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Abstract: This paper presents a method of optimizing the design of robotic manipulators using a
novel kinematic model pruning technique. The optimization departs from an predefined candidate
linkage consisting of a initial topology and geometry. It allows simultaneously optimizing the degree
of freedom, the link lengths and other kinematic or dynamic performance criteria, while enabling the
manipulator to follow the desired end-effector position and avoid collisions with the environment or
itself. Current methods for design optimization rely on dedicated and complex frameworks, and solve
the design optimization only as decoupled from each other in separate optimization problems. The
proposed method only requires the introduction of a simple function, called a pruning function, as an
objective function of an optimization problem. The introduced pruning function transforms a discrete
topology optimization problem into a continuous problem that then can be solved simultaneously
with other continuous objectives, using readily available optimization schemes. Two applications
are presented: the optimization of a manipulator for the inspection of radio frequency cavities and a
manipulator for maintenance within the future circular collider (FCC).

Keywords: kinematics; topology; design optimization; dexterity; robotics; inspection

1. Introduction

Power plants and big industrial or scientific facilities like the European Organization
for Nuclear Research (CERN), are often confronted with very special automation problems
in complex environments for their laboratories, experiments or test rigs, see e.g., [1,2]. These
frequently lead to specific requirements that do not allow the usage of standard industrial
robots. Thus, a robotic design problem with few restrictions on the actual robot design
(topology and geometry), but with very hard requirements concerning other parameters,
such as workspace, allowed robot space, dexterity and accuracy, has to be solved.

Design optimization in robotics is a recurrent topic and has been discussed in the
literature from many different perspectives. Several publications address the continuous
optimization problem of minimizing certain deterministic (mainly kinematic or dynamic)
performance criteria for a given topology, as shown in [3–7]. All of the above mentioned ar-
ticles use different performance criteria, optimization techniques and solvers or approaches
for collision avoidance, but non of them minimize the degrees of freedom (DoF) of the me-
chanical structure. The discrete problem of minimizing the DoF/topology is solved, in the
literature, by always decoupling it from the previously mentioned continuous optimization
tasks. Extensive frameworks for structural synthesis are presented in [8,9], which start by
exploring all possible combinations of joints and links. Then, the these topologies can be
optimized with respect to deterministic performance criteria. Ref. [10] proposes a smart
framework to optimize the link lengths and other performance criteria, but mentions that
discrete criteria, such as the number of actuators, cannot be handled, since the optimization
strategy requires the first and second derivatives. Based on these findings [11] extends the
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framework in order to enable the use of discrete criteria, but the optimization of discrete
and continuous criteria are still decoupled into two separate optimization problems. Thus,
complete design optimizations, in terms of topology and geometry, currently requires
dedicated and complex frameworks that optimize both objectives only as decoupled from
each other into two separate optimization problems.

In order to alleviate the complexity problem, in the following, a synthesis approach
is presented that allows simultaneously optimizing the link length as well as the DoF.
The approach is based on a candidate linkage and a pruning method that is used to
optimize the candidate linkages. In other words, this work proposes a kinematic model
pruning technique to simultaneously optimize discrete (topology/minimizing the DoF) and
continuous criteria (link lengths, kinematic and dynamic performance criteria). The focus of
this paper is the formulation of the optimization problem, but not its numerical solution (to
this end, standard numerical solvers are applied). To achieve the simultaneous optimization
of topology and geometric parameters, a certain type of function (hereafter called the
pruning function) that facilitates the transformation from a discrete to a continuous problem,
is defined. Thus, the presented kinematic model pruning technique allows optimizing
the degrees of freedom, the robot link lengths and other kinematic or dynamic criteria,
while ensuring that the mechanical structure reaches the desired end-effector position,
avoids self collisions and collisions with its surrounding. This will be demonstrated with
two applications:

• The design optimization of a surface inspection robot for radio frequency (RF) cavities,
as used in the Large Hardron Collider (LHC), the Linear Accelerator (LINAC) or the
Future Circular Collider (FCC).

• The design optimization of a manipulator for the 100-km-long FCC.

Section 2 summarizes the goals and limitations of the design optimization. In Section 3
the methods and work flow of the proposed algorithm are presented, and Section 4
describes the generic formulation of the design optimization algorithm in detail. In
Sections 5 and 6 the proposed technique is applied to two specific problems, the cavity
inspection robot and the robotic manipulator for the FCC. The last Section 7 summarizes
the results and draws conclusions concerning the existing and future work.

2. Design Optimization Goals and Limitations

The proposed method is capable of modifying an initial and, thus, non-optimal
candidate linkage that defines a variety of possible topologies, called design space (see
Section 3.1). Simultaneously the geometry of the mechanical structure will be tuned such
that the final result provides an optimal and practically feasible solution with respect to
certain objectives:

• minimize the DoF;
• minimize the length of each robot link; and
• minimize kinematic and dynamic performance criteria of the mechanical structure.

These objectives should be optimized such that the robot is able to reach all desired
positions and avoid collisions with itself as well as with the environment. The algorithm is,
in general, applicable under following constraints:

• the topology can consist of arbitrary joint types, but only subsequent joints of the
same type can be use for reducing the DoF; and

• the additional kinematic and dynamic performance criteria subject to optimization
should, in the best case, be complementary, but never be in contradiction with
each other.

3. Methodology

Figure 1 visualizes the workflow of the proposed algorithm and shows how the
different methods are connected. The design optimization departs from a predefined
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design space (see Section 3.1), which will then be exploited by the kinematic model pruning
method (see Section 3.2) in order to find the optimal design (see Section 3.3).

Figure 1. Workflow of the Design Optimization.

3.1. Design Space

The design space describes a variety of possible topologies based on predefined
assumptions by the user. It is defined by a candidate linkage in the form of a topology and
geometric parameters, see e.g., Figure 8 and Table 1. The DoF of the predefined design
space needs to be greater than the expected optimal solution, since the algorithm is only
able to reduce, and not increase, the DoF.

3.2. Kinematic Model Pruning

The kinematic model pruning block in Figure 1 consists of a continuous optimization
problem that is to be solved using readily available optimization schemes. For detailed
information about the implementation and formulation of the optimization problem see
Section 4. However, the focus of this paper is the formulation of the optimization problem,
but not its numerical solution (to this end standard numerical solvers are applied). As
discussed in Section 1 the challenge is to combine the discrete and continuous criteria
in order to be able to formulate only one optimization problem that takes all goals from
Section 2 into account. At the core of the proposed kinematic model pruning technique is a
certain type of function called pruning function, see Definition 1. Setting this function as the
objective function enables the transformation of the discrete topology optimization problem
into a continuous problem. Therefore, the topology can be optimized simultaneously with
other continuous criteria or goals as presented in Section 2. The pruning function is a
simple vector function with two inequality constraints on the first and second derivative.

Definition 1 (pruning function). A vector function g =
[
g1(l1) g2(l2) . . . gN(lN)

]
:

RN → RN with argument p =
[
l1 l2 . . . lN

]T ∈ RN that satisfies

∂g
∂p

> 0 ∀ li > 0, i ∈ {1, 2, . . . , N} (1)

and
∂2g
∂p2 < 0 ∀ li > 0, i ∈ {1, 2, . . . , N}. (2)

Constraint (1) ensures that the design parameters will be minimized and constraint (2)
drives the design parameters to zero. In other words, constraint (2) facilitates minimization
of a discrete problem like the number of DoF in a mechanical structure. In the following
Example 1, the behavior of the rather abstract Definition 1 will be demonstrated with the
optimization of a simple two-DoF planar robotic manipulator. Furthermore, the results of
the optimization with a pruning function will be compared to the results using a quadratic
function for the objective function.

Example 1. The end effector of an N = 2 link planar manipulator with two DoF should be able to
reach exactly one point at position ‖zd‖ = 5. Note that the orientation will not be constrained, thus
creating a task redundancy. In Figure 2a the initial design, with two DoF and the link lengths la

1
and la

2, is shown. Departing from this candidate linkage, the optimization should find an optimal
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design with minimal link lengths and a minimal number of DoF, while still reaching the desired
position ‖zd‖. A corresponding optimization problem

min
x, p

J(p) = kTg(p)

s.t. f(x, p)− zd = 0,
(3)

with the objective function J(p) can be formalized. f(x, p) denotes the forward kinematics, vector
p =

[
l1 l2

]
contains the two geometric parameters or link lengths, vector x =

[
q1 q2

]
contains

the two joint angles and vector kT =
[
1 1

]
is used as a weighting factor. For demonstration

purposes, the optimization will be launched twice with different functions for g. Once with a
pruning function (see Definition 1)

e(p) =
[
e1(l1) e2(l2)

]T
=
[
arctan(l1) arctan(l2)

]T . (4)

and once with a quadratic function h : RN → RN ,

h(p) =
[
h1(l1) h2(l2)

]T
=
[
l2
1 l2

2
]T , (5)

with the well-known properties

∂h
∂p

> 0 ,
∂2h
∂p2 > 0 ∀ li > 0, i ∈ {1, 2}. (6)

Note that the second derivative of the quadratic function is, unlike for the pruning function,
greater than zero.

Figure 2. Optimization effects using different function types for J1. (a) shows the design space.
(b) shows the optimization results using a quadratic objective function. (c) shows the optimization
results using kinematic model pruning.

The optimization result, when using a quadratic objective function h, is shown in Figure 2b.
It is obvious that the optimization converges to an optimum, since the links lie on a straight line, in
Euclidean space, from the base to the desired end-effector position. However, it is also clear that only
one DoF would be sufficient to reach this position. Thus, it is easy to see that the quadratic objective
function minimizes the total length l1 + l2, but splits up this length equally over both links, such
that l1 = l2 and, hence, does not minimize the DoF.

This behavior becomes more clear when looking at the surface and contour plots of the objective
function J(p) over the variables l1 and l2 as shown in Figures 3 and 4, respectively.
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Figure 3. Surface plot of objective function J(p) = kTh(p).

Figure 4. Contour plot of objective function J(p) = kTh(p).

The black line in the l1l2 plane represents the possible combinations of l1 and l2 with which
the desired end-effector position can be reached and l1 + l2 = ‖zd‖ = 5 holds. The projection of
this line on the surface of J(p) leads to the curved line J(

[
l1, ‖zd‖ − l1

]
) from which the optimal

combination of l1 and l2 has to be chosen. The dashed red line visualizes the space of optimal
combinations of l1 and l2 for arbitrary z, which is identical to the space of combinations wherein
l1 = l2. This becomes even more clear when looking at the contour plot in Figure 4. The black line
l1 + l2 = ‖zd‖ shows a -45◦ slope and the contour lines are circles of different diameter centered at
the origin. Thus, the optimal solution can be found where the line l1 + l2 = ‖zd‖ intersects exactly
once with a contour line or in other words, where the line l1 + l2 = ‖zd‖ is a tangent to the contour
line. For arbitrary z, this leads to optimal solution l1 = l2.

In order to minimize the DoF the distance should not be split up equally, but assigned to only
one link, while the other link length will be set to zero. The corresponding joint to this link can
then be removed, which means decreasing the DoF by one. This behavior can be achieved by using a
pruning function (see Definition 1), specifically (4) for g in (3). Running the same optimization
problem again with the new objective function, the total link length l1 + l2 is still a minimum
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(straight line in Euclidean space), but is now assigned to only one link. This indicates that not more
than one DoF is necessary to reach the position z (see Figure 2c). Thus, the corresponding joint i
with li = 0 can be removed and the link lengths, and the DoF is minimized.

Again, this behavior becomes more clear when looking at the surface and contour plots of the
objective function J(p) over the variables l1 and l2, as shown in Figures 5 and 6, respectively.

Figure 5. Surface plot of the objective function J(p) = kTe(p).

The black line in the l1l2 plane represents the possible combinations of l1 and l2 with which
the desired end-effector position can be reached, and l1 + l2 = ‖zd‖ = 5 holds. The projection of
this line on the surface of J(p) leads to the curved line J(

[
l1, ‖zd‖ − l1

]
) from which the optimal

combination of l1 and l2 has to be chosen. The dashed red lines visualize the space of optimal
combinations of l1 and l2 for arbitrary z. Compared with Figure 3 it can now be seen that for every
zd two solutions (l1 = 0, l2 = ‖zd‖) and (l1 = ‖zd‖, l2 = 0) with the same priority (for the
special case kT =

[
1 1

]
) exist. Both solution lie at the lower boundaries of the parameters l1

and l2. This becomes even more clear when looking at the contour plot in Figure 6. The black line
l1 + l2 = ‖zd‖ shows again a −45◦ slope, but now the contour lines are shaped in way such that
the optimal solutions lie at the boundaries of l1 + l2 = ‖zd‖. The optimal solution can be found
by restricting the parameters with upper bounds in the optimization problem leading to only one
solution e.g., (l1 = ‖zd‖, l2 = 0).
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Figure 6. Contour plot of objective function J(p) = kTe(p).

3.3. Optimal Design

The optimal design consists of the original topology, as defined in the design space,
plus a set of optimal design parameters or geometric parameters. If one of the geometric
parameters is driven to zero by the kinematic model pruning method, then this indicates a
possible reduction of DoF and the corresponding joint can be removed.

4. Formulation of the Design Optimization Problem

In the following, the implementation and formulation of the optimization problem
will be shown in more detail. In this section the problem is described in a generic manner
in order to allow an easy extension of the problem with e.g., performance criteria that were
not considered in this work. Specific implementations for certain problems are presented
in Sections 5 and 6. In Section 4.1 a parameterized model of the initial mechanical structure,
including kinematics and dynamics, are defined. General assumptions on the collision
avoidance are discussed in Section 4.2. The formulation of the optimization problem is
shown in Section 4.3 and the applied objective function is described in Section 4.4.

4.1. Kinematic and Dynamic Model

The forward kinematics f : Rnµ → R6µ, with degrees of freedom n and µ in Cartesian
positions, can be written in the form

z = f(x, p), (7)

with the Cartesian positions and orientations z ∈ R6µ, the N geometric parameters
p ∈ RN and the generalized joint coordinates q ∈ Rn for every Cartesian position
written in vector

x =
[
qT

1 qT
2 . . . qT

µ

]T
∈ Rnµ. (8)

An explicit solution for the inverse kinematics is not computed, since it will be taken
into account by non-linear equality constraints in the optimization problem.

The forward dynamics or the equation of movement for the entire robot can be
written as

M(p, q)q̈ + g(p, q, q̇) = Q, (9)

with the mass matrix M(p, q), the non-linear term g(p, q, q̇) containing gravitational,
centrifugal and Coriolis terms and the actuator and external forces and torques Q.
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4.2. Collision Avoidance

To reduce the computational cost of the simulation, it was assumed that the mechanical
design either prevents two consecutive links to collide or the collision avoidance is handled
by bounds on the corresponding joint angles. Thus, for an nR serial-link robot

cRR =
1
2

nR!
(nR − 2)!

(10)

self collisions and, in general,
cRE = nRnE (11)

collisions with the nE environment have to be monitored.

4.3. Problem Formulation

The optimization was set up as a non-linear global optimization problem with non-
linear equality and inequality constraints

min
x, p

J(x, p)

s.t. f(x, p)− zd = 0
−c(x, p) ≤ 0
ub(x, p) ≤ 0
lb(x, p) ≤ 0

(12)

with the objective function J(x, p) and the N geometric parameters or link lengths of the
candidate linkage

p =
[
l1 l2 . . . lN

]T ∈ RN . (13)

The vector x, see (8), contains the generalized coordinates in joint space for µ different
desired Cartesian positions

zd =
[
zT

d,1 zT
d,2 ... zT

d,µ

]T
∈ R6µ. (14)

The inverse kinematics is included with the equality constraint

f(x, p)− zd = 0. (15)

The vector function
c(x, p) ∈ RcRR+cRE (16)

contains the minimal distances according to self-collisions and collisions with the environ-
ment. The vector functions

ub(x, p), lb(x, p) ∈ Rnµ+N (17)

are upper and lower bounds on the joint angles and link lengths.

4.4. Objective Function

As already discussed in Section 2, the desired objective function should minimize the
DoF, the robot link lengths and other kinematic and dynamic performance criteria. This is
expressed as linear combination of the objectives

J(x, p) = kTg(p)︸ ︷︷ ︸
J1(p)

+ ΓT(x, p)KΓ(x, p)︸ ︷︷ ︸
J2(x, p)

. (18)
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In the following Sections 4.4.1 and 4.4.2 the intended effects of J1 and J2 on the
optimization problem are discussed. The term J1 penalizes the length of the robot links
with a mapping g : RN → RN and the weighting factor k ∈ RN . The term J2 represents ν
kinematic and dynamic criteria summarized in Γ(x, p) ∈ Rnµν, which is weighted with
the diagonal matrix K ∈ R(nµν)×(nµν).

4.4.1. Minimizing the DoF and Link Lengths

The term J1 penalizes the robot link lengths in a way such that both the link lengths
and the DoF of the robot are minimized. This requires a specific type of function, called
pruning function (see Definition 1), for g in (18). A more detailed demonstration of the
behavior of pruning functions is shown in Example 1. As a result, the total link length
of the mechanical structure is minimized and, if possible (with respect to all constraints),
geometric parameters are driven to zero and, thus, indicate a possible reduction of DoF.

4.4.2. Minimizing Kinematic and Dynamic Performance Criteria

The term J2 of (18) accounts for arbitrary kinematic or dynamic criteria summarized
in vector Γ(x, p) and multiplied with a weighting matrix K. It is important that multiple
criteria do not contradict each other or, in the best case, are complementary, in order to avoid
ill-conditioned optimization problems. Possible criteria are the motor torque, distance
from singularities, error propagation through the mechanical structure or kinematic and
dynamic manipulabilities. Examples for such criteria are shown in Sections 5.3 and 6.2.

5. Application: Cavity Inspection Robot

Radio frequency cavities (see Figure 7) perform the linear acceleration of charged
particles in straight sections of accelerator machines and, thus, make up one of the key
elements in a collider complex [12]. The cavities structure and geometry define their
specific radio-frequency at which the strong electromagnetic field, created inside the tubes,
oscillates to accelerate each particle passing through. The inner surface quality of the
cavities is critical for withstanding high energy densities, since every scratch or crack leads
to higher local resistance and, thus, a rapid increase in temperature during operation and,
in the end, to the failure of the system. Therefore, some kind of automated, mechanical
structure has to follow the complex cavity geometry and take records of the surface quality
after full assembly of the cavities. Finding the optimal topology of such a mechanical
structure with respect to certain constraints, such as collision avoidance for different cavity
types and minimal error propagation in direction perpendicular to the cavity surface, is a
perfect example of the generic problem described in Section 1. Currently, several different
system have been developed and are able to partially scan cavities (see [13–16]). However,
those previously developed cavity inspection systems were extensively tested at CERN
but did not satisfy the specific requirements concerning the level of automation, accuracy,
repeatability and how much of the inner cavity surface could be inspected and mapped.
The first prototype of the system developed at CERN and presented in [1] was not able to
scan all three cavities with one robotic arm, but had to use two different arms. The aim
of this design optimization is to find one topology and geometry that can handle all three
cavity types and thus increase robustness and level of automation while decreasing the
cost of such a system.

The main challenge for a robotic system is the complex workspace and, especially,
the difference in diameter of the entrance of the smallest cavity (FCC) and the point with
maximum diameter of the biggest cavity (LHC). Furthermore, the system has to detect surface
anomalies of only 10 µm. A 18MP camera with liquid lens, allowing it to focus between 20
to 25 mm, is used. In order to provide one full image of the inner surface, the cavities are
rotated around their axes of symmetry, while robotic manipulators are inserted along these
axes. The pictures are stitched together after the inspection. Thus, the accuracy error of the
end-effector position tangential to cavity surface should be not more than 1.2 mm to obtain
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only 10% overlapping error and not more than 1mm in the direction perpendicular to the
cavity surface, which otherwise changes the contained surface area in the image.

Figure 7. Cavity types for FCC, LINAC and LHC (left to right, all units in mm).

In Section 5.1 the initial model and geometry and the projection equation [17] to derive
the equation of motion is described. Section 5.2 illustrates the collision-checking procedure
and Section 5.3 presents the applied kinematic criteria for this example. Then, the initial
states and results of the optimization are shown in Sections 5.4 and 5.5, respectively.

5.1. Model

The surrogate model defining the design space has been set up with one translational
and four rotational joints with parallel rotation axes, summing up to five DoF, as shown in
Figure 8. Table 1 lists the initial link lengths, where li,j describes the lengths from joint i to
joint j. These lengths are evaluated by launching an optimization problem, as described
in Section 5.4, that returns feasible initial states. This initial set up has been used as the
starting point for the actual optimization problem in (12).

Figure 8. Design space.

Table 1. Initial geometry.

Length [mm]

l2,3 144.6
l3,4 80.3
l4,5 80.3
l5,E 16.0

The generalized joint coordinates are set to

q =
[
q1 q2 q3 q4 q5

]T ∈ R5×1 (19)

and the desired Cartesian position and orientation are

zd =
[
xd yd γd

]T ∈ R3×1, (20)
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with the position xd and yd and the orientation around the z-axis γd always keeping the
end-effector orientation perpendicular to the cavity surface. The optimization parameter is
set to

x =
[
qT

1,1 . . . qT
1,µ qT

2,1 . . . qT
2,µ qT

ncav ,1 . . . qT
ncav ,µ

]T
, (21)

with the ncav = 3 different cavities and µ different positions leading to x ∈ R(nµncav)×1. The
parameter vector is defined as

p =
[
l2,3 l3,4 l4,5 l5,E

]T . (22)

5.2. Collision Avoidance

The collisions between robot and environment are calculated by discretizing the cavity
surfaces and checking the minimal distances between robot links and points on the cavity
surface. First, all points on the cavity surface are transformed into the body fixed coordinate
frames for each robot link and then, to decrease the computation time, only points that can
possibly collide and, thus, lie in the selected points area (see Figure 9) are considered. The
minimal value of the projection of all possible collision points onto the y axis of the body-
fixed coordinate frame is considered the minimal distance. Collisions are taken into account
in the function c(x, p) in (12). Self collisions between robot links are not considered, since
it is assumed that this is mechanically impossible, as known from Scara robots.

Figure 9. Collision detection for one robot link.

5.3. Kinematic and Dynamic Performance Criteria

It is crucial for the cavity inspection robot to provide a very stable base for the camera
that is being used for the inspection process, since the errors that should be detected in
the surface can be only micro fractures. Thus, the term J2 of (18) is set up to optimize
the error propagation through the mechanical structure in a certain direction of interest.
Error propagation describes how errors that originate in joint space are being forwarded to
the end-effector, such as, e.g., gear elasticity, backlash or control oscillations. This can be
quantified using the directional kinematic manipulability [18]

wj =
3

∑
i=1

∣∣∣nT
j uj,iσj,i

∣∣∣ (23)

with the unit vector nj representing the direction of interest (perpendicular to the cavity
surface) and the major and minor axes of the manipulability ellipsoid σj,iuj,i obtained from
the singular value decomposition of the geometric Jacobian

J(q, p) =

[(
∂vE
∂q̇

)T(∂ωE
∂q̇

)T
]T

, (24)
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with the linear and angular end-effector velocities vE and ωE, respectively. Looking at the
mapping from joint to Cartesian space via the Jacobian and replacing the small changes in
joint angles ∆q with an error e, the error in Cartesian space is

∆ze = J(q)e. (25)

Thus, for a robot in a singular configuration such as the two-link arm in Figure 2b, the
error propagation in direction of the eigenvector corresponding to the smallest singular
value is zero and, thus, the repeatability only depends on manufacturing tolerances of the
mechanical parts of the robot. This means that the optimization algorithm prefers configu-
rations for which the repeatability is less dependent on the quality of gears or control.

Finally, the directional kinematic manipulability measure can be written in vector
form according to (18) as

Γ(x, p) =
[
w1 w2 ... wµ

]T , (26)

with the weighting martix K ∈ Rµ×µ.

5.4. Initial Configuration

The initial states, such as joint angles and link lengths, heavily influence the perfor-
mance of optimization algorithms. It is important to provide feasible (in terms of the given
constraints) initial states as a starting point for the optimization solvers. Starting points
can be generated by either an inverse kinematics method or, as is done here, by running
the optimization with the objective function (18) set to J(x, p) = 0. Thus, the initial states
are feasible with respect to all constraints, but non-optimal. The initial configurations and
link lengths used as a starting point for the optimization solvers are shown for the three
cavities in Figures 10–12.

The black curves represent the cavities and the colored lines represent the robot
links. The gray circles indicate the desired end-effector position (xd, yd) from vector
zd =

[
xd yd γd

]T .

Figure 10. Initial states for the LINAC cavity (units in m).
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Figure 11. Initial states for the LHC cavity (units in m).

Figure 12. Initial states for the FCC cavity (units in m).

5.5. Optimization Results

The optimization depart from starting points defined for every desired end-effector
position and cavity. The starting points have been found by an optimization (described
in Section 5.4) and include an initial topology and geometry, as well as the configuration
of the arm. Matlab’s fmincon function is internally used as a local optimization solver,
in this case, applying the interior-point algorithm [19]. The MultiStart and GlobalSearch
methods are applied to solve the global optimization problem [20]. In a comparison with
evolutionary algorithms, the GlobalSearch and MultiStart methods leads to better results.

In Section 5.5.1 the design optimization is launched using only the LINAC environ-
ment for demonstration purposes and in Section 5.5.2 the robotic arm is optimized to
operate in all three cavities.

5.5.1. LINAC Cavity

Here, the design optimization is done only for the LINAC cavity in order to demon-
strate the behaviour of the algorithm with a simpler, and, hence, more intuitive example.
The initial states match the ones presented in Figure 10 and the corresponding optimized
design is visualized in Figure 13.

As mentioned in Section 5.1 the desired Cartesian position and orientation z ∈ R3

is of dimension three and, thus, a mechanical structure with exactly three DoF is able to
reach all desired end-effector positions z in an environment without obstacles or other
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constraints. As shown in Figure 13 the restriction caused by the LINAC cavity allows a
three-DoF robotic arm to reach all positions. Thus, the optimization reduces the tentative
topology by two DoF, which is visible in Figure 14, but more clear in Table 2, where the
lengths set to zero correspond to the removed DoF.

Figure 13. Optimized design for the LINAC cavity (units in m).

Figure 14. Optimized topology-LINAC.

Table 2. Optimized geometry-LINAC.

Length [mm]

l1,2 q1
l2,3 0
l3,4 0
l4,5 117.3
l5,E 50.5

Furthermore, the length of the robotic arm has been minimized, as becomes clear
when looking at the furthest point and observing that all links lie on a straight line from
joint 2 to the desired end-effector position, and that this line is perpendicular to the x axis.
In Figure 14 the schematic drawing of the optimal topology is shown with some joints
coinciding with others and, thus, illustrating the reduction of DoF.

5.5.2. Full System

The design optimization for the full system is performed by considering all three
cavities as collision objects in the non-linear inequality constraints of the optimization
problem. Again, the results of the optimization are shown in Figures 15–17 for the LINAC,
LHC and FCC respectively, where the colored lines represent the robot links, the black
curves indicate the surface of the cavities and the gray circles show the desired end-effector
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positions. The resulting topology is shown in Figure 18 and the corresponding link lengths
are listed in Table 3.

As is clearly visible in Table 3, at least one link length is set to zero, which means that
our requirement for the tentative topology of starting the design optimization with at least
one DoF higher than the expected optimal solution holds and, thus, an optimized design
for the robotic arm has been found.

Figure 15. Optimized design for the LINAC cavity (units in m).

Figure 16. Optimized design for the LHC cavity (units in m).

Figure 17. Optimized design for the FCC cavity (units in m).



Robotics 2022, 11, 31 16 of 21

Figure 18. Optimized topology.

Table 3. Optimized geometry.

Length [mm]

l1,2 q1
l2,3 0
l3,4 221.0
l4,5 51.0
l5,E 50.0

6. Application: FCC Manipulator

A detailed report on the design optimization of the FCC Manipulator (a robotic
system for CERN’s Future Circular Collider) has already been published in [2]. Here,
only a brief summary of the assumptions and results are presented to demonstrate the
algorithms capabilities.

The Future Circular Collider (FCC) is suggested to unlock observations in higher
energy ranges than it is possible, now, with the current accelerator machines at CERN [21].
This particle accelerator is able to generate a center-of-mass energy of 100 TeV and has a
planned circumference of 100 km (see [22,23]). The 2020 Update of the European Strategy
for Particle Physics has listed the further investigation of the FCC as one of three main
priorities and, thus, have launched a Technical Design Report (TDR). One of the studies
that has been launched within the TDR concerns the automation of maintenance, inspection
and emergency handling along the 100-km-long FCC tunnel. The automation of these
tasks plays a significant role for downtime, reliability and safety of particle accelerators
and decreases the radiation exposure of workers.

The tasks such an automated system has to handle and the environment it must
operate in are well defined, but no restrictions on the actual design of the manipulator
in terms of topology and geometry are given. Thus, the presented algorithm has been
applied to optimize the tentative design of the FCC robot. In Section 6.1 the model and
some assumptions are described. In Section 6.2 the applied objective function, in terms
of kinematic and dynamic criteria, is analyzed and finally some results are shown in
Section 6.3.

6.1. Manipulator and Environment

The process of defining the surrogate model, as shown in Figure 19, is described
in detail in [2]. Here, it should just be mentioned that joints 1 and 2 are translational
joints, 3–6 and 7–10 form two planar mechanisms in order to fold the arm. Joints 11–13
represent a robotic wrist and, thus, the solution for its position and orientation can be
decoupled in point 12, which simplifies the optimization problem. The planar chains
allow for minimizing the link lengths between joints with parallel axes, and, thus, possibly
eliminating joints connected by links with zero length, hence, eventually reducing the DOF.
The initial link lengths in Table 4 have been found by the same means as described in
Section 5.4.
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Figure 19. Design space using VDI2861 (from [2] under CC BY-NC-ND 4.0).

Table 4. Initial geometry.

Length [mm]

l1,2 q2
l2,4 288
l4,5 500
l5,6 500
l6,8 400
l8,9 400
l9,10 400
l10,12 200
l12,E 100

The environment of the FCC tunnel and the robot have been approximated by convex
geometric primitives; here, specifically, by Matlab’s AlphaShapes [24], which can easily
be passed to a function to calculate the minimal distance between two AlphaShapes. The
approximation of the FCC environment with cylinders and boxes is indicated by red,
dashed lines in Figures 20 and 21 for the FCC-ee and FCC-hh machines, respectively. The
manipulator should be able to reach all points of interest (I–V), which represents the most
diverse remote maintenance tasks at the current Large Hadron Collider—LHC, see [25–28].

Figure 20. FCC-ee Cross Section Layout (units in m, from [2] under CC BY-NC-ND 4.0).



Robotics 2022, 11, 31 18 of 21

Figure 21. FCC-hh Cross Section Layout (units in m, from [2] under CC BY-NC-ND 4.0).

6.2. Kinematic and Dynamic Performance Criteria

A main objective for the design of the manipulator is to reduce the motors’ torques,
since the workspace, shown in Figures 20 and 21, requires a relatively long robotic arm,
compared with the desired payload and weight of the robot. Thus, the dynamic measure
applied in term J2 in the objective function (18) is the motor torque of each joint. A dynamic
robot model in the form (9) is used and included in the objective function (18) with

Γ(x, p) = Q(q, q̇, q̈, p) (27)

and the weighting matrix K ∈ Rn×n.

6.3. Optimization Results

The final results of the design optimization shows a reduced topology by two DoF.
This is shown in Figure 22 by the coinciding joints 5/6 and 8/9, which correspond to the
lengths l5,6 = l8,9 = 0 in Table 5 of the optimized geometry. In Figures 23 and 24 the
optimization results are visualized using the collision objects (AlphaShapes) for the two
different accelerator machines, FCC-ee and FCC-hh.

Figure 22. Optimized topology using VDI2861 (from [2] under CC BY-NC-ND 4.0).
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Figure 23. Optimization results FCC-ee (from [2] under CC BY-NC-ND 4.0).

Figure 24. Optimization results FCC-hh (from [2] under CC BY-NC-ND 4.0).

Table 5. Optimized geometry.

Length [mm]

l1,2 q2
l2,4 288
l4,5 927
l5,6 0
l6,8 754
l8,9 0
l9,10 635
l10,12 518
l12,E 100

7. Discussion and Conclusions

A kinematic model pruning method has been presented that allows transforming
discrete optimization criteria into a continuous representation and, thus, enables simul-
taneous optimization of the topology and geometric parameters. The method has been
demonstrated for serial mechanical structures and, therefore, covers a wide variety of
robotic manipulators. The algorithm uses well-known and readily available optimization
schemes without any additional, complex frameworks. The simplicity of the presented
kinematic model pruning method is surely one of its main advantages, next to the simul-
taneous optimization of all additional criteria. It is especially simple, since no inverse
kinematics are computed and, for the case without additional dynamic performance cri-
teria, no dynamic model is needed. Thus, this method can be performed providing only
the forward kinematics and (if necessary) collision detection. This allows for very quick
prototyping and one does not have to rely on either complex frameworks or an “edu-
cated guess” for a new manipulator design, but, instead, can quickly produce quantified
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results based on deterministic performance criteria. As demonstrated with examples in
Sections 5 and 6, the algorithm has led to good results for both the cavity inspection arm
and the FCC Manipulator.

The choice of additional kinematic and dynamic criteria needs to be made carefully
in order to not generate ill-conditioned optimization problems or even contradictions
with the requirements. The weighting matrices in (18) have a major impact on the final
results and can, as well, lead to infeasible solutions, in certain cases. Finding guidelines
for these optimization parameters based on the mechanical structure and environment
would simplify this heuristic process. The current implementation only allows for DoF
reduction on two subsequent joints of the same type. An extension of the presented
method to a more general use case, including closed kinematic chains, will be the subject
of future work. Furthermore, a more general study on stability, convergence rates and
the effects of different optimization schemes applying the proposed pruning function will
be investigated.

Author Contributions: Formal analysis, H.G. (Hannes Gamper); Methodology, H.G. (Hannes Gam-
per); Supervision, H.G. (Hubert Gattringer), A.M. and M.D.C.; Validation, A.L.; Writing—original
draft, H.G. (Hannes Gamper) and A.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DoF degrees of freedom
LHC Large Hadron Collider
LINAC linear accelerator
RF radio frequency
FCC Future Circular Collider
FCC-ee/-hh Future Circular Collider-lepton/-hadron machine layout

References
1. Luthi, A.; Macpherson, A.; Rosario Buonocore L. ; Gamper H. ; DiCastro, M. Camera Placement in a Short Working Distance

Optical Inspection System for RF Cavities. In Proceedings of the International Conference on RF Superconductivity, Virtual
Conference, 28 June–2 July 2021.

2. Gamper, H.; Gattringer, H.; Müller, A.; Di Castro, M. Design Optimization of a Manipulator for CERN’s Future Circular Collider
(FCC). In Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics—ICINCO 2021,
Online, 6–8 July 2021; pp. 320–329. [CrossRef]

3. Kelaiaia, R.; Company, O.; Zaatri, A. Multiobjective optimization of a linear Delta parallel robot. Mech. Mach. Theory 2012,
50, 159–178. [CrossRef]

4. Bi, Z.M.; Zhang, W.J. Concurrent optimal design of modular robotic configuration. J. Robot. Syst. 2001, 18, 77–87. [CrossRef]
5. Henry, R.; Chablat, D.; Porez, M.; Boyer, F.; Kanaan, D. Multi-Objective Design Optimization of the Leg Mechanism for a Piping

Inspection Robot. In Proceedings of the 38th Mechanisms and Robotics Conference, Buffalo, NY, USA, 17–20 August 2014;
Volume 5A. [CrossRef]

6. Van Henten, E.; Van’t Slot, D.; Hol, C.; Van Willigenburg, L. Optimal manipulator design for a cucumber harvesting robot.
Comput. Electron. Agric. 2009, 65, 247–257. [CrossRef]

7. Lum, M.J.; Rosen, J.; Sinanan, M.N.; Hannaford, B. Kinematic optimization of a spherical mechanism for a minimally invasive
surgical robot. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA; 26
April–1 May 2004; Volume 2004, pp. 829–834. [CrossRef]

8. Schappler, M.; Ortmaier, T. Dimensional Synthesis of Parallel Robots: Unified Kinematics and Dynamics using Full Kinematic
Constraints. In Proceedings of the Sechste IFToMM D-A-CH Konferenz 2020, Lienz, Austria, 27–28 February 2020; Volume 2020.
[CrossRef]

http://doi.org/10.5220/0010601803200329
http://dx.doi.org/10.1016/j.mechmachtheory.2011.11.004
http://dx.doi.org/10.1002/1097-4563(200102)18:2<77::AID-ROB1007>3.0.CO;2-A
http://dx.doi.org/10.1115/DETC2014-34057
http://dx.doi.org/10.1016/j.compag.2008.11.004
http://dx.doi.org/10.1109/robot.2004.1307252
http://dx.doi.org/10.17185/duepublico/71211


Robotics 2022, 11, 31 21 of 21

9. Rodriguez, D.A.R. Automatic Generation of Task-Specific Serial Mechanisms Using Combined Structural and Dimensional Synthesis;
Institutionelles Repositorium der Leibniz Universität Hannover: Hannover, Germany; 2018. [CrossRef]

10. Ha, S.; Coros, S.; Alspach, A.; Kim, J.; Yamane, K. Computational co-optimization of design parameters and motion trajectories
for robotic systems. Int. J. Robot. Res. 2018, 37, 1521–1536. [CrossRef]

11. Whitman, J.; Choset, H. Task-Specific Manipulator Design and Trajectory Synthesis. IEEE Robot. Autom. Lett. 2019, 4, 301–308.
[CrossRef]

12. CERN. Accelerating: Radiofrequency Cavities. Available online: https://home.cern/science/engineering/accelerating-radiofreq
uency-cavities (accessed on 2 December 2021).

13. Watanabe, K. Review of optical inspection methods. In Proceedings of the 14th International Conference on RF Superconductivity,
Berlin-Dresden, Germany, 20–25 September 2009.

14. Wenskat, M. Automated optical inspection and image analysis of superconducting radio-frequency cavities. J. Instrum. 2017, 12,
1–10. . [CrossRef]

15. Lemke, M.; Elsen, E.; Aderhold, S.; Cornett, U.; Falley, G.; Karstensen, S.; Külper, T.; Navitski, A.; Schaffran, J.; Schlander, F.; et
al. Optical Bench for Automated Cavity Inspection with High Resolution on Short Time Scales. ILC-HiGrade-Reports 2013.
Available online: https://bib-pubdb1.desy.de/record/166454/files/ILC-HiGrade-2013-001-1.pdf?version=1 (accessed on 14
December 2021).

16. Iwashita, Y.; Tajima, Y.; Hayano, H. Development of High Resolution Camera for Observations of Superconducting Cavities. Rev.
Mod. Phys. Sept. 2008. [CrossRef]

17. Gattringer, H. Starr-Elastische Robotersysteme; Springer: Berlin/Heidelberg, Germany, 2011.
18. Nait-Chabane, K.; Hoppenot, P.; Colle, E. Directional Manipulability for Motion Coordination of an Assistive Mobile Arm. In

Proceedings of the 4th International Conference on Informatics in Contronl, Automation and Robotics, Angers, France, 9–12 May
2007.

19. Byrd, R.H.; Hribar, M.E.; Nocedal, J. An Interior Point Algorithm for Large-Scale Nonlinear Programming. SIAM J. Optim. 1999,
9, 877–900. [CrossRef]

20. Ugray, Z.; Lasdon, L.; Plummer, J.; Glover, F.; Kelly, J.; Marti, R. Scatter Search and Local NLP Solvers: A Multistart Framework
for Global Optimization. INFORMS J. Comput. 2007, 19, 328–340. [CrossRef]

21. CERN. Future Circular Collider (FCC). Available online: https://home.cern/science/accelerators/future-circular-collider
(accessed on 8 December 2021).

22. CDR. FCC-ee: The Lepton Collider. Eur. Phys. J. Spec. Top. 2019, 228, 261–623. [CrossRef]
23. CDR. FCC-hh: The Hadron Collider. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [CrossRef]
24. The MathWorks Inc., Matlab Version 2019, Computer software. Available online: https://ch.mathworks.com/ (accessed on 10

July 2021).
25. Bestmann, P.; CERN The Control of the LHC Alignment Using a Robot, CERN-TS-NOTE-2008-020. May 2008. Available online:

https://cds.cern.ch/record/1119514 (accessed on 2 December 2021)
26. Missiaen, D.; Steinhagen, R.; Quesnel, J. The Alignment of the LHC. In proceedings of the 23rd Particle Accelerator Conference,

Vancouver, BC, Canada, 4–8 May 2009.
27. Valentino, G.; Aßmann, R.; Bruce, R.; Redaelli, S.; Rossi, A.; Sammut, N.; Wollmann, D. Semiautomatic beam-based LHC

collimator alignment. Am. Phys. Soc. 2012, 15, 051002. [CrossRef]
28. Bajko, F.B.M. Report of the Task Force on the Incident of 19 September 2008 at the LHC; LHC Project Report 1168; 2009. Available

online: https://inspirehep.net/literature/824814 (accessed on 2 December 2021).

http://dx.doi.org/10.15488/4571
http://dx.doi.org/10.1177/0278364918771172
http://dx.doi.org/10.1109/LRA.2018.2890206
https://home.cern/science/engineering/accelerating-radiofrequency-cavities
https://home.cern/science/engineering/accelerating-radiofrequency-cavities
http://dx.doi.org/10.1088/1748-0221/12/05/P05016
https://bib-pubdb1.desy.de/record/166454/files/ILC-HiGrade-2013-001-1.pdf?version=1
http://dx.doi.org/10.1103/PhysRevSTAB.11.093501
http://dx.doi.org/10.1137/S1052623497325107
http://dx.doi.org/10.1287/ijoc.1060.0175
https://home.cern/science/accelerators/future-circular-collider
http://dx.doi.org/10.1140/epjst/e2019-900045-4
http://dx.doi.org/10.1140/epjst/e2019-900087-0
https://ch.mathworks.com/
https://cds.cern.ch/record/1119514
http://dx.doi.org/10.1103/PhysRevSTAB.15.051002
https://inspirehep.net/literature/824814

	Introduction
	Design Optimization Goals and Limitations
	Methodology
	Design Space
	Kinematic Model Pruning
	Optimal Design

	Formulation of the Design Optimization Problem
	Kinematic and Dynamic Model
	Collision Avoidance
	Problem Formulation
	Objective Function
	Minimizing the DoF and Link Lengths
	Minimizing Kinematic and Dynamic Performance Criteria


	Application: Cavity Inspection Robot
	Model
	Collision Avoidance
	Kinematic and Dynamic Performance Criteria
	Initial Configuration
	Optimization Results
	LINAC Cavity
	Full System


	Application: FCC Manipulator
	Manipulator and Environment
	Kinematic and Dynamic Performance Criteria
	Optimization Results

	Discussion and Conclusions
	References

