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Abstract: This paper aims to improve the positioning accuracy of serial industrial manipulators
using force feedback in manufacturing processes by implementing an elasto-geometrical model-
based control. Initially, the real-time position control strategy using a force feedback to elastically
correct the Tool Center Point (TCP) pose of serial industrial manipulators is detailed. To continue, an
efficient model structure identification and calibration is proposed to shorten the elasto-geometrical
modeling process. The Virtual Joint Method (VJM) is chosen to iterate and complete the robot stiffness
modeling. This method considers that the elastic deformations are only localized at the joints of
the robot. An appropriate and original test-model approach allows a minimum of optimization
iterations to find the best compromise between complexity and accuracy of the modeling. The
proposed approach is illustrated in detail by the Stäubli TX200 robot modeling. Finally, the reliability
and responsiveness of the developed control framework is then evaluated through experimental
tests in an Incremental Sheet Forming (ISF) context. An average improvement of 70% in trajectory-
tracking accuracy is achieved during these tests. Overall, the high accuracy and responsiveness of
the developed system demonstrate a promising potential for deploying industrial manipulators to a
cost-effective manufacturing processes in industry 4.0.

Keywords: elasto-geometrical model; joint stiffness; robotized manufacturing processes; trajectory-
tracking accuracy; force-feedback control; model structure identification; calibration; incremental
sheet forming

1. Introduction

Current research in manufacturing processes for Industry 4.0 is enhancing Computer-
Aided Manufacturing (CAM) techniques to lower the environmental, human time and
investment cost of producing a good-quality part [1]. For this purpose, the research
field is transitioning from relying exclusively on traditional CNC machines toward us-
ing much more versatile and affordable industrial manipulators. In process conditions
(e.g., Friction Stir Welding (FSW), Incremental Sheet Forming (ISF), machining or any
robotic manufacturing process), the interaction between the tool and its environment brings
up the challenge of accurate robot positioning. Indeed, the trajectory of the tool during
CAM has to be precisely and accurately controlled to produce the desired part from its
Computer-Aided Design (CAD) model. When a given wrench is applied on the tool, the
elastic deformation of the machine lowers the global positioning accuracy, especially for
industrial serial manipulators undergoing high process loads.

To cope with external wrenches and compensate for the elastic deformation of a robot,
several methods are used, each suited to different industrial applications:

1. Robot category upgrade;
2. Absolute pose feedback control;
3. Force control;
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4. Model-based compensation.

The first method is to directly change the machine used to overdesign its stiffness
characteristics. By upgrading the category of the robot with regard to its payload capacity,
the elastic deformation will decrease for the same range of wrenches applied [2].

The second method is to implement an absolute position feedback control, usually
relying on external sensors [3–5]. Most commonly, the tool is tracked by an exteroceptive
sensor (for instance, a laser tracker [6], an encoder [7] or a 3D camera [8,9]), and the position
feedback enables real-time compensation for the robot’s inaccuracy. This method achieves
up to a 70% accuracy improvement by using a laser tracker with heavy-duty robots [6].
Another use of position feedback is to perform deformation-tracking impedance control
coupled with an Extended Kalman Filter [10]. Other research studies use proprioceptive
sensors such as double encoders on each joint to measure the angular displacement before
and after the motorized body [11,12]. This technique only compensates for the elasticity of
the actuated joints and implies a specific robotic design to integrate the second encoder on
each joint.

The third method is a force control loop which uses the common force sensor present
in most robots to actively control the output force applied by the tool in one or multiple
directions [13]. For specific cases such as FSW, this can help stabilize the process and
increase its reliability [14]. However, this method only works for hybrid control scenarios
when a given DoF is force-controlled, while the environment constrains its position [15,16].
More generally, without a force input, the present study takes the wrench applied on the
tool as an environmental constraint with its effect to be compensated.

The fourth method is a model-based compensation, where prior knowledge of the
machine’s behavior is needed. Although a geometrical calibration of a loaded robot can
virtually correct those imperfections by adding extra geometrical parameters or modifying
existing ones [17–22], it does not correspond to the physical behavior of the manipulator.
Indeed, there is no proportionality between the force input and the deformation of the
machine, so it is only valid for a constant load scenario. To better describe the machine’s
behavior, an elasto-geometrical model is needed to proportionally link the deformation
of the robot with the applied wrench. This type of model needs a calibration phase by
applying external wrenches and measuring the resulting elastic deformations [23].

To estimate the deformation of a machine due to an external wrench applied on its
End Effector (EE), the three main modeling approaches are Finite Element Analysis (FEA),
Matrix Structural Analysis (MSA) and the Virtual Joint Method (VJM).

• Currently, FEA models are the most accurate since they model each point of the
machine with a high resolution. However, they require a significant amount of
calculation time as well as parameters often only accessible by the manufacturer
during the design phase of the structure [24,25].

• MSA models are based on the Euler–Bernoulli beam theory. They are well-suited for
simple and slender geometrical structures used for parallel manipulators [26,27]. This
method allows the description of the behavior of the joints using an appropriately
located stiffness matrix setting up the radial, axial, radial rotational and axial rotational
stiffnesses of each joint.

• A special case of MSA is the VJM, also called lumped-stiffness modeling, where the
elastic deformations are only localized at the joints [28]. Indeed, several research
works have demonstrated that for industrial anthropomorphic robots, deflection
errors are mainly due to joint elasticity [29]. Furthermore, for the sake of simplicity,
the elasticity of each joint is usually modeled by a single torsional spring located along
its motorized axis to integrate the elastic deformations of the structure, the joint and
the actuator [30].

In the literature, two methods are traditionally used to identify the stiffness model
parameters of a serial robot, either with a local axis-by-axis study or globally with a
large set of measurement points in the robot workspace [29]. The first method consists of
studying the independent elastic deformation of one joint for a known wrench to measure
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its independent stiffness. This variable links the angular displacement with the torque
applied, and the procedure is repeated for each revolute joint [31]. The second method
measures the tool cartesian displacement due to an external wrench on a large set of points
before performing a root-mean-square regression to extract the stiffness values [32]. Either
unpractical in real environment or too long to achieve, both methods also predefine the
structure of the model which stays constant throughout the whole calibration process. Then,
for correcting the trajectory based on the stiffness modeling, the machine’s deformation
can be computed offline from a wrench prediction [33–36]. If the external wrenches cannot
be predicted, an online force sensor is implemented [14,37].

The main objective of this article is to tackle the issue of low positioning accuracy of
industrial manipulators due to their elastic deformation in processes involving interaction
of the tool with its environment. The proposed methodology is based on three key features.
The main contribution of this article is the practical implementation of those key features
combined for the ISF process:

• The first feature is the development of an efficient test-model approach to identify the
model structure and calibrate the elastic parameters of an industrial serial robot. Using
rigorous iterations, the elasto-geometrical model is identified and enhanced, aiming at
the best compromise between complexity and accuracy before being validated during
experimental tests.

• The second feature is the implementation of an elasto-geometrical model-based posi-
tion control loop with force feedback to elastically correct the Tool Center Point (TCP)
pose of any serial robot.

• The third feature is the validation of both the identification approach and the elastic
correction strategy on a real ISF application.

The overall structure of this article follows the different steps of the research process.
Firstly, the real-time control strategy of the industrial manipulator and its elastic correction
are presented. Secondly, the identification of the robot elasto-geometrical model and its
results are described. Thirdly, the control strategy is validated during several ISF process
experiments using the Stäubli TX200 industrial robot. Finally, the last section presents
results and discusses directions for future works.

2. Force-Feedback Position Control Based on Elasto-Geometrical Modeling

In the following section, a model-based position control strategy of industrial manipu-
lators is presented along the elasto-geometrical model on which it is based.

2.1. Position Control Strategy of Industrial Manipulators Using a Force-Feedback Loop

As presented in Figure 1, a model-based position control strategy with a force-feedback
loop is depicted for industrial manipulators. To describe the motion of a serial industrial
manipulator subject to an environmental wrench w, the robot structure is considered as a
series of joints and links with the following attached frames:

• R0 = (O0, x0, y0, z0) is the base frame of the robot;
• Rt = (Ot, xt, yt, zt) is the robot tool frame.

The point of interest is the TCP, the Rt-frame origin Ot at the center of the hemispher-
ical tip of the tool (Figure 2). In the following equations, all vectors are expressed in the
base frame R0 if not specifically stated. The desired cartesian pose of Ot is:

sdes =
0st =

[0pt
0φt

]
= g(q), (1)

where 0pt =
[
px, py, pz

]T represents the desired position vector and 0φt =
[
φx, φy, φz

]T the
desired orientation vector of the tool frame Rt; sdes is a function of the articular configuration
q = [q1 ... qm]

T of the robot.
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Figure 1. Block diagram of the force-feedback elasto-geometrical model-based control.

Figure 2. Definition of the TCP and its attached frame Rt.

Let w be the wrench applied by the environment on the robot tool:

w = [ fx fy fz mx my mz]
T . (2)

Considering a rigid robot, this desired pose is sent and reached by the manipulator
(configuration (a) in Figure 3).

In reality, an industrial manipulator presents an elastic deflection δs measurable at the
TCP, depending on the articular configuration q and the external wrench w:

δs = 0δst =

[0δpt
0δφt

]
= f (w, q), (3)

where 0δpt =
[
δpx δpy δpz

]T represents the position deflection vector of the TCP and
0δφt =

[
δφx δφy δφz

]T represents the angular deflection vector of the tool frame Rt.
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Therefore, the pose effectively reached by the TCP of the robot is sreal (configuration
(b) in Figure 3), which can be computed as follows:

sreal = sdes + δs. (4)

The presented control strategy estimates the elastic deflection δŝ by means of an
elasto-geometrical model using the external wrench information w measured by a 6D force
sensor mounted on the robot tool (Figure 1). This model-based reconstruction, described in
Section 2.2, avoids the use of an absolute pose measurement system.

Figure 3. Deflection of the TCP due to the external wrench w applied on the tool: desired (a);
real (b); configurations.

The closed-loop dynamics are defined by the tracking error equation:

ε = sdes − ŝreal , (5)

with
ŝreal = scom + δŝ. (6)

scom is the corrected pose, the new setpoint fed to the robot controller, and ŝreal is the
reconstructed pose vector of the robot, estimation of its real position sreal under load.
Finally, the corrected pose scom is expressed as follows:

scom = sdes + ξ, (7)

where ξ corresponds to the pose correction vector defined as a function of the tracking
error ε and the external control law parameters (proportional, derivative and integrator
gains in case of a PID controller).

2.2. Elasto-Geometrical Modeling

The elasto-geometrical model developed to be used for elastic deflection estimation of a
robot under external load is based on the VJM approach. In this paper, the hypothesis taken
is that the elasticity of the manipulator solely resides in its elastic joints [24,28,29,38,39].
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The result is a model of the robot as a series of nondeformable rigid links and flexible joints.
A focus is made on modeling the elastic deformations of a robot undergoing an external
wrench applied on its tool (Figure 4). By generalizing the term of elastic Degree of Freedom
(eDoF), the lumped-stiffness identification method proposed in this paper allows us to
obtain a scalable model with the aim of staying as close as possible to the physical behavior.

Figure 4. Elastic joint architecture using the VJM approach.

Let us consider an industrial serial manipulator with m motorized joints (hereafter
named mDoF) and m + 1 rigid links. In addition to R0 and Rt defined previously, a local
frame Ri = (Oi, xi, yi, zi) is defined, attached to the ith rigid link (i ∈ [1, m]). Joint i connects
links i− 1 and i (Figure 5). It is to be noted that for elastic modeling purposes, the origin
Oi of coordinate frame Ri is not necessarily located at the intersection point of the zi−1-zi
common normal and the joint i axis, as defined by the modified Denavit–Hartenberg (mDH)
convention. While being placed on the joint i axis to respect the kinematic constraints,
the modification of the placement of the center of the joint does not guarantee a minimal
representation but allows us to have a representation as close as possible to the real features
of the physical structure.

To deal with the full elasticity of each joint, the VJM approach is generalized by
considering two complementary rotational eDoFs for each joint (Figure 5). Two additional
torsional springs are then defined around axes orthogonal to the joint axis zi of each local
frame Ri, thus completing the usual one-eDoF-per-joint elastic model [25,28–30,40,41].

Figure 5. Virtual Joint Method stiffness model of the ith joint.



Robotics 2022, 11, 48 7 of 24

In the absence of coupling terms and for slow motions, the reaction torque τi,j around
the axis j ∈ {x, y, z} of joint i ∈ [1, m] is taken as a function of the rotational stiffness
coefficient kθi,j and the rotational elastic displacement δθi,j associated to that eDoF [42,43]:

τi,j = kθi,j δθi,j ∀i, j. (8)

The elastic displacement vector of the robot δθ is defined as the concatenation of the
small rotational displacements associated to all virtual eDoFs i, j:

δθ =
[
δθ1,x ... δθi,j ... δθm,z

]T . (9)

Generalized to the whole structure, the torque vector τ can then be expressed accord-
ing to the articular stiffness matrix Kθ and the angular displacement vector δθ:

τ = Kθ δθ, (10)

where Kθ is the articular stiffness matrix gathering all torsional stiffness parameters (each
being associated to a specific eDoF). By neglecting the coupling terms between directions,
Kθ is considered diagonal:

Kθ = diag(
[
kθ1,x ... kθi,j ... kθm,z

]
). (11)

For a given articular configuration, the relationship between the small rotational elastic
displacements and the elastic displacements δs at the TCP is expressed by means of the
Jacobian matrix J as follows:

δs = J δθ, (12)

where the Jacobian matrix J is defined as:

J =
[

x1 ×O1Ot ... vi,j ×OiOt ... zm ×OmOt
x1 ... vi,j ... zm

]
. (13)

where vi,j is the vector associated with the considered eDoF i, j expressed in the robot base
frame (so 0xi, 0yi or 0zi), and × denotes the screw product.

Assuming low process speeds (under 1 m/min [14]), the mapping between the gener-
ated torque vector τ acting on the different virtual eDoFs and the external wrench w acting
on the robot tool is represented by the following equations:

τ = JT w =
[
τ1,x ... τi,j ... τm,z

]T . (14)

By combining Equations (10), (12) and (14), one obtains the following equation:

δs = J K−1
θ JT w. (15)

Finally, by inserting Equation (15) into Equation (6), the reconstructed pose ŝreal becomes:

ŝreal = sdes + (J ·Kθ
−1 · JT) w + ξ. (16)

In practice, not all stiffness parameters are needed to accurately model the behavior of
the robot, depending on its architecture and dimensions. A trade-off between accuracy and
complexity was researched to derive the best-fitting stiffness matrix Kθ for the minimum
number of eDoFs considered. Therefore, the effectiveness of the correction will depend on
the number of these elasto-geometrical parameters and the quality of their calibration. A
detailed example of the elasto-geometrical model identification is presented in Section 3.
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3. Elasto-Geometrical Model Identification and Calibration

In this section, an efficient model structure identification and calibration is carried
out. The robot elasto-geometrical model is identified and calibrated using an appropriate
coupled test-model approach with the minimum number of measurement configurations
(Figure 6). In this approach, the only hypothesis taken is the premise of the VJM approach:
the elasticity of the robot is modeled only in its joints. To identify the joint torsional
stiffnesses, the robot was placed in specific articular configurations where a given external
wrench applied on the robot EE using a tension cable was able to generate a torque onto the
minimum number of joint axes [31]. The different tests allowed a progressive enhancement
of the model structure and an iterative calibration of the stiffness parameters to increase
modeling accuracy, starting from a classical one-eDoF-per-joint configuration [28,38,39]. A
compromise between complexity and accuracy is to be found to make it usable in a real
industrial robotic application.

Figure 6. Flow chart of the coupled test-model approach used for identifying the elasto-geometrical model.

3.1. Refinement of the Elasto-Geometrical Model of the Stäubli TX200

The proposed elasto-geometrical model identification was implemented on the Stäubli
TX200 robot, a 6-mDoF anthropomorphic serial robot with a payload capacity of 130 kg. It
is to be noted that the robot was not symmetrical, the arm being offset with a U-shaped
design (Figure 7). To identify and calibrate the elasto-geometrical model, the robot was
loaded with a cable whose tension and direction could be manually controlled. An ATI
Omega-160 6-DoF load cell was used to measure the wrench applied by the cable tension
on the robot EE (point OEE), and an API Radian laser tracker was used to measure the
cartesian position of point OEE. In the following tests, the orientation was not measured
nor used in the calibration of the model; nevertheless, the model estimated the full elastic
deflection in position and orientation.
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δ
�

δ
�

δs

w

Figure 7. Specific configuration for stiffness model structure identification and calibration of the
Stäubli TX200 (top view): articular configuration q = [0 π

2 0 0 0 0]T ; external wrench w = [0 fy 0 0 0 0]T

with the maximum value being fy = 1400 N.

Let us first consider the specific configuration depicted in Figure 7. The robot ar-

ticular configuration is q =
[
0 pi

2 0 0 0 0
]T

and the wrench applied on its EE were set to

w =
[
0 fy 0 0 0 0

]T with the maximum value being fy = 1400 N. It is noteworthy here
that the first actuated joint was primarily solicited. It is, however, important to carefully
examine the elastic behavior of the other joints of the robot. The global elastic response
of the robot was evaluated based on the displacements of three points, M1, M2 and M3,
attached to the robot structure as shown in Figure 7 and measured with the API laser
tracker. Figures 8 and 9 show the displacements measured along the x0-axis and the y0-axis,
respectively. As one can see, a significant displacement along the x0-axis can be observed,
specifically at measurement points M2 and M3. It is also important to observe the nonpropor-
tionality of the displacement along the y0-axis with respect to the distance of the measurement
points from the center of the robot base frame O1. The experimental outcomes clearly illustrate
that the robotic arm does not exhibit a simple rigid-body motion in rotation about the first
actuated joint. There is a nonnegligible flexibility at the robot arm elbow.

Figure 8. Elastic displacement δpx measured for several points along the x0-axis and estimated by
the one-eDoF-per-joint model and the presented model: articular configuration q = [0 π

2 0 0 0 0]T ;
external wrench w = [0 fy 0 0 0 0]T with fy = 1400 N.
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Figure 9. Elastic displacement δpy measured for several points along the x0-axis and estimated by
the one-eDoF-per-joint model and the presented model: articular configuration q = [0 π

2 0 0 0 0]T ;
external wrench w = [0 fy 0 0 0 0]T with fy = 1400 N.

Using a one-eDoF-per-joint model would result in a consequent error on the elastic
model prediction along the x0-axis (Figure 8) and a physical misinterpretation of the
experimental results in the y0 direction (Figure 9). It is thus necessary to introduce an
additional torsional stiffness on the third joint, while shifting the center O3 of the joint along
the z3-axis by 400 mm. The mDH parameter table associated to the kinematic chain of the
robot arm was thus enhanced by an additional parameter δr3 describing this translation.
The torsional joint stiffness value kθ3,x was evaluated from the EE displacement along the
x0-axis, the robot geometric parameters and the force applied on it. After calibration of
this stiffness parameter, the EE elastic displacement measured along the y0-axis allows the
calibration of the torsional stiffness coefficient kθ1,z.

The complete model resulting from this identification process clearly improves the
elastic displacement prediction compared to a one-eDoF-per-joint model (Figures 8 and 9).
It should be noted that in both models, the following displacement along the x0-axis
measured at point M1 is not perfectly predicted. Further experimental analysis in this
configuration has shown that this displacement is due to the robot baseplate tilting around
the y0-axis. This elastic effect is not taken into account in this study but could be added to
improve accuracy in future works.

To complete the model structure identification and calibration of the TX200 elasto-
geometrical model, four additional configurations are required (Tables A1 and A2). Each
specific articular configuration relates to a given wrench w with a gradual evolution of its
components. The resulting independent torsional joint-stiffness parameters representing
the physical stiffness elements of the actual structure are given in Table 1. A physically-
representative elasto-geometrical model is then easily set up from the model structure
identification and iterative axis-by-axis calibration process. It is important to note that the
joint six stiffness is neglected in the proposed model as the wrist is not stressed around the
z6-axis in the studied ISF application.

Table 1. Torsional stiffness parameters kθi,j of the Stäubli TX200 (106Nm · rad−1).

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

kθi,x - - 1.45 - - -
kθi,y - - - - - -
kθi,z 2.32 1.76 2.04 0.09 0.02 -
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3.2. Validation of the TX200 Elasto-Geometrical Model

To verify the global elasto-geometrical model accuracy, the EE elastic displacements
that this model allows us to predict were compared with those measured experimentally.
This was accomplished by using two sets of measurements performed with loads of 600 N
and 1100 N applied by the use of deadweights attached to the robot EE. The results are
respectively shown on Figures 10 and 11 for the 600 N case and on Figures 12 and 13 for the
1100 N case. The accuracy of the position after calibration was tested on 200 poses regularly
distributed over a 0.6 × 0.6 m (0 pz = 0.1 m) horizontal grid centered on the work area
that was used for the ISF application (Section 4). Compared to the results obtained with
the one-eDoF-per-joint elastic model, the proposed enhanced elasto-geometrical model
allows for a better prediction of the EE vertical elastic displacements. By comparing the
model predictions and the laser tracker measurements, the one-eDoF-per-joint elastic model
gives a prediction of the elastic behavior with a maximum deviation of 0.18 and 0.34 mm
and a RMS deviation of ±0.16 and ±0.11 mm over the studied workspace for the 600
and 1100 N loads, respectively (Figures 11a and 13a). The addition of an extra eDof and
the shifting of joint three origin allows better accuracy for loads of 600 and 1100 N. For
the proposed model, the maximum error was 0.08 and 0.16 mm, and the RMS error was
±0.04 and ±0.05 mm over the same workspace for the 600 and 1100 N loads, respectively
(Figures 11b and 13b). The prediction accuracy of the proposed model is compatible with
ISF requirements within a prototyping context [27].

Figure 10. Comparison of 0δpz error for the presented model predictions (blue), one-eDoF-per-joint
elastic model predictions (red) and experimental measurements (green) in a 0.6-by-0.6 meter square
workspace plane with a vertical applied force of 600 N.
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Figure 11. Heatmaps of the deviation between the one-eDoF-per-joint model predictions and ex-
perimental measurements (a); and between the presented model predictions and experimental
measurements (b); both for a vertical applied force of 600 N.

Figure 12. Comparison of 0δpz error for the presented model predictions (blue), one-eDoF-per-joint
elastic model predictions (red) and experimental measurements (green) in a 0.6-by-0.6 meter square
workspace plane with a vertical applied force of 1100 N.
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Figure 13. Heatmaps of the deviation between the one-eDoF-per-joint model predictions and ex-
perimental measurements (a); and between the presented model predictions and experimental
measurements (b); both for a vertical applied force of 1100 N.

A second validation of the elasto-geometrical model was made over a 0.25-m-initial-
radius spiral trajectory in which the robot EE was loaded with a 600 N deadweight-type
force (Figure 14a). The continuous trajectory had a length of 2.7 m, the EE motion speed
was 10 mm/s, and the raw laser tracking data were gathered at 50 Hz. The plane in which
the spiral was located was 0.2 m above the working area used for the ISF application
(Section 4), resulting in 0 pz = 0.3 m. As one can see in Figure 14b, the presented model
confirms an accurate prediction of the elastic behavior over a given trajectory.

Figure 14. (a) Desired spiral trajectory; (b) Comparison of 0δpz error for the presented model predic-
tions (continuous blue) and experimental measurements (dashed orange) along a spiral trajectory
with a constant vertical load of 600 N.

4. Application to Forming Processes: ISF Experiment

The performance and effectiveness of the proposed real-time force-feedback model-
based control of industrial manipulators were evaluated and verified through some
experimental tests in an ISF context. ISF is a cost effective die-less forming process
for small batch production, traditionally used for customization or prototyping as an
alternative to conventional stamping or deep drawing [44]. The material is incrementally
pushed down by a simple tool, usually a hemispherical punch, to form the part step-
by-step from its CAD model [45]. Many developments of the technology happened in
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the past 20 years [46], and the process can be used for several applications, for example
to form parts in the medical and aviation sectors [36]. Recently, research trends are
pushing toward a Robotized Incremental Sheet Forming (RISF) variant with the goal of
enhancing the effective workspace, the dimensions of the manufactured parts and the
versatility of the process [45]. The industrial manipulator is mounted with the forming
tool on its flange to perform the desired forming trajectory. The main drawback of using
such a machine is that the robot elastically deforms itself under the wrench generated by
the process at the tool/sheet contact (Section 2.2) [33]. Hence, the tool trajectory stresses
the robot structure in all directions all along the path. The level of forces induced by
the process evolves along the trajectory and is multifactorial, making it difficult to
predict [27]. The ISF process is therefore controlled by a TCP pose set-point.

4.1. Experimental Setup

The Stäubli TX200 robot was used to form a 1-mm thickness metal sheet (Aluminium
5086 grade) with a forming tool which was a 15-mm diameter hemispheric punch blocked
in rotation. The clamping system was composed of a circular blank holder screwed on a
rigid frame (Figure 15). To ensure repeatability of the test, the formed metal sheets were
placed in a similar manner with a fixed rolling direction and clamped with the same torque
for all 12 screws.
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Figure 15. Position of the ISF setup inside the robotic cell (left); desired tool path and CAD model of
the clamping system with a formed metal sheet (right).

The target toolpath was a 40-mm diameter frustum cone of 45° wall angle (Figure 15).
The 3D complex path was defined in the part frame Rp = (Op, xp, yp, zp) with Op of posi-
tion coordinates [1500 0 −183]T mm, expressed in the robot base frame. This central point
of the trajectory corresponded to a robotic articular configuration of [0 49.7 89.3 0 41 0]T

deg. Mineral oil was used as lubricant to avoid excessive friction at the tool/sheet contact.
This trajectory was firstly simulated using FEA following the procedure of [33]. Be-

cause of the continuous evolution of the z-coordinate along the frustum cone trajectory, no
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sudden force peak was imposed on the tool, which can be the case for trajectories with dis-
continuities. The influence of the dynamics is not assessed in the framework of this paper
but different operating speeds (1, 2, 5 and 10 mm/s) were tested without any influence or
visible dynamic effect, following the previous works tested on ISF. The chosen feed rate
value of the tool was 10 mm/s, resulting in a total process time of 500 s. Supplementary
Material includes a video of the tests performed at LGCGM.

4.2. Hardware Implementation of the Experimental Tests

A schematic view of the real-time pose control system, developed and proposed in this
study, is shown in Figure 16. As can be seen, the tool-path trajectory is computed offline
from the part CAD model via a CAM software. RoboDK software was then used to convert
motion planning into instructions in the Stäubli-specific robot-controller-programming
language VAL3. The robot program was sent offline to the robot CS8 internal controller
via a TCP/IP file transfer protocol. The control algorithm was deployed in a National
Instruments CompactRIO controller using the programming language LABVIEW. Two
NI9215 modules collected data from the six channels of the ATI Omega-160 6-DoF load cell
to determine the external wrench w acting on the forming tool. The measurement sampling
frequency was set at 100 Hz.

Figure 16. Schematic view of the real-time model-based force-feedback pose control.

In the LABVIEW environment, the data were processed by the external control loop
(Section 2.1) to reconstruct ŝreal based on the elasto-geometrical model (Equation (16)) and then
compute the pose correction ξ. The resulting correction vector was sent directly to the robot
internal controller through the TCP/IP protocol at a frequency of 100 Hz. This communication
was compatible with the CS8 industrial robot controller, running at a fixed internal frequency of
250 Hz. Path corrections were handled online by the robot controller via the Alter function pack
available in the VAL3 language. Alter functions allowed the robot trajectory to be modified from
the external controller data at the frequency of 250 Hz. During the forming process, the real tool
path was measured using the API Radian laser tracker, only to validate the control strategy. An
online monitoring of the process control application was then performed.

Concerning the external controller, Equation (17) was used for computing the correc-
tion vector ξ, with gains found empirically.

ξ(t) = Kc (ε(t) +
1
Ti

∫ t

0
ε(τ)dτ + Td

dε(t)
dt

) (17)

with Kc = 0.8, Ti = 0.048 s and Td = 0.012 s.
From the FEA simulation of the process, maximum force values were used to compute

the maximum correction during the trajectory. Knowing the maximum value of this
correction, a verification of the system’s response was performed and the chosen PID gains
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allowed a response with satisfying performances. Moreover, an antiwindup algorithm and
a correction limiter were added to the control loop. This way, the correction vector ξ was
guaranteed to be bounded in a certain range.

4.3. Results

Figure 17 yields a readable spatial visualization of the position accuracy along the
forming tool path using or not using the online correction. In the case of a perfect machine,
all deviation points should be on the (0,0,0) coordinates, highlighting no elastic deformation
along the three axes xp, yp, and zp. As one can see from Figure 17, a significant deviation
between the desired and measured paths can be identified without online correction (blue
curve). These errors are not compatible with the ISF process requirements. The robot
trajectory was corrected efficiently using the online model-based control, resulting in a
more centered and closer set of deviation points.

With t li ti

Figure 17. Deviation from desired trajectory measured at the TCP during the cone-forming experi-
ment without and with online correction.

For further details, Figure A1 plots the deviation along the xp-, yp-, and zp-axes, and
the norm of the deviation in position separately in the plane (Op, xp, yp) for the whole
trajectory is noted. It is important to note that the deviation is not distributed uniformly
along the path due to the resulting forces of the process (Figure 18). Obviously, this error
increases in function of the TCP position along the zp-axis. In fact, the closer the tool is to
the center of the frustum cone, the higher the forming forces. For this trajectory, the effort
levels go up to 1200 N without online correction in the zp direction and up to 500 N along
the xp- and yp-axes. For this level of force, the maximum value of the error norm is about
3.84 mm at the end of the trajectory.

A clear improvement of the global trajectory-tracking accuracy is highlighted when the
online correction is applied, with a maximum value of the error norm of 1.13 mm (Figure A1).
The model-based control strategy leads to a significant increase in the overall forming force to
compensate for the low stiffness of the robot and brings the static equilibrium position of the
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TCP back to the desired trajectory (Figure 18). While applying the presented control strategy
during the cone-forming experiment, the accuracy of the tool path was improved by 70 %,
validating the process requirements.

Figure 18. External force along the xp-, yp- and zp-axes measured at the robot TCP during the
cone-forming experiment without and with online correction.

5. Discussion

The forming tests prove that the presented control strategy allows an accurate position
control for industrial applications such as RISF. An obvious improvement is visually
highlighted in Figure 17, with the deviation from the desired trajectory corresponding to
the trajectory-tracking error. Over this frustum cone trajectory, the maximum value of the
trajectory-tracking error norm of 1.13 mm for a 1500 N norm load gives promising results.
One feature of the results is that with the presented correction, loads above 600 N in norm
rapidly worsen the accuracy, exceeding a trajectory-tracking error norm of 0.5 mm. This is
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even more visible when this deviation is displayed as a function of the external force norm,
both measured at the robot TCP (Figure 19). It shows that after this first step, the elastic
online correction keeps the deviation under a certain threshold even though a higher force
norm is applied on the tool. In contrast, without online correction, the deviation keeps
diverging with an increasing force norm.
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Figure 19. Trajectory-tracking error norm as a function of the external force norm (both measured at
the robot TCP during the cone forming experiment without and with online correction).

The remaining error is mainly due to the structure identification and calibration of the
elasto-geometrical model, keeping some room for further improvements. In the end, the
validation of the presented model is successful, but some limits are visible from the number
of considered eDoFs when a high wrench is applied. For example, the elastic displacement
of point M1 depicted in Figure 7 is not captured by the present model. A new iteration will
probably have to thoroughly include the elastic behavior of the robot baseplate.

Obviously, this control strategy leads to an increase in the overall forming force to compen-
sate for the elasticity of the robot, without instability of the loop or overshoot (Figure 18). The
measured forces for the corrected trajectory seem to have similar ranges and trends as the ones
applied by a CNC machine in the same setup [33]. It should nevertheless be kept in mind that
the control method may lead to exceeding the payload capacity of the robot.

Future research should focus on increasing the operating speed to study the dynamic
effects during forming, both for the control part and the elasto-geometrical modeling part.
With such potential improvements, a foreseeable future for RISF is clear within tomorrow’s
industry 4.0, enabling its use for manufacturing small-batch parts, with less need for
resources and energy than conventional deep drawing, while maintaining a high level of
complexity and personalization of the manufactured parts.

6. Conclusions

In this paper, the absolute positioning accuracy of industrial serial manipulators was
studied. A model-based control strategy was described and implemented, relying only on
a force feedback for correcting the tool pose of a robotic arm (Section 2). This constraint
corresponds to a real industrial cell configuration, where absolute pose tracking is often
too complex or expensive to implement, whereas force control is usually a basic feature.

To compensate for the elastic deformation implied by the external wrench, an elasto-
geometrical model was identified following the VJM approach. With this general approach,
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the full elasticity of each robotic joint is taken into account. The physical model of robots
was thoroughly studied to only select the eDoFs highly influencing the tool pose accuracy.
Using an efficient coupled test-model approach for identifying this model, a series of tests is
needed to derive a minimum set of elastic parameters. This approach, scalable to any serial
manipulator, updates the model structure after each test until a trade-off between accuracy
and complexity is reached with respect to the requirements of the targeted application.
This efficient identification approach was demonstrated on the Stäubli TX200 robot with a
minimum number of identified stiffness parameters to ensure a good-quality prediction of
the elastic deformation (Section 3).

The force-feedback model-based pose control strategy was validated through real
robotic ISF tests (Section 4). The obtained results highlight a tracking accuracy improvement
of 70% for the online-corrected trajectory compared to the noncorrected trajectory during a
15-mm-deep frustum cone-forming path with loads up to 1500 N in norm.

This gain in positioning accuracy improves the robot’s capabilities and allows the
robotization of production processes such as ISF to manufacture parts with geometric
constraints in tomorrow’s industry 4.0.

Supplementary Materials: The following video presenting the ISF process tests performed at
LGCGM is available online at https://www.mdpi.com/article/10.3390/robotics11020048/s1.
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Appendix A

Table A1. Identification and calibration of the TX200 elasto-geometrical model.

Step 1 : Identification of kθ1,z and kθ3,x q = [0 π
2 0 0 0 0]T w = [0 fy 0 0 0 0]T

w

O₃

O₁

0

1000

2000

3000

4000

5000

0 0.0005 0.001 0.0015 0.002

0

500

1000

1500

2000

2500

3000

0.0000 0.0003 0.0006 0.0009 0.0012 0.0015 0.0018

Step 2 : Identification of kθ2,z q = [0 0 π
2 0 0 0]T w = [ fx 0 0 0 0 0]T

O₃

O₂

O₀

w

0

200

400

600

800

1000

0 0,0001 0,0002 0,0003 0,0004 0,0005 0,0006

Step 3 : Identification of kθ3,z q = [0 0 π
2 0 π

2 0]T w = [0 0 fz 0 0 0]T

w
O₂

O₀

O₃

0

500

1000

1500

2000

2500

0 0,0002 0,0004 0,0006 0,0008 0,001 0,0012
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Table A2. Identification and calibration of the TX200 elasto-geometrical model.

Step 4 : Identification of kθ5,z q = [0 π
2 0 0− π

2 0]T w = [ fx 0 0 0 0 0]T

w

O₀

O₂ O₃
O₅

0

100

200

300

400

500

0 0,0005 0,001 0,0015 0,002 0,0025

Step 5 : Identification of kθ4,z q = [0 0 3π
4 0 − π

2 0]T w = [0 fy 0 0 0 0]T

w

O₁

0

100

200

300

400

500

0 0,001 0,002 0,003 0,004 0,005
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Figure A1. Deviation from nominal trajectory in mm along the xp-axis (a); the yp-axis (b); the zp-axis
(c); and in norm (d); without online correction (left) and with online correction (right).
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