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Abstract: Bionic hands have been employed in a wide range of applications, including prosthetics,
robotic grasping, and human–robot interaction. However, considering the underactuated and nonlin-
ear characteristics, as well as the mechanical structure’s backlash, achieving natural and intuitive
teleoperation control of an underactuated bionic hand remains a critical issue. In this paper, the
teleoperation control of an underactuated bionic hand using wearable and vision-tracking system-
based methods is investigated. Firstly, the nonlinear behaviour of the bionic hand is observed and
the kinematics model is formulated. Then, the wearable-glove-based and the vision-tracking-based
teleoperation control frameworks are implemented, respectively. Furthermore, experiments are
conducted to demonstrate the feasibility and performance of these two methods in terms of accuracy
in both static and dynamic scenarios. Finally, a user study and demonstration experiments are
conducted to verify the performance of these two approaches in grasp tasks. Both developed systems
proved to be exploitable in both powered and precise grasp tasks using the underactuated bionic
hand, with a success rate of 98.6% and 96.5%, respectively. The glove-based method turned out to be
more accurate and better performing than the vision-based one, but also less comfortable, requiring
greater effort by the user. By further incorporating a robot manipulator, the system can be utilised to
perform grasp, delivery, or handover tasks in daily, risky, and infectious scenarios.

Keywords: bionic hand; teleoperation control; human–robot interaction; wearable glove; vision tracking

1. Introduction

Currently, bionic hands have been widely applied in many fields [1], such as grasping
tasks [2,3], industrial applications [4], human–robot-interaction [5], and conducting delicate
operations in dangerous situations [6]. As multi-degree-of-freedom (DoF) end-effectors,
bionic hands have excellent flexibility and versatility. Meanwhile, the anthropomorphic
structure empowered bionic hands to conduct some complicated, dangerous, and inac-
cessible tasks in a human-inspired manner. Hence, bionic hands have gained widespread
attention in a variety of practical applications.

Bionic hands can be divided into fully actuated and underactuated ones, according
to the mechanical structure [7]. Fully actuated bionic hands benefit from high dexterity,
which allows them to independently control each degree of freedom for more complex
operations [8]. The redundant DoFs allow the robot to deal with optimisation and hier-
archical control problems. However, full actuation also yields bulkier and more complex
mechatronic systems and control algorithms. The underactuated ones, instead, benefit
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from a lightweight and portable design, as well as a simple driver structure, which is
easier to build and deploy [9]. Furthermore, underactuation brings a better compliance
of the mechanical structure. However, due to the underactuated and nonlinear motion
characteristics, developing an accurate mathematical model is difficult [10]. Learning-based
methods also have been investigated to program the motion of a bionic hand [11] and
robotics [12]. However, for executing tasks in dynamic or unstructured environments, the
pre-defined bionic hand motion sometimes is not suitable or robust enough. Although
underactuated bionic hands have numerous advantages, how to control them in a more
natural and precise manner remains a challenging issue [13].

Humans are capable of dealing with complicated tasks, even in unstructured or
dynamic environments. By incorporating human intelligence, teleoperation control is
considered a promising solution to control robots [14,15]. For example, a novel data glove
was designed and employed to achieve the teleoperation control of a robotic hand–arm
system, which was stable, compact, and portable [16]. Specifically, in the teleoperation
control task of an underactuated bionic hand, by sensing human hand posture and then
sending it to the bionic hand, a real-time mapping from the human to the bionic hand can
be realised [17]. First of all, human hand motion should be detected in real-time, and many
solutions, such as gloves, exoskeletons, bending sensors, vision-tracking-based methods,
etc., have been investigated [18–20].

Among the human-hand-tracking methods, wearable mechanical sensor systems
(fabric gloves, exoskeletons) and vision-tracking-based methods (Kinect camera, Leap
Motion, Vicon tracker system, etc.) are the most used ones. In wearable solutions, flexion
and potentiometer sensor are the most frequently utilised to detect the bending angle
of human hand joints and then map it to a bionic hand. These methods outperform
vision-tracking-based methods in terms of stability and robustness and, especially, do not
suffer from line-of-sight occlusion problems [21]. A typical application of the wearable-
based teleoperation control framework was implemented by NASA, which utilised two
CyberGloves to teleoperate the robot to perform maintenance tasks such as threading
nuts into bolts and tying knots [22]. Apart from this, a wearable-glove-based method was
also introduced into virtual interaction scenarios for 3D modelling and task training [23].
Although wearable sensors have such advantages, the cumbersome wearing process,
size adaptability, and pretty poor comfortableness still hinder their further application.
Meanwhile, the unergonomic structural design affects the intuitiveness and transparency
during the operation.

Compared with the glove- or exoskeleton-based methods, vision-tracking-based meth-
ods are much more natural and can be personalised by measuring the joint position of the
human hand. Vision-based tracking systems are primarily adopted to extract important
human hand features and send the command to the robotic hand after the motion mapping.
In [24], Artal proposed a real-time gesture recognition technique based on a Leap Motion
camera to control a 5-DoF bionic hand. Similarly, in Madina’s study [25], Leap Motion
was used as an input device for hand rehabilitation training in a virtual training case.
In addition, some camera tracker and infrared tracker systems have also been used to
realise hand posture recognition [26,27]. Nonetheless, the tracking performance of the
vision-tracking-based methods greatly depends on environmental factors, such as uneven
illumination, cluttered background, and items with a similar colour to the hand. In addition,
the vision-tracking-based methods have limited workspace and usually suffer from the
self-occlusion issue. Although the characteristics of the different control methods are obvi-
ous, there is still no systematic study of the performance of both in practical applications as
a basis for how to select an appropriate method.

In this paper, the main motivation aims to achieve intuitive and natural teleoperation
control of an underactuated bionic hand. To achieve this, two control frameworks based
on a wearable glove and a vision-tracking system are developed, respectively. The main
contributions are summarised as follows: (1) The calibration results with an external ground
truth tracking system are employed to formulate the inverse kinematics model of the
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underactuated bionic hand, which takes the underactuated and nonlinear characteristics
of the bionic hand into consideration. (2) Two novel features to describe the human
hand fingers’ motion are defined, namely the flexion angle and the bending angle. Such
quantities are measured by the two tracking systems, respectively, normalised for their own
range and mapped to the bionic hand motion to provide an intuitive teleoperation control.
(3) Furthermore, a comparison of the proposed two methods in terms of accuracy in both
static and dynamic environments is performed. User study and practical grasp tasks are
designed to demonstrate the effectiveness of the two methods and to further compare their
performance in terms of success rate and subjective evaluation.

The remainder of this paper is organised as follows. Section 2 describes the research
background and the calibration procedures of the underactuated bionic hand kinematics.
Following that, Section 3 presents the wearable glove and vision-tracking-based methods
to detect human hand motion in real-time. Then, the details of the teleoperation control
frameworks are described in Section 4, as well as the algorithm to apply the inverse
kinematic model. Section 5 depicts the experimental setup and metrics to demonstrate
the performance of the proposed method. After that, the experimental results are given in
Section 6. Finally, Section 7 gives the conclusions of this work.

2. Bionic Hand and Calibration

In this section, the research background and the details of the underactuated bionic
hand are described first. Afterward, the inverse kinematics model of the underactuated
bionic hand is derived from the results of a proper calibration method.

2.1. Research Background

Figure 1a,b illustrate the structure of the human hand and the underactuated bionic
hand, respectively. Each finger of the underactuated bionic hand is independently driven
by one Hiwonder LFD-01 servo motor, which is controlled by a Pulse-Width Modulation
(PWM) signal, which is a periodic square wave with a fixed period and a variable width
of the switch-on sub-period (pulse width). The higher the pulse width is, the higher the
current value sent to the motor is, which in turn encodes the rotation of the servo motor
axis. The pulse width of the signal delivered to the LFD-01 ranges from 500 µs to 2500 µs,
corresponding to 0° and 180° rotations of the motor, respectively. Furthermore, each finger
is composed of three primary links, resembling the three human finger phalanxes, and two
additional transmission links, which are used to implement the underactuation paradigm.

Figure 1. Human hand structure and the underactuated bionic hand mechanical structure. (a) Scheme
of human hand joints’ classification. Distal Interphalangeal joint (DIP), Proximal Interphalangeal joint
(PIP), Metacarpophalangeal joint (MCP), Interphalangeal joint (IP). (b) Components and mechanical
structure of the underactuated bionic hand.
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As shown in Figure 1b, the motion state of the i-th ( i = thumb, index, middle, ring, pinkie
denotes the sequence of the underactuated bionic hand fingers) bionic hand finger can be
described by a bending angle θi, which is defined by the vector going from the MCP joint to
the fingertip with respect to the maximum extension pose.

2.2. Bionic Hand Calibration

The inverse kinematics model of the ith finger aims at determining the mathematical
relationship between the input value of the corresponding motor, in terms of PWM signal
width, and the resulting finger bending angle, θi. In work [28], a direct linear function was
used to define the inverse kinematics of the finger, and the sensor fusion strategy was in-
vestigated to control the underactuated bionic hand. However, the aforementioned method
is insufficiently accurate because it overlooks some critical issues: (1) the nonlinear feature
caused by motor saturation; (2) the mechanical backlash of the bionic hand contributes to
the nonlinear properties of the underactuated bionic hand; (3) the nonlinear features vary
depending on whether the motion is flexion or extension.

In this paper, we employed the calibration data to further fit the relationship between
the motor input value and the bending angle of the finger, instead of using a simple
linear mapping solution. The detailed experimental setup for collecting data is shown in
Figure 2. An external optical tracking system (Optotrak Certus Motion Capture System,
NDI, Canada), with an accuracy of up to 0.1 mm and a resolution of 0.01 mm, was adopted
to measure the real bending angle of the bionic hand finger. The collected data were
employed as the ground truth when calibrating the bionic hand.

Figure 2. Experimental setup for measuring the bending angle. (a) Overview setup of the system.
(b) Positions of markers on the thumb. (c) Positions of markers on the index finger. (d) Illustration of
the pointing probe used to calculate the MCP position.

A set of tracking markers (active near-infrared LED) was employed to mark the
landmarks for angle reconstruction. As shown in Figure 2b–d, the tracking markers were
stuck on the side surface of the bionic hand finger joints, and the 3D position of these
markers, with respect to the NDI position sensor, were collected. However, due to the
mechanical occlusion, the MCP joint position was difficult to directly measure. Hence, an
auxiliary pointing probe was employed. As depicted in Figure 2d, two tracking markers,
labelled as A and B, were attached to the probe, and their positions PA and PB were
measured while the probe pointed at the MCP joint. Then, by knowing the distance dA
from A to the probe tip, the joint position PMCP can be calculated as follows:

PMCP = PA +
PB − PA

|PB − PA|
· dA (1)
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By knowing the MCP joint position, PMCP, and the fingertip position corresponding
to the kth recording, PT IP,k, the bending vector bk from the MCP joint to the fingertip can
be computed. Then, given the bending vector corresponding to the maximum extension
pose of the finger, b0, the bending angle θk can be expressed as:

bk = PT IP,k − PMCP (2)

θk = acos
(

bk · b0

|bk||b0|

)
(3)

For each finger, four complete calibration cycles of the bending angle were obtained
while altering the motor input throughout a set of predetermined values homogeneously
distributed across the motor input range. The resulting samples illustrated in Figure 3
show that the nonlinear characteristics change during the extension and flexion processes.
As a result, two mathematical functions for each finger that fit the sample results should be
defined to achieve accurate kinematics modelling. In this paper, the neural-network-based
fitting method [29] was adopted to retrieve such functions.

Figure 3. Data collection for calibration and kinematics modelling of the underactuated bionic hand
fingers. (a–e) represent data for the thumb, index, middle, ring, and pinkie respectively, including
both the extension and flexion process.

3. Human Hand Motion Tracking

When performing teleoperation control of the bionic hand, human hand motion is first
detected in real-time, then mapped and sent to the bionic hand. Therefore, both glove-based
and vision-based approaches for tracking human hand motion are presented.

3.1. Wearable-Glove-Based Motion Tracking

In the wearable-glove-based human hand motion tracking method, an exoskeleton
glove was utilised to collect the motion of the human operator’s fingers. The detailed
system framework is shown in Figure 4. The glove is endowed with five potentiometers,
each one connected to the first phalanx of one finger, which goes from the MCP to the PIP
joint, as shown in Figure 1a. Before starting the tracking, each user performs a calibration
procedure to associate, for each finger, two specific potentiometer rotation values to the
maximum and the minimum flexion reference poses, respectively. In such a procedure,
the user has simply to flex and extend the fingers through the whole ROM allowed by the
glove structure. After the calibration, the potentiometer detects the flexion movement of
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the phalanx with respect to the hand palm, producing a dimensionless readout S ranging
from 500 to 2500, corresponding to the maximum flexion angle, ϕmax, and to the minimum
one, ϕmin, allowed by the glove, respectively, as shown in Figure 5a,b. By considering ϕmin
equal to zero, the signal readout S of these potentiometers has the following relationship
with the flexion angle ϕ:

S =

(
1− ϕ

ϕmax

)
· 2000 + 500 (4)

Figure 4. Components of the wearable-glove-based motion tracking framework.

The five obtained readouts of the potentiometers are then sent to a computer, which
runs Ubuntu 16.04 and the Robot Operating System (ROS) Kinetic via a USB cable. A
Rosserial interface package handles the serial communication between the glove and the
ROS network. For each finger, the feature extraction node samples the signal readout S at
40 Hz and computes the so-called “measured flexion level”, FLm, which is a dimensionless
quantity, ranging from zero to one, which can concisely represent the human finger motion
and is easily mappable to a robot finger motion, as described in Section 4. FLm is calculated
as follows:

FLm = 1− S− 500
2000

=
ϕ

ϕmax
(5)

In this paper, to smooth the value of the flexion level to improve the robustness and
steadiness during the teleoperation control of the underactuated bionic hand, a real-time
linear Kalman Filter [30] was utilised. The Kalman filter has been widely utilised in many
wearable robotic systems, including lower limb wearable robotic devices [31] and 3D joint
angle determination [32]. In this paper, the Kalman filter acts as a recursive algorithm
based on a state space representation of the finger motion. At each iteration, it predicts the
values of the state variables and of the next observation of the flexion level; then, when a
new observation is available, the state is updated by considering the prediction error on
the observation and the features of the noises that affect the state and the observations. To
design the state equations, the linearised motion model of the flexion level was considered:FLk = FLk−1 + TS ḞLk−1 +

T2
S

2
F̈Lk−1

ḞLk = ḞLk−1 + Ts F̈Lk−1

(6)

where FLk and FLk−1 are the flexion level at time k and time k− 1, respectively, ḞLk and
ḞLk−1 are the first-degree time derivative of the flexion level at time k and time k − 1,
respectively, F̈Lk−1 is the second-degree time derivative of the flexion level at time k− 1,
and Ts is the sampling period. The following state equation for the Kalman filter can be
derived from the motion model:

xk = Φxk−1 + Γwk−1 (7)
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where wk−1 is the value at time k− 1 of a White Gaussian Noise (WGN) applied to the
state to approximate F̈Lk−1, xk and xk−1 are the vectorial state variable at time k and
k− 1, respectively, and Φ and Γ are the constant parameter matrices of the equations. The
vectorial state x and the parameter matrices Φ and Γ are defined as follows:

x =

[
x1
x2

]
=

[
FL
ḞL

]
, Φ =

[
1 Ts
0 1

]
, Γ =

[
T2

s
2

Ts

]
(8)

Furthermore, the relationship between the state variables and the input observation,
which is the measured flexion level, can be defined as follows:

FLm,k = x1,k + vk (9)

where FLm,k, x1,k, and vk are the measured flexion level, the flexion level state variable, and
the WGN noise acting on the observation, at time k, respectively. The update estimate of
the flexion level state variable stands for the filtered measured flexion level, FL∗m, and is
published as the final output of the tracking system.

Figure 5. Definition of the flexion angle when using the wearable glove: minimum (a) and maximum
(b) flexion angles. Reference systems (c) and defined bending angle (d) in the vision-based method.

3.2. Vision-Tracking-Based Motion Tracking

In the vision-based method, a Leap Motion Controller (LMC) (Ultraleap, CA, USA) was
used to collect the motion of the human operator’s fingers. The detailed system framework
is shown in Figure 6. The LMC retrieves two infrared stereo images of the bare hand, which
are then sent via USB to a computer that runs the Leap Motion Service (LMS), Ubuntu
16.04, and ROS Kinetic. After removing background objects and environmental light, the
LMS reconstructs a 3D representation of the hand surface by applying the principles of
stereo vision, and next, it extracts the 3D coordinates of the human hand MCP joints and
fingertips with respect to an absolute reference system {LMC}, as illustrated in Figure 5c.
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Moreover, it provides the transformation parameters describing a local reference frame
{HH} attached to the hand.

The coordinate transformation node belonging to the ROS network samples LMS
data at 40 Hz and transforms MCP and fingertip coordinates to the hand reference frame.
Then, the feature extraction node computes a concise finger motion feature such that it is
influenced only by MCP flexion, like the robot bending angle, and on the contrary, it is
minimally influenced by MCP abduction. To achieve this, the node computes the bending
angle β defined by the projection of the MCP-to-fingertip vector on a plane that is fixed with
respect to the hand frame, as shown in Figure 5d. Such a plane is defined in a calibration
phase as the one where the fingertip, PIP joint, and MCP joint lie when the finger is at
minimum bending. β is defined as the angle between the aforementioned projection vector
and another vector belonging to the plane that represents the minimum bending pose βmin.
Similar to the flexion angle defined in Section 3.1, the bending angle β is normalised for its
maximum βmax to obtain a dimensionless variable called the measured bending level BLm:

BLm =
β

βmax
(10)

It should be mentioned that the minimum and maximum bending poses are measured
during the calibration phase. A user interface node lets the user decide when to start
the calibration procedure through the keyboard. Additionally, the same real-time linear
Kalman filter described in Section 3.1 was utilised to smooth the value of the bending level
to improve robustness and steadiness during the teleoperation control of the bionic hand.

Figure 6. Components of the vision-based motion tracking system.

4. Teleoperation Control Framework

In this section, it is shown how the teleoperation control methods are implemented
using the wearable-glove-based and the vision-based tracking methods, respectively. As
depicted in Figure 7, the actuation controller stage is the same for both teleoperation
systems, while the distinctive stage is the motion tracking one.

As described in Sections 3.1 and 3.2, each tracking system extracts for each finger one
dimensionless human motion feature, ranging from 0 to 1, which represents the finger
motion, namely the flexion level FL∗m and the bending level BL∗m, respectively. A prior
step for teleoperation is mapping such a human feature to the robot feature, namely the
robot bending angle θ. As the correspondence between human and robot gestures must be
intuitively understandable and applicable by the user without any mental effort or long-
time learning needed, the resulting movement of the robot must be highly semantically
correlated to the human one, while considering the kinematic differences between human
and robot structures. Benefiting from the conciseness and meaningfulness of the motion
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features extracted by the two tracking systems and from the underactuated mechanics
of the bionic hand, a simple and intuitive mapping can be performed. The output of the
utilised tracking system, whether FL∗m in the case of the wearable system or BL∗m in the case
of the vision system, is multiplied for the bending angle range θmax measured during the
bionic hand calibration described in Section 2.2.

θ =

{
FL∗m · θmax( glove )
BL∗m · θmax( vision )

(11)

Figure 7. Frameworks of the two implemented teleoperation systems. As the actuation control part
is the same in both cases, a single diagram is used, but only one tracking system is used at a time.

Once the bending angles are computed, an ROS node applies the inverse kinematics
model synthesised in Section 2.2. To avoid a sudden change from one function to the other,
and thus instability, the average value of the bending angle in the last 40 frames θ̄40 (moving
average on 1 second) was used to improve robustness. Only if the angle θ deviates from
θ̄40 for more than 1% of the bending angle Range Of Motion (ROM), the direction changes
are detected. Then, according to the current value of the direction (extension or flexion),
the corresponding inverse kinematic function (IKE and IKF, respectively) is applied to θ
in order to obtain the motor control signal value PWM. The details of the implemented
inverse kinematics algorithm are summarised in Algorithm 1.

Then, the communication handler node packs the control signals in a message charac-
terised by a proper TCP/IP format and sends it to the bionic hand through an Ethernet link.
Control messages are unpacked by the bionic hand processor, and the motors are driven
consequently. A user interface manages the opening and closing of the communication link
according to the user’s will. The user’s input is delivered through a keyboard and a mouse.
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Algorithm 1: Inverse kinematics modelling of the underactuated bionic hand.

Initialise θ̄40;
Initialise direction;
while Inverse kinematics is running do

θ ← New desired angle;
if θ < θ̄40 − 0.01ROM then

direction← extension;
else

if θ > θ̄40 + 0.01ROM then
direction← f lexion;

end
end
if direction = extension then

PWM← IKE(θ);
else

PWM← IKF(θ);
end
Update θ̄40;

end

5. Experimental Setup

In this section, three experiments are designed to estimate the ROM of the human
finger angle to which the two tracking systems are respectively sensitive, evaluate the
accuracy, and compare the usability of the two implemented teleoperation systems. Firstly,
the system setup employed for the first and second experiments is described. Then, the
protocol and evaluation metrics of the three experiments are explained.

5.1. System Setup

The first and the second experiments were designed to estimate the ROM of the human
finger angle to which the two tracking systems are sensitive and to assess the accuracy
of the two systems, respectively. This paper is focused on the results for the index finger
motion. During the data acquisition part of the experiments, a human operator controlled
the bionic hand through the developed systems. Meanwhile, two sets of optical markers
were used to measure the resulting bending angle θ of the bionic hand (see Section 2.2 for
the definition) and the ground truth of the human finger angle used to control the system,
namely the real human flexion angle, ϕreal (see Section 3.1 for the definition of flexion angle
used in this work), for the wearable system and the real human bending angle, and βreal
(see Section 3.2 for the definition of human finger bending angle), for the vision system.

As illustrated in Figure 8a, one marker was located on the side of the bionic hand
index fingertip and three markers were placed on the side of the hand rigid case to define
a 3D local reference frame. The MCP joint position was measured employing a pointing
probe as the one shown in Figure 2d, using the same method described in Section 2.2 for the
bionic hand calibration. Positioning possibilities concerning the human hand were limited
by the wide space covered by the glove. In this case, five markers were used, as shown in
Figure 8b: one on the fingertip side, one on the PIP joint side, one on the MCP joint side,
one on the second Metacarpal Bone (SM) in correspondence with the styloid process, and
on the Radial Styloid Process (RAD). The MCP, SM, and RAD were used to define a local
reference frame. The MCP and PIP were used to measure the flexion angle, while the MCP
and TIP where used to compute the bending angle. In both cases, a method similar to the
one used by the vision-based method to retrieve the bending angle, described in Section 3.2,
was implemented. Figure 8c,d show how the markers were integrated when using the
glove-based and the LMC-based methods, respectively. The NDI optical tracking system,
already used in Section 2.2, was employed to measure the 3D coordinates of the markers.
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Figure 8. Markers’ positioning during the accuracy testing experiment. (a) Markers positions on
the bionic hand. (b) Markers positions on the human hand. (c) Human hand with markers in the
glove-based method. (d) Human hand with markers in the vision-based tracking method.

5.2. Protocol and Performance Metrics
5.2.1. Human Hand Range of Motion Experiment

The human angle measured by the ground truth tracking system, whether ϕreal or
βreal , is not directly comparable to the bionic hand bending angle θ, given the different
ROM. A prior step to assess the accuracy of the teleoperation systems was the estimation
of the human ROM that characterises the two human-hand-tracking systems, in order to
normalise the measured angles, obtaining the dimensionless variables real human flexion
level, FLh, and real human bending level, BLh, for the glove-based and vision-based
systems, respectively. Such a variable can be compared to the robotic bending level BLr,
that is θ normalised for its own range, that was measured during the bionic hand calibration
in Section 2.2. Given the difficulty of precisely recording the poses that are associated with
the human fingers limited by the tracking systems, an estimation of the human range was
instead needed for each system.

To estimate the human ROM, a static calibration procedure was performed on each
tracking system. Several ground truth human angles, homogeneously distributed in the
ROM, were measured through the markers, and at the same time, the human flexion level
FL∗m and the human bending level BL∗m measured and filtered by the tracking systems were
recorded. Moreover, the robotic bending level resulting from the teleoperation mapping
was also measured, to be used later in the accuracy experiment.

Four complete calibration cycles were obtained for each tracking system. The linear
function that best fits the cycles (excluding saturation samples) was computed through
least-squares linear regression. Such a function is assumed to be the ideal characteristic of
the tracking system. This approximation is the most optimistic one, given that it minimises
the distance of the samples from the ideal behaviour. The ϕreal and βreal values that,
according to the ideal characteristic, should correspond to the minimum and maximum
FL∗m and BL∗m, were considered as the human range limits.

5.2.2. Accuracy Performance Comparison Experiment

To evaluate and compare the accuracy performance of the two implemented tele-
operation control frameworks, three kinds of error were investigated during the second
teleoperation experiment, in both static and dynamic scenarios, namely the ones listed and
computed as follows and shown in Figure 9:

• Overall teleoperation control accuracy error:{
εtele,glove = FLh − BLr

εtele,vision = BLh − BLr
(12)
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• Human hand motion tracking accuracy error:{
εtrack,glove = FLh − FL∗m

εtrack,vision = BLh − BL∗m
(13)

• Bionic hand actuation control accuracy error:{
εact,glove = FL∗m − BLr

εact,vision = BL∗m − BLr
(14)

The static accuracy assessment was performed on the data acquired for the human
ROM estimation experiment described in Section 5.2.1. Furthermore, both human and
robotic finger angles were normalised for the respective ROM to obtain the comparable
dimensionless features. For each kind of error, the couple of variables determining the
error were compared assessing their calibration cycles. For each couple, the real static char-
acteristic was found by fitting polynomials or rational functions on the samples through
least-squares regression. The adjusted R-squared (R2

adj) metric was used to set the polyno-
mials’ degree to choose the best fitting with the minimum function complexity. Then, for
each couple, two error metrics were computed as follows:

• Nonlinearity: illustrates the maximum distance between the real characteristic and
the ideal one (output equal to input);

• Hysteresis: represents the maximum distance between the two curves that compose
the hysteresis cycle.

Figure 9. Illustration of the errors in the comparison experiments, including the overall teleoperation
error, human hand motion tracking error, and bionic hand actuation control error.

In the dynamic experiment, the human operator performed six different sinusoidal
movements. In each movement, the frequency was qualitatively set by the operator to
low (<0.4 Hz) or high (>0.4 Hz), while the amplitude was set to small (40% of BLr ROM
explored), medium (60% of BLr ROM explored), or large (BLr reaches saturation). For
each movement, the variables that determine the aforementioned errors were recorded at
40 Hz, which is equal to the sampling frequency of the teleoperation systems. For each
couple of variables, the signals corresponding to the same recording were synchronised by
compensating the frame lag underlined by the cross-correlation. The distance between the
signals was extracted as a metric of dynamic accuracy, computed as the Root-Mean-Squared
Error (RMSE):
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RMSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (15)

where N is the number of samples and xi and yi are the ith samples of the two signals,
respectively. Moreover, the computed lag in the case of the overall teleoperation systems
was used as a metric of the mean overall delay.

5.2.3. User Demonstration Experiment

To further verify and compare the feasibility and performance of the two frameworks
in performing both power and precision grasp tasks, a user demonstration experiment
was designed and implemented. In this experiment, 6 users were invited to perform the
grasping task, and all of them were right-handed, in good health condition, and had no
motor deficiency. The detailed experimental setup and steps are given as follows.

Material: As shown in Figure 10a, 4 objects were selected for grasping and divided
into two groups: power grasp and precision grasp [2,33]. Each group required a different
grasping posture: Object 1 (a parallelepiped, large-diameter power grasp), Object 2 (a cork
stopper, tripod precision grasp), Object 3 (a cylinder, medium wrap power grasp), and
Object 4 (a soft cube, quadpod precision grasp). Note that Object 2 and Object 4 belong
to the precision grasp group and had to be grasped with only the bionic hand fingertips,
without touching the palm. Following the completion of each experiment, each user was
asked to complete a NASA TLX [34] questionnaire to assess their perceived workload.

Figure 10. User study experimental setup. (a) Objects for the grasping tasks in the user study. (b) User
demonstration experimental setup.

Tasks: As shown in Figure 10b, the bionic hand was fixed to a table, and the user sat
in front of it. The user approached the bionic hand with an object in his or her left hand
and then performed the bionic hand grasp. Then, once the user was confident enough, he
or she left the object in the robotic hand, which in turn held the object for 5 s, indicating
that the grasp was successful. If the object fell or touched the palm (only for the precision
grasp), the trial was deemed a failure. Each user was asked to perform 6 trials with the
glove and vision-tracking methods for each object. Hence, 144 trials were performed for
each method.

6. Results

This section gives the results of the designed experiments in the previous section, in-
cluding the human hand range of motion estimation, the accuracy performance comparison,
and the user demonstration results.

6.1. Human Hand Range of Motion Estimation Results

Four complete calibration cycles were measured for each system. There were 152 static
poses obtained while using the wearable system, 56 of which related to extension, 52 to
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flexion, and 44 to saturation. As regards the vision-based system, one calibration cycle was
excluded because it was affected by markers’ occlusion, thus obtaining 96 static poses, 33 of
which related to extension, 34 to flexion, and 27 to saturation.

Figure 11 shows for each teleoperation system the fitting result of linear regression
and the fitted samples. The resulting ROM was [1.22°; 38.8°] for ϕreal (Figure 11a) when
the operator used the glove and [−5.09°; 52.7°] for βreal (Figure 11b) when the operator
used the vision-based tracking method. As illustrated in the experiments of the estimation
results, the human hand ROM varied when using the glove-based and vision-tracking-
based methods, respectively. Hence, the normalisation for the human ROM is necessary to
achieve intuitive and transparent teleoperation control.

Figure 11. Human hand range of motion estimation results. (a) Glove-based method. (b) Leap
Motion vision-tracking system method.

6.2. Accuracy Performance Comparison Results
6.2.1. Overall Teleoperation Control Performance

Polynomial functions were adopted to find the static characteristics of the two overall
teleoperation systems, which are the expressions that give BLr as a function of FLh or BLh.
The fitting curves according to the adopted criteria are represented in Figure 12, together
with the fitted samples. Table 1 summarises the fitting results and the resulting metrics
about nonlinearity and hysteresis.

The wearable system is characterised by a linear region from 25% to 60% of the flexion
level range, in accordance with the ideal characteristic. Nonlinearity is significantly present
only outside this region, and it peaks at 89% of the range, which also corresponds to
the peak of hysteresis. Fitting results in the case of the vision-based system were poorer
because the dispersion of the samples was higher, hinting at lower behaviour predictability,
mapping repeatability, and precision. The ideal characteristic runs from end to end of the
hysteretic cycle and is completely detached from the two curves, implying that nonlinearity
exists throughout the range. Nonlinearity and hysteresis peak at 20% and 26% of the range,
respectively. As reported by Table 1, such behaviour gives worse error metrics.

Table 1. Fitting results and error metrics of the two implemented teleoperation systems.

System Direction Polynomial
Degree RMSE R2

adj Nonlinearity Hysteresis

Wearable Flexion 5th 0.0225 0.993 11.1% 14.6%Extension 2nd 0.0273 0.989

Vision Flexion 1st 0.0555 0.964 20.0% 27.0%Extension 2nd 0.0609 0.934
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Figure 12. Static testing of overall teleoperation control. (a,b) are the fitting results of the glove and
vision-tracking system. (c,d) and the nonlinearity and hysteresis of the glove and vision-tracking system.

The dynamic trials of the glove-based system shown in Figure 13a reported well-
overlapped human and robot signals, except for a few missed peaks and a systematic
vertical shift for the small-amplitude, high-frequency trial. The general trend, for this
system, appears to be that movements with a lower frequency and amplitude are better
transferred to the robot.

As regards the dynamic trials of the vision-based system, although the signals are
highly correlated, they are less superimposed than in the wearable system case, and missing
peaks are more visible. The small-amplitude, high-frequency trial was the worst case as
for the glove system. In this case, the general trend appears to be that movements with
both high frequency and high amplitude are more easily transferred to the robot. Based
on the experimental results, the RMSE values reported in Table 2 are higher in the vision-
based system in all six conditions, indicating a greater teleoperation error than in the glove
case. Moreover, the vision-based system performed worse for slow and small movements,
indicating that it is less suitable for fine and delicate operations.

Table 2. Mean delay in ms and RMSE of the two teleoperation systems for each motion condition.
The terms large, medium, and small refer to the signal amplitude, while low and high refer to the
signal frequency.

System Large-
Low

Medium-
Low

Small-
Low

Large-
High

Medium-
High

Small-
High

Delay (ms) Wearable 400 225 125 175 175 150
Vision 350 325 0 250 225 150

RMSE Wearable 4.01% 3.40% 2.80% 5.67% 4.44% 7.33%
Vision 8.72% 6.56% 8.51% 6.42% 7.19% 12.6%

Both static and dynamic trials showed that the accuracy of the vision-based teleopera-
tion method was worse with respect to the glove-based one. On the contrary, there was
no discernible systematic difference between the time delays that characterised the two
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systems, as reported by Table 2. In both cases, it was always under 0.5 s, with a mean
value across the six trials of about 0.2 s, which is acceptable and does not compromise the
teleoperation activity.

Figure 13. Dynamic testing of overall teleoperation control under 6 different conditions. (a) Glove-
based results. (b) Vision-tracking-based results.

6.2.2. Human Hand Motion Tracking Performance

Polynomial functions were explored to find the static characteristics of the motion
tracking stages of the two teleoperation systems, which are the expressions that give FL∗m
or BL∗m as a function of FLh or BLh, respectively. The two datasets the functions were
fitted on are the same employed in Section 6.1 to find the human angle range. According
to the adopted criteria, the best-fitting curves had the same polynomial degrees as those
used in Section 6.2.1 to model the characteristics of the two overall teleoperation systems.
Indeed, a comparison of Figure 11a,b with Figure 12a,b reveals that the data distribution
in the two tracking system stages was very similar to that in the two overall teleoperation
systems. Table 3 summarises the fitting results and the resulting metrics about nonlinearity
and hysteresis.



Robotics 2022, 11, 61 17 of 21

Table 3. Fitting results and error metrics of the two implemented tracking stages.

System Direction Polynomial
Degree RMSE R2

adj Nonlinearity Hysteresis

Wearable Flexion 5th 0.0184 0.995 12.5% 16.2%Extension 2nd 0.0252 0.992

Vision Flexion 1st 0.0548 0.9631 18.0% 25.1%Extension 2nd 0.0590 0.946

In both systems, the main differences from the overall teleoperation system case were
a lower dispersion of the samples around the curves and a lower hysteresis below 20% of
the human angle range. These distinctions resulted in better fitting and different metrics of
nonlinearity and hysteresis, which were higher in the wearable system case and lower in
the vision system case. Once again, samples’ dispersion, nonlinearity, and hysteresis in the
vision system case were significantly worse.

Results from the dynamic part of the experiment agree with the static one. Table 4
illustrates the RMSE of the two teleoperation systems for each motion condition. In most
of the conditions, the RMSE was slightly lower than the one computed for the overall
teleoperation system. Once again, the vision-based system was affected by more evident
missing peaks and greater RMSE values in all six conditions.

Both static and dynamic trials suggest that the vision-based tracking method is less
accurate than the glove-based tracking method. Since the actuation control stage is the
same for both systems, the lower accuracy of the vision-based method, underlined in
Section 6.2.1, is solely due to the worse accuracy performance of the vision tracking stage.

Furthermore, given that in both developed teleoperation systems, the processing on
the sensor data and the mapping complexity were reduced to the minimum, such worse
performance can be related to the lower suitability of the LMC to be applied, with simple
processing, as the controller for the teleoperation of a bionic hand. The reason may lie in
the insufficient accuracy of the image processing procedure performed by the LMS while
reconstructing the joint’s position. In the case of robot teleoperation in real scenarios, higher
accuracy is advisable to grant safety and effectiveness to the control; thus, further research
is needed to develop more robust algorithms for joint position estimation.

Table 4. Tracking systems’ dynamic performance comparison: for each motion condition, the RMSE
is reported as a percentage of the human finger ROM. The terms large, medium, and small refer to
the signal amplitude, while low and high refer to the signal frequency.

System Large-Low Medium-
Low

Small-
Low

Large-
High

Medium-
High

Small-
High

Wearable 3.20% 3.05% 2.23% 3.89% 4.71% 7.50%
Vision 8.14% 6.62% 7.44% 5.70% 7.01% 12.5%

6.2.3. Bionic Hand Actuation Control Performance

Rational functions were explored to find the static characteristic of the actuation control
stage, common to both teleoperation systems, that is the expressions that give BLr as a
function of FL∗m or BL∗m. Table 5 summarises the degrees of rational function polynomials,
the goodness-of-fit metrics, and the accuracy metrics. The RMSE is lower than the tracking
stage one. Above 20% of the range, the curves are superimposed to the ideal behaviour.
Nonlinearity is present only under 20% of the range. Samples’ dispersion is also higher in
that region.
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Table 5. Fitting results and error metrics of the implemented actuation control system.

Direction Polynomial
Degree RMSE R2

adj Nonlinearity Hysteresis

Flexion 3rd/4th 0.0139 0.998 4.11% 7.37%Extension 3rd/1st 0.0132 0.999

Then, Table 6 summarises the RMSE of the actuation control for each motion condition.
In all conditions, the resulting robot path followed precisely the desired one defined by the
measured human pose. The RMSE was always under 3% of the range.

Table 6. Actuation control stage dynamic performance: for each motion condition, the RMSE is
reported as a percentage of the bionic finger ROM. The terms large, medium, and small refer to the
signal amplitude, while low and high refer to the signal frequency.

Large-Low Medium-
Low Small-Low Large-High Medium-

High Small-High

1.52% 1.27% 0.78% 2.03% 1.68% 3.00

Both static and dynamic results showed that the accuracy error of the actuation control
system is not relevant for finger teleoperation. This was confirmed also by the high
similarity between the results of the overall teleoperation and the ones related to motion
tracking alone, underlined in Section 6.2.2. Therefore, the inverse kinematic model obtained
through finger motion calibration, applied through a proper algorithm, proved to grant
a generally accurate and reliable actuation control system, demonstrating improvements
compared with the linear motion mapping approach.

6.3. User Demonstration Result

The screenshots in Figure 14a–d show the grasp scenario when using the vision-
tracking-based method to grasp the objects, while Figure 14e–h are the screenshots when
grasping the four objects utilising the glove-based one. As illustrated in these figures, the
user can grasp different types of objects, using both the wearable glove and the vision-
tracking-based methods, regardless of the power or precision grasp.

Figure 14. User demonstration results of the implemented teleoperation control frameworks. Figures
from (a–d) represent the four grasping types based on vision tracking teleoperation. Figures (e–h) are
the four grasping types based on wearable glove teleoperation.

Results from the usability experiment in Table 7 show that the mean perceived work-
load was practically the same in the two systems. However, in the case of the glove, on
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average, the workload component due to global effort was perceived as higher, and the
performance was perceived as higher as well. The success rate was high in both cases and
slightly higher for the glove. Free user feedback was in line with questionnaire results:
users felt the glove was better performing, but at the same time, less comfortable, causing
greater effort.

Table 7. Comparison result from the user demonstration experiment. The success rate and the average
adjusted ratings of workload indexes considered by the NASA TLX questionnaire are reported. The
total workload is the sum of the adjusted ratings and can range from 0 to 100.

Evaluation Index Wearable System Vision System

Mental demand 8.4 7.9
Physical demand 7.1 7.2

Temporal demand 3.1 3.8
Performance 3.5 5.9

Effort 12 9.5
Frustration 4.7 3.5

Total workload 38.8/100 37.8/100
Success rate 98.6% 96.5%

The user demonstration results showed that the inaccuracy issue of the vision-based
method does not compromise the teleoperation control; nevertheless, it has an impact on the
teleoperation control performance. As regards the glove-based method, the user’s comfort
is a critical issue. Although wearable devices are more accurate than vision-based ones,
their applications may be limited if the user’s comfort is not prioritised, thus making vision-
based methods become promising solutions. Therefore, to make wearable systems more
competitive, mechanical hardware should be improved, taking user comfort into account.

7. Conclusions

This paper primarily compared two methods for teleoperation control of an underac-
tuated bionic hand, namely wearable-glove-based and vision-tracking-based, respectively.
First of all, the kinematics modelling of the bionic hand is a critical issue considering the
underactuated and nonlinear characteristics of the bionic hand. In this paper, the calibration
data from an external NDI tracking system were used to generate the kinematics model
of the underactuated bionic hand, which was considered the ground truth. Then, how to
achieve an intuitive motion mapping from the human hand to the bionic hand is another
challenging issue. To solve this, the flexion and the bending angles of the human hand
fingers were defined and measured by the two tracking systems, respectively. Besides, they
were normalised for their own range and mapped to the bionic hand motion to achieve
an intuitive teleoperation control. Furthermore, the accuracies of the two systems were
compared, suggesting a higher performance of the glove-based method. Finally, the results
of the accomplished precision and power grasp tasks in the user experiment demonstrated
the feasibility of the proposed methods. Such an experiment revealed that the glove-based
method grants a higher performance, but is also less comfortable and requires greater effort
by the user. Future work will focus on integrating the developed teleoperation control
frameworks and bionic hands into practical applications and scenarios.
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