrossRef]

10. Gehring, C.; Coros, S.; Hutter, M.; Bloesch, M.; Hoepflinger, M.A.; Siegwart, R. Control of dynamic gaits for a quadrupedal robot.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6-10 May 2013.
[CrossRef]

11.  Sprowitz, A.; Tuleu, A.; Vespignani, M.; Ajallooeian, M.; Badri, E.; [jspeert, A.J]. Towards dynamic trot gait locomotion: Design,
control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. ]. Robot. Res. 2013, 32, 932-950. [CrossRef]

12.  Hutter, M.; Gehring, C.; Hopflinger, M.A.; Blosch, M.; Siegwart, R. Toward combining speed, efficiency, versatility, and robustness
in an autonomous quadruped. IEEE Trans. Robot. 2014, 30, 1427-1440. [CrossRef]

13. Li,M,; Jiang, Z.; Wang, P.; Sun, L.; Ge, S.S. Control of a quadruped robot with bionic springy legs in trotting gait. J. Bionic Eng.
2014, 11, 188-198. [CrossRef]

14. Koo, LM.; Trong, T.D.; Lee, Y.H.; Moon, H.; Koo, J.; Park, S.; Choi, H.R. Biologically inspired gait transition control for a quadruped
walking robot. Auton. Robot. 2015, 39, 169-182. [CrossRef]

15. Semini, C.; Barasuol, V.; Boaventura, T.; Frigerio, M.; Focchi, M.; Caldwell, D.G.; Buchli, J. Towards versatile legged robots
through active impedance control. Int. |. Robot. Res. 2015, 34, 1003-1020. [CrossRef]

16. Hyun, D], Lee, J.; Park, S.; Kim, S. Implementation of trot-to-gallop transition and subsequent gallop on the MIT Cheetah I. Int. ].
Robot. Res. 2016, 35, 1627-1650. [CrossRef]

17. Kitano, S.; Hirose, S.; Horigome, A.; Endo, G. TITAN-XIII: Sprawling-type quadruped robot with ability of fast and energy-efficient
walking. ROBOMECH ]. 2016, 3. [CrossRef]

18. Hutter, M.; Gehring, C.; Lauber, A.; Gunther, F,; Bellicoso, C.D.; Tsounis, V.; Fankhauser, P.; Diethelm, R.; Bachmann, S.; Bloesch,
M.; et al. ANYmal—Toward legged robots for harsh environments. Adv. Robot. 2017, 31, 918-931. [CrossRef]

19. Boston Dynamics, Spot. Available online: http://www.bostondynamics.com/ (accessed on 9 December 2021).


https://www.mdpi.com/article/10.3390/robotics11010003/s1
https://www.mdpi.com/article/10.3390/robotics11010003/s1
http://doi.org/10.1093/icb/20.1.255
http://doi.org/10.1242/jeb.066720
http://www.ncbi.nlm.nih.gov/pubmed/22723482
http://doi.org/10.1177/02783649922067825
http://doi.org/10.1163/156855309X420039
http://doi.org/10.1016/j.robot.2011.05.003
http://doi.org/10.1007/s00422-013-0551-9
http://doi.org/10.1109/ICRA.2013.6631035
http://doi.org/10.1177/0278364913489205
http://doi.org/10.1109/TRO.2014.2360493
http://doi.org/10.1016/S1672-6529(14)60043-3
http://doi.org/10.1007/s10514-015-9433-4
http://doi.org/10.1177/0278364915578839
http://doi.org/10.1177/0278364916640102
http://doi.org/10.1186/s40648-016-0047-1
http://doi.org/10.1080/01691864.2017.1378591
http://www.bostondynamics.com/

Robotics 2022, 11, 3 21 of 22

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.

49.

Grillner, S. Handbook of Physiology; John Wiley & Sons: Hoboken, NJ, USA, 1981; pp. 1179-1236.

Golubitsky, M.; Stewart, I.; Buono, P.L.; Collins, ].J. Symmetry in locomotor central pattern generators and animal gaits. Nature
1999, 401, 693-695. [CrossRef]

Ito, S.; Yuasa, H.; Luo, Z.W.; Ito, M; Yanagihara, D. A mathematical model of adaptive behavior in quadruped locomotion. Biol.
Cybern. 1998, 78, 337-347. [CrossRef]

Tsujita, K.; Tsuchiya, K.; Onat, A. Adaptive gait pattern control of a quadruped locomotion robot. In Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS), Maui, HI, USA, 29 October-3 November 2001. [CrossRef]
Tsujita, K.; Kobayashi, T.; Inoura, T.; Masuda, T. Gait transition by tuning muscle tones using pneumatic actuators in quadruped
locomotion. In Proceedings of the IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), Nice, France,
22-26 September 2008. [CrossRef]

Harischandra, N.; Knuesel, J.; Kozlov, A.; Bicanski, A.; Cabelguen, ].M.; Ijspeert, A.; Ekeberg, O. Sensory feedback plays a
significant role in generating walking gait and in gait transition in salamanders: A simulation study. Front. Neurorobotics 2011, 5,
3. [CrossRef]

Aoi, S.; Yamashita, T.; Tsuchiya, K. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical
and oscillator network models. Phys. Rev. E 2011, 83, 061909. [CrossRef]

Kimura, H.; Akiyama, S.; Sakurama, K. Realization of dynamic walking and running of the quadruped using neural oscillator.
Auton. Robot. 1999, 7, 247-258. [CrossRef]

Fukuoka, Y.; Kimura, H.; Cohen, A.H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological
concepts. Int. J. Robot. Res. 2003, 22, 187-202. [CrossRef]

Fukuoka, Y.; Kimura, H. Dynamic locomotion of a biomorphic quadruped’Tekken ‘robot using various gaits: Walk, Trot, Free-Gait
and Bound. Appl. Bionics Biomech. 2009, 6, 63-71. [CrossRef]

Aoi, S.; Katayama, D.; Fujiki, S.; Tomita, N.; Funato, T.; Yamashita, T.; Senda, K.; Tsuchiya, K. A stability-based mechanism for
hysteresis in the walk-trot transition in quadruped locomotion. J. R. Soc. Interface 2013, 10, 20120908. [CrossRef]

Fukuoka, Y.; Habu, Y.; Fukui, T. Analysis of the gait generation principle by a simulated quadruped model with a CPG
incorporating vestibular modulation. Biol. Cybern. 2013, 107, 695-710. [CrossRef] [PubMed]

Fukui, T.; Fujisawa, H.; Otaka, K.; Fukuoka, Y. Autonomous gait transition and galloping over unperceived obstacles of a
quadruped robot with CPG modulated by vestibular feedback. Robot. Auton. Syst. 2019, 111, 1-19. [CrossRef]

Fukuoka, Y,; Habu, Y.; Fukui, T. A simple rule for quadrupedal gait generation determined by leg loading feedback: A modeling
study. Sci. Rep. 2015, 5, 8169. [CrossRef]

Owaki, D.; Ishiguro, A. A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep.
2017, 7, 277. [CrossRef]

Kimura, H.; Shimoyama, I.; Miura, H. Dynamics in the dynamic walk of a quadruped robot. Adv. Robot. 1989, 4, 283-301.
[CrossRef]

Raibert, M.H. Trotting, pacing and bounding by a quadruped robot. . Biomech. 1990, 23, 79-81, 83-98. [CrossRef]

Sano, A.; Furusho, J. Realization of dynamic quadruped locomotion in pace gait by controlling walking cycle. In Experimental
Robotics 1I; Springer: Berlin/Heidelberg, Germany, 2005; pp. 491-502.

Homby, G.S.; Takamura, S.; Yamamoto, T.; Fujita, M. Autonomous evolution of dynamic gaits with two quadruped robots. IEEE
Trans. Robot. 2005, 21, 402-410.

Smith, J.A.; Poulakakis, I. Rotary gallop in the untethered quadrupedal robot scout II. In Proceedings of the IEEE/RS]J International
Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September—2 October 2004. [CrossRef]

Geyer, H,; Seyfarth, A.; Blickhan, R. Compliant leg behavior explains basic dynamics of walking and running. Proc. R. Soc. B
2006, 273, 861-2867. [CrossRef]

Matsuoka, K. Mechanisms of frequency and pattern control in the neural rhythm generators. Biol. Cybern. 1987, 56, 345-353.
[CrossRef]

Andersson, O.; Grillner, S. Peripheral control of the cat’s step cycle: II. Entrainment of the central pattern generators for locomotion
by sinusoidal hip movements during “fictive locomotion”. Acta Physiol. Scand. Banner 1983, 118, 229-239. [CrossRef] [PubMed]
Duysens, J.; Clarac, F.; Cruse, H. Load-regulating mechanisms in gait and posture: Comparative aspects. Physiol. Rev. 2000, 80,
83-133. [CrossRef]

Roberts, T.D. Neurophysiology of Postural Mechanisms; Butterworths: Oxford, UK, 1967.

Habu, Y;; Uta, K; Fukuoka, Y. Three-dimensional walking of a simulated muscle-driven quadruped robot with neuromorphic
two-level central pattern generators. Int. |. Adv. Robot. Syst. 2019, 16. [CrossRef]

Fukuoka, Y.; Fukino, K.; Habu, Y.; Mori, Y. Energy evaluation of a bio-inspired gait modulation method for quadrupedal
locomotion. Bioinspiration Biomim. 2015, 10, 046017. [CrossRef] [PubMed]

Suzuki, S.; Owaki, D.; Fukuhara, A.; Ishiguro, A. Quadruped gait transition from walk to pace to rotary gallop by exploiting head
movement. In International Conference on Biomimetic and Biohybrid Systems; Springer: Cham, Switzerland, 2016; pp. 532-539.
Suzuki, S.; Kano, T.; Ispeert, A J.; Ishiguro, A. Sprawling quadruped robot driven by decentralized control with cross-coupled
sensory feedback between legs and trunk. Front. Neurorobotics 2021, 14, 116. [CrossRef]

Dirr, V,; Arena, PP.; Cruse, H.; Dallmann, C.J.; Drimus, A.; Hoinville, T.; Krause, T.; Matéfi-Tempfli, S.; Paskarbeit, J.;
Patane, L.; et al. Integrative biomimetics of autonomous hexapedal locomotion. Front. Neurorobotics 2019, 13, 88. [CrossRef]


http://doi.org/10.1038/44416
http://doi.org/10.1007/s004220050438
http://doi.org/10.1109/IROS.2001.976416
http://doi.org/10.1109/IROS.2008.4651230
http://doi.org/10.3389/fnbot.2011.00003
http://doi.org/10.1103/PhysRevE.83.061909
http://doi.org/10.1023/A:1008924521542
http://doi.org/10.1177/0278364903022003004
http://doi.org/10.1155/2009/743713
http://doi.org/10.1098/rsif.2012.0908
http://doi.org/10.1007/s00422-013-0572-4
http://www.ncbi.nlm.nih.gov/pubmed/24132783
http://doi.org/10.1016/j.robot.2018.10.002
http://doi.org/10.1038/srep08169
http://doi.org/10.1038/s41598-017-00348-9
http://doi.org/10.1163/156855390X00305
http://doi.org/10.1016/0021-9290(90)90043-3
http://doi.org/10.1109/IROS.2004.1389793
http://doi.org/10.1098/rspb.2006.3637
http://doi.org/10.1007/BF00319514
http://doi.org/10.1111/j.1748-1716.1983.tb07267.x
http://www.ncbi.nlm.nih.gov/pubmed/6312752
http://doi.org/10.1152/physrev.2000.80.1.83
http://doi.org/10.1177/1729881419885288
http://doi.org/10.1088/1748-3190/10/4/046017
http://www.ncbi.nlm.nih.gov/pubmed/26241690
http://doi.org/10.3389/fnbot.2020.607455
http://doi.org/10.3389/fnbot.2019.00088

Robotics 2022, 11, 3 22 of 22

50. Manoonpong, P.; Patane, L.; Xiong, X.; Brodoline, I.; Dupeyroux, J.; Viollet, S.; Arena, P,; Serres, J.R. Insect-inspired robots:
Bridging biological and artificial systems. Sensors 2021, 21, 7609. [CrossRef] [PubMed]

51. Calandra, M.; Patane, L.; Sun, T.; Arena, P.; Manoonpong, P. Echo state networks for estimating exteroceptive conditions from
proprioceptive states in quadruped robots. Front. Neurorobotics 2021, 15, 118. [CrossRef]

52. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, 26. [CrossRef]


http://doi.org/10.3390/s21227609
http://www.ncbi.nlm.nih.gov/pubmed/34833685
http://doi.org/10.3389/fnbot.2021.655330
http://doi.org/10.1126/scirobotics.aau5872

	Introduction 
	Spinalbot Quadruped Robot and Simulated Model 
	Motion Generation Control 
	Rhythm Generation 
	CPG Model and CPG Network 
	Vestibular Modulation 

	Leg Motion Generation 

	Results 
	Speed Parameter 
	Simulated Results 
	Gait Transition from Walking to Pacing with Vestibular Modulation in Simulation 
	Gait Transition from Pacing to Galloping with Vestibular Modulation in Simulation 

	Experimental Results 
	Gait Transition from Walking to Pacing with Vestibular Modulation 
	Gait Transition from Pacing to Galloping with Vestibular Modulation 

	Vestibular Modulation Level 

	Discussion 
	Principle Emergence of Walking 
	Principle Emergence of Galloping 
	Difference between Factors behind Emergence of Walking and Galloping 
	Transition Speed 
	Related Works 

	Conclusions 
	References

