
Citation: Tsai, C.-H.; Lin, J.-J.; Hsieh,

T.-F.; Yen, J.-Y. Trajectory Control of

An Articulated Robot Based on Direct

Reinforcement Learning. Robotics

2022, 11, 116. https://doi.org/

10.3390/robotics11050116

Academic Editor: Guanghui Wen

Received: 6 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Technical Note

Trajectory Control of An Articulated Robot Based on Direct
Reinforcement Learning
Chia-Hao Tsai 1, Jun-Ji Lin 1, Teng-Feng Hsieh 1 and Jia-Yush Yen 2,*

1 Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd.,
Taipei 106216, Taiwan

2 Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4,
Taipei 106335, Taiwan

* Correspondence: jyen@mail.ntust.edu.tw; Tel.: +886-2-2737-6101

Abstract: Reinforcement Learning (RL) is gaining much research attention because it allows the
system to learn from interacting with the environment. Yet, with all these successful applications, the
application of RL in direct joint torque control without the help of an underlining dynamic model is
not reported in the literature. This study presents a split network structure that enables successful
training of RL to learn the direct torque control for trajectory following a six-axis articulated robot
without prior knowledge of the dynamic robot model. The training took a very long time to converge.
However, we were able to show the successful control of four different trajectories without needing
an accurate dynamics model and complex inverse kinematics computation. To show the RL-based
control’s effectiveness, we also compare the RL control with the Model Predictive Control (MPC),
another popular trajectory control method. Our results show that while the MPC achieves smoother
and more accurate control, it does not automatically treat the singularity. In addition, it requires
complex inverse dynamics calculations. On the other hand, the RL controller instinctively avoided
the violent action around the singularities.

Keywords: robotics; trajectory following; reinforcement learning; model predictive control

1. Introduction

Reinforcement Learning allows the system to learn by interacting with the environ-
ment. There is no need for a large number of labeled samples, and the system learns
as it accumulates experience. Since its introduction, RL has shown great potential in
many applications.

This study addresses the direct application of Reinforcement Learning (RL) to the joint
force control of an articulated robot to follow pre-specified trajectories. The RL controller
uses a neural network to compute the required joint torque. It requires no knowledge of an
underlying dynamic robot model and needs no complex inverse kinematics calculation.
From the application point of view, a neural network-based robot arm controller is desirable.
However, very few available RL robot control examples have addressed the direct torque
control of articulated robots. Searching through the literature, one finds that most available
results dealt only with the kinematic trajectory planning and left the torque control problem
to the controller that came with the robot. Many related results have based their control on
model-based inverse dynamic cancellation and used RL to learn the control parameters [1,2].
The others that did address direct joint torque were for SCARA robots with only two
links [2,3]. Considering how humans learn to control their limbs, it is still desirable to know
if one can train the robot arm the way we train ourselves to use our arm.

Learning control has been around for a long time. In 1995, Nuttin and Van Brussel
proposed a learning controller to increase the insertion speed in consecutive peg-into-hole
operations; the learning controller could perform the same without increasing the contact
force level [4]. In 1997, Schaal examined the types of learning problems that benefit from

Robotics 2022, 11, 116. https://doi.org/10.3390/robotics11050116 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050116
https://doi.org/10.3390/robotics11050116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://doi.org/10.3390/robotics11050116
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050116?type=check_update&version=2

Robotics 2022, 11, 116 2 of 20

demonstration [5]. He compared the performance of various learning algorithms on an
anthropomorphic robotic arm. In 2006, Peters and Schaal demonstrated the efficiency of
Reinforcement Learning in teaching a SARCOS Master Arm to hit a baseball [6]. In 2007, he
also performed the Reinforcement Learning approach on the anthropomorphic robotic arm
simulation in operational space control [7]. In 2010, Kober et al. explained the technique
of learning mappings from circumstances to meta-parameters by using Reinforcement
Learning. He showed two robot movement applications: throwing darts and table tennis
hitting [8]. In 2016, Gu et al. showed that a Deep Reinforcement Learning algorithm based
on the off-policy training of Deep Q-Functions could scale to complex 3D manipulation
tasks for a robot [9]. In 2017, Liu et al. proposed an RL learning control for the robotic
insertion task [10]. In 2018, Luo et al. used Guided Policy Search in the peg-in-hole insertion
in a deformable hole [1].

Many RL approaches are available. The Deep Deterministic Policy Gradients (DDPG)
is a state-of-the-art algorithm to simultaneously train the Deep Q Network and the Deep
Policy Network. DDPG achieves good performance in continuous control problems by in-
tegrating the Deterministic Policy Gradient algorithm. From a comparative viewpoint, the
difference between the Stochastic- and Deterministic Policy Gradient is that the Stochastic
Policy Gradient integrates over both state and action spaces. In contrast, the Deterministic
Policy Gradient only integrates over the state space. Consequently, the Deterministic Policy
Gradient requires fewer samples than the Stochastic Policy Gradient, especially if the action
space has few dimensions [11]. Survey papers at various stages of development on RL
are already available. Kormushev provided a summary describing the RL application
in the real world industry [12], and Wang et al. published a review of recent theoreti-
cal development [13]. There is also the convergence issue with the training algorithm.
When Silver et al. first proposed the deterministic policy gradient (DPG) algorithm [11],
they required a linear compatible function as the state-action value function. The DDPG
proposed by Lillicrap et al. [14] uses a deep neural network (DNN) as a function approx-
imator. The nonlinear approximator introduces a risk of trapping in the local optimal.
Many literature results have shown that the main issue is the compatibility between the
actor and critic networks. To avoid this situation, DDPG introduces the noisy state-action
value function. Many research efforts have been devoted to exploring ways to improve
convergence [15–22]. There are also alternative approaches to DDPG for continuous-time
reinforcement learning. Ghavamzadeh and Mahadevan [23] developed a generalization
of the MAXQ for continuous-time semi-Markov decision processes. Tiganj et al. [24]
developed a logarithmically-compressed time scale model for the future to establish a
scale-invariant timeline to overcome the discretization problem. Research by Jiao and
Oh [25] proposed using separate threads to execute the “behavior” and the “update policy.”
In this research, we adopted the method proposed by [14] to add noise to the actor policy
to ensure value function compatibility.

This study used a HIWIN RA605 robotic arm for the target experiment. We defined the
simulation’s target trajectory, reward function, policy, and actor-critic network structures.
After many trials, it became clear that the direct application of RL to multi-link articulated
robot trajectory control without an underlining model is more complicated than one expects.
A recent study directly applied the deep learning controller to emulate the inverse dynamics
action [26]. They handled the nonlinear behavior by applying the learning control on
the separate axis with all the other axes fixed. However, they still used model-based
supervised learning. In addition, their effort to train all the axes can be too great for
practical implementation. Instead, our study based the training on the trajectory without
needing a dynamic model. One can therefore train the RL network along a specific path.
We describe the proposed network structure and the result of the training.

This study also compared the control with the Model Predictive Control (MPC),
another popular control method, to demonstrate the control effectiveness. MPC based the
design on a system model. Instead of conventional feedback, it determines the control
action by optimizing a performance index over a finite time horizon [27]. Many previous

Robotics 2022, 11, 116 3 of 20

researchers have proposed different MPC methods. In 2014, Nikdel designed an MPC
controller to control a single-degree-of-freedom shape memory alloy (SMA) actuated rotary
robotic arm to track the desired joint angle [28]. MPC discovered practices in dynamic
and unpredictable environments such as chemical plants and oil refineries [29], as well as
power system balancing [30]. More recently, the MPC has also begun to find applications
in the control of autonomous vehicles [31] and robotic trajectory control [32–34]. In 2016,
Best et al. applied MPC to robot joint control. The dynamic model-based control of a
soft robot shows significant improvement over the regular controller [35]. In 2017, Lunni
et al. applied a Nonlinear Model Predictive Controller (NMPC) to an aerial robotic arm
for tracking desired 3D trajectories. They demonstrated online use of the NMPC controller
with limited computational power [36]. In 2018, Guechi et al. proposed a combination of
MPC and feedback linearization control for a two-link robotic arm [37,38]. In the same year,
Car et al. applied an MPC-based position control to an unmanned aerial vehicle (UAV).
The onboard computer running linear MPC-based position control communicates through
a serial port with the low-level altitude controller [39].

This paper describes using RL to control a HIWIN RA605 robotic arm. The task is for
the robot arm to follow a desired trajectory while maintaining a specific attitude for the
end effector. We propose a split network structure that allows for the direct application
of RL to robot trajectory control. We also compare the control performance to a Twin
Delayed Deep Deterministic Policy Gradient (TD3) network and an MPC. The results
show that the proposed RL structure can achieve articulated robot control without the help
of an accurate robot model. The RL trajectory is oscillatory but instinctively avoids the
singularity and requires no background model. The behavior is similar to a human holding
out their hand. Although the TD3 controller still converges, it oscillates around a noticeable
offset. The MPC is smooth but requires a system model and additional treatments to
avoid singularities.

2. Theoretical Background
2.1. Deep Deterministic Policy Gradient (DDPG)

The popular DDPG was first used in this study to train the RL network. The
standard reinforcement learning algorithm considers the problem of an agent in-
teracting with an environment E. The policy π for the agent’s action a at state s is
represented by a probability distribution π : S → P (A) , where S represents the state
space and A represents the action space. Assuming that the actions can be parameter-
ized with parameters θ; the parameterized policy becomes πθ(s) which selects the
action a in state s with parameters θ by interacting with the environment. At each
time step t, the agent receives a reward r for its action, and the return from a state
is defined by the sum of the discounted future reward R = ∑t γi−1r(st , at), γ ∈ [0, 1].
As a result, the expected return, or the value function, for the action a = πθ(s) be-
comes Qπ (st , πθ(st)) = Er,s∼E,a∼π [R|st , at] . The goal of the agent is to maximize
the value function Q by updating πθ(st) and Qπ (st , πθ(st)). To allow an itera-
tive learning process, one can express the value function Q in a recursive form:
Qπ (st , at) = Ert ,st+1∼E

[
r(st , at) + γEat+1∼π [Qπ (st+1 , at+1)]

]
. One can omit the inner

expectation if one chooses a deterministic policy as µ : S → A , and reduces the
value function to an expression that depends only on the environment such as
Qµ(st , at) = Ert ,st+1∼E [r(st , at) + γQµ(st+1 , µ(st+1)]. It is now possible to use an off-
policy algorithm to learn Qµ with a greedy policy µ(s) = argmax

a
Q(s, a).

The standard RL algorithm is not directly applicable to continuous action space due to
the need for optimization at every time step. DDPG thus resolves into an actor-critic model
structure. The actor specifies the deterministic policy by mapping the states to a specific

Robotics 2022, 11, 116 4 of 20

action. The critic then learns the value function using the Bellman equation. The policy
gradient of the expected return can be expressed as:

∇θµ J ≈ Est∼ρβ

[
∇θµ Q

(
s, a
∣∣θQ) | s=st ,a=µ(st |θµ)

]
= Est∼ρβ

[
∇aQ

(
s, a
∣∣θQ) | s=st ,a=µ(st)

∇θµ µ(s|θµ) | s=st

]
.

(1)

The basic algorithm for DDPG is shown in Algorithm 1.
Algorithm 1: DDPG

1. Initialize θ and φ arbitrarily, set θ̂ = θ and φ̂ = φ, iterate until they converge.
2. For every episode:

A. For every time step t:

a. Given a state st, take action at based on policy π;
b. Obtain reward rt and the new state st+1;
c. Store all the (st, at, rt, st+1) into the buffer.

B.
a. Sample a batch of (si, ai, ri, si+1) from the buffer;

b. Set the cost function C(θ) = ∑
i

[
ri + γQ̂(si+1, π̂(si+1))−Q(si, π(si))

]2;

c. Update the parameters of Q, which is θ, to minimize C(θ).

θ∗ = θ− η
∂C(θ)

∂θ
(2)

Set the value function:
V(φ) = ∑

i
Q(si, π(si)) (3)

Update the parameters of π, which is φ, to maximize V(φ).

φ∗ = φ + λ
∂V(φ)

∂φ
= φ + λ ∑

i

∂Q(si, π(si))

∂φ
= φ + λ ∑

i

∂Q(si, π(si))

∂φ
= φ + λ ∑

i

∂Q(si, π(si))

∂T(si)

∂π(si)

∂φ
(4)

Update θ̂ = τθ∗ + (1− τ)θ and φ̂ = τφ∗ + (1− τ)φ, where τ is a factor between
0 and 1.

2.2. The Modified DDPG Method

As mentioned before, the algorithm in the previous subsection adopted the greedy
policy to optimize at for each time step and is unsuitable for applying to continuous-time
robotic motion control. Therefore, modifying the algorithm into an applicable actor-critic
algorithm is necessary.

In the DDPG algorithm, π(st) is used to represent the decision-making policy that
determines the corresponding action in the state st. The decision of the action at by π(st)
does not result directly from the information of the state st and would require two steps to
determine. Suppose there are five possible discrete actions, π(st) will first decide on the
most probable action and use it as its decision. Nevertheless, due to the greedy selection,
the final choice may not be the same as the action with the highest possibility.

In this paper, the action consists of six joint torques; there is an infinitely possible
choice of actions because the torque is a continuous variable. As a result, the possibility
of all activities being covered cannot be covered. Instead of using π(st) to determine the
most probable action, the algorithm resolves to using T(st) to directly determine the action
ai, which consists of the six joint torques, based on the states st. The algorithm also added
noise to the action to ensure value function compatibility.

The modified DDPG method (DDPG-1) algorithm is shown as Algorithm 2.
Algorithm 2: DDPG-1

1. Initialize θ and φ arbitrarily, set θ̂ = θ and φ̂ = φ, iterate until converge;

Robotics 2022, 11, 116 5 of 20

2. For every episode.

A. For every time step t:

1. Given a state st, take action at based on T;
2. Obtain reward rt and each new state st+1;
3. Store all (st, at, rt, st+1) into the buffer.

B.
a. Sample a batch of (si, ai, ri, si+1) from the buffer;
b. Set the cost function.

C(θ) = ∑
i

[
ri + γQ̂

(
si+1, T̂(si+1)

)
−Q(si, T(si))

]2 (5)

Update the parameters of Q, which is θ to minimize C(θ).

θ∗ = θ− η
∂C(θ)

∂θ
(6)

Set the value function:
V(φ) = ∑

i
Q(si, T(si)) (7)

Update the parameters of T, which is φ to maximize V(φ).

φ∗ = φ + λ
∂V(φ)

∂φ
= φ + λ ∑

i

∂Q(si, T(si))

∂φ
= φ + λ ∑

i

∂Q(si, T(si))

∂φ
= φ + λ ∑

i

∂Q(si, T(si))

∂T(si)

∂T(si)

∂φ
(8)

a. Update θ̂ = τθ∗ + (1− τ)θ and φ̂ = τφ∗ + (1− τ)φ, where τ is a factor between
0 and 1.

Using the DDPG-1 method, one can consistently update the parameters of the critic Q
and the policy T consistently during training to obtain the optimized critic Q and policy
T. For each training step, the action selected is at = T(V; φ) + N, where N is the noise for
value function compatibility. We also explored the TD3 algorithm, but it did not provide
too much improvement.

2.3. The Differential Kinematics

The robotic control is slightly more complicated than the standard control systems.
Unlike the regular control system that directly takes the control error for feedback, the
control system needs to adequately translate the trajectory error in the task space into the
various joint torques. In other words, there is a transformation of the measurement from
the “task space” into the “joint space,” and the translation involves the differentiation of
the Jacobian matrices, which, in turn, introduces Coriolis accelerations. The robotic control
system will need to cancel or suppress this nonlinear effect. In a common end-following
task, the position and attitude of the robot end-effector in the Cartesian coordinate system
contain three position values (Px, Py, and Pz) and three attitude angles (α, β, and γ), for a
total of six degrees of freedom. For an RA 605 robotic arm with six joints, the controller
will need to perform the inverse kinematics and compute the nonlinear dynamic forces
for cancellation and exercise the control. One of the goals of this research is to use a deep
learning network for the inverse dynamic model and directly control the robotic arm.

3. The Reinforcement Learning Structure
The RL Network Structure

The following section will briefly describe the deep learning network setup. For the
agent, we set 43 observed results as the inputs, including the roll angle φ, pitch angle θ,
yaw angle ψ, the roll angular velocity

.
φ, pitch angular velocity

.
θ, yaw angular velocity

.
ψ,

the roll angular acceleration
..
φ, pitch angular acceleration

..
θ, and yaw angular acceleration

Robotics 2022, 11, 116 6 of 20

..
ψ. The measurements were made with respect to the end of the last joint relative to the
reference coordinate. In addition, there are also three positions (Px, Py, and Pz), velocities
(Vx, Vy, and Vz), and accelerations (Ax, Ay, and Az) of the endpoint of the robotic arm, also
based on the reference coordinate. Furthermore, there are six joint angles (q1 ∼ q6), six
joints angular velocities (

.
q1 ∼

.
q6), six joints angular accelerations (

..
q1 ∼

..
q6), six joints

torques (τ1 ∼ τ6), and the total power of joints (Pjoints). The outputs of the actor network
are the six joint torques.

Although deep learning is a powerful tool, the computation effort involved in training
the network can be too great for practical applications. Our initial attempt to help with the
training was to separate the effect of the positioning error and the effect of the velocity error
to prevent the conflicting demands from holding position and moving the arm. However,
the learning behavior of the network was not predictable. After many attempts, we finally
came up with a unique structure for the actor network. The actor network consists of two
parallel networks, each with three 225-neuron fully connected hidden layers and a fully
connected output layer, as shown in Figure 1.

Figure 1. The neural network system of the agent.

In addition, we also break down the critic network into two parts: one for observation
and the other for the robot. The observation part of the network takes the 43 observed
results as inputs, and the robot part takes the six joint torques as inputs. The two parts both
consist of three fully connected hidden layers with 225 neurons. Their outputs combine to
form the network Q value output, as shown in Figure 2.

Robotics 2022, 11, 116 7 of 20

Figure 2. The neural network system of the critic.

It is now easy to use the RL blocks for training, as shown in Figure 3, consisting of
the Observation, Reward, Agent, Robot, and Sensor block. The Observation block receives
the resultant states reflecting the attitude of the end effector with 43 inputs, as shown in
Figure 4. The Reward block diagram receives the result states and calculates the reward,
as shown in Figure 5. The Agent gets the output from the Observation, Reward, and
Check-If-Done block, updates the Q function and the π function, and outputs the reaction
torques to the robot. The Sensor computes the forward kinematics as the resulting states
and feeds it back to the three blocks.

Figure 3. The training block diagram.

Figure 4. The Observation block.

Robotics 2022, 11, 116 8 of 20

Figure 5. The Reward block.

4. Model Predictive Control [11,12]

As described before, MPC is based on the system dynamic model. The robot is de-
scribed by Equation (9). Define the control law, Equation (10), to cancel the nonlinear effect:

M(θ)
..
θ+ C(θ,

.
θ) + G(θ) = τ (9)

τ = M(θ)v + C(θ,
.
θ) + G(θ) (10)

The system reduces to a feedback-linearized system (11).

..
θ = v = const (11)

In the MPC, we apply a proportional-derivative (PD) controller given by Equation (12)
to stabilize the robotic arm system:

v = k1(θd − θ) + k2(
.
θd −

.
θ) (12)

where θd is the vector of joint variables to reflect the desired trajectory. Consider a time
interval [t, t + h], where h is the timeslot of the prediction. From Equation (10), we can
develop the following two prediction models [12]:

.
θ(t + h) = vh +

.
θ(t) (13)

θ(t + h) =
1
2

vh2 +
.
θ(t)h + θ(t) (14)

If the target joint angle is θd, a simplified MPC design is to define a one-horizon time
quadratic cost function to stabilize the system as:

J = e2(t + h) + ρ
.
e2
(t + h) (15)

where e(t + h) = θd− θ(t + h) is the predicted angular position error, and
.
e(t + h) = 0−

.
θ(t + h)

is the predicted angular velocity error. In Equation (7), the timeslot h and weight ρ are positive real
control parameters to be designed. To minimize J, one introduces the prediction model Equation (13)
into Equation (14) and lets the partial derivative ∂J/∂v equal 0. Considering that the robot slowly
follows the trajectory, the resulting control becomes:

v = k1(θd − θ(t))− k2
.
θ(t) (16)

where k1 and k2 are:

k1 =
2

h2 + 4ρ
and k2 =

2h2 + 4ρ

h3 + 4ρh
(17)

Robotics 2022, 11, 116 9 of 20

By allowing the target joint angle to change over time, and from Equation (8), we
obtain a more general control law:

v(t) = k1(θd(t)− θ(t))− k2
.
θ(t) (18)

From Equations (9), (10), and (18), a block diagram of the MPC controller and the
robotic arm system can be shown in Figure 6, where θd(t) are the target joint angles in
the joint-space.

Figure 6. The MPC controller and the robot arm system.

The main goal of the control is for the joint angles to follow their targets according to
the second-order dynamics specified by the transfer function ω2

0/(s2 + 2ζω0 + ω2
0), where

ζ is a damping factor and ω0 is a natural frequency by design.

Modeling of the Robotic Arm System

The HIWIN Technologies Corporation provided the RA605 robot arm for the D-H
table, which can be readily incorporated into the “rvctools” Robotics toolbox in MATLAB
for simulation purposes. It is also possible to obtain the system parameters for the dynamic
model of the robot.

This research applied the DDPG to the RL training algorithm. We built an RA605
robotic arm model within the MATLAB simulation environment and, for generality pur-
poses, four different target trajectories: a small circle trajectory (0.1 m diameter), a larger
circle trajectory (0.2 m diameter), a small square trajectory (0.1 m side length) and a big
square trajectory (0.2 m side length), Figure 7. To demonstrate the ability of six-axis trajec-
tory control, we fixed the roll, pitch, and yaw angles of the end effector at π, −π/2, and
0 rad, respectively.

Figure 7. (a) small circle trajectory (b) big circle trajectory (c) small square trajectory (d) big
square trajectory.

Robotics 2022, 11, 116 10 of 20

5. The Control Results

This section compares the control performance of the RL and MPC trajectory controls.

5.1. The RL Training Results

The 0.1 m diameter circle trajectory took about 343,070 s to train on an i7-computer
running GPU and had 22,228 episodes. Figure 8 shows the roll, pitch, and yaw angle
tracking results in the task space.

Figure 8. The angles of roll, pitch, and yaw of the end of the robotic arm (RL and MPC, 0.1 m
diameter circle).

The 0.2 m diameter circle trajectory took a shorter 65,783 s and 4378 episodes to train.
The roll, pitch, and yaw angle tracking results in the task space are shown in Figure 9.

Figure 9. The angles of roll, pitch, and yaw of the end of the robotic arm (RL and MPC, 0.2 m
diameter circle).

The 0.1 m square trajectory converged after training for about 186,100 s and 12,284 episodes.
In Figure 10, we show the roll, pitch, and yaw angle tracking results in the task space.

Robotics 2022, 11, 116 11 of 20

Figure 10. The angles of roll, pitch, and yaw of the end of robotic arm (RL and MPC, 0.1 m side
length square).

The 0.2 m square trajectory took about 129,040 s and 8338 episodes to train. In Figure 11,
we show the roll, pitch, and yaw angle tracking results in the task space.

Figure 11. The angles of roll, pitch, and yaw of the end of the robotic arm (RL and MPC, 0.2 m side
length square).

5.2. The Twin Delayed Deep Deterministic Policy Gradient Training

The authors also constructed a Twin Delayed Deep Deterministic Policy Gradient
(TD3) network for comparison purposes. The network took 25,000 episodes to reach stable
control. Figure 12 shows the resulting response. The robot arm’s trajectory follows a short
7.5 mm vertical line. As one observes from the result, Figure 12, the robot arm moved too
fast and oscillated around a position with a 30 mm offset.

Robotics 2022, 11, 116 12 of 20

Figure 12. Trajectory following results for a Twin Delayed Deep Deterministic Policy Gradient
network. (to follow a vertical line of 7.5 mm).

5.3. The MPC Results

For the MPC, we selected h = 0.003 s and ρ = 1.04 × 10−5 to achieve a closed-
loop bandwidth of ωn = 200 rad/ sec and ζ = 1 for no oscillation. From Equation (17),
k1 = 4× 104, k2 = 400.

The block diagram for the control system is shown in Figure 13. The MPC controller
consists of the inverse dynamic calculation and uses the values of v, q, and

.
q for the input

and the joint torques τ for the output. The parameter v is the constant angular acceleration
produced by the MPC controller. Four different target trajectories are shown in Figure 14.

Figure 13. The block diagram of the MPC controller of the RA605 robotic arm.

Robotics 2022, 11, 116 13 of 20

Figure 14. (a) small circle trajectory (b) big circle trajectory (c) small square trajectory (d) big
square trajectory.

For comparison, we ran the same trajectories as in the previous tests. The roll, pitch,
and yaw angles in the task space are set at π,−π/2, and 0 rad, respectively. The motion is
constrained to a slow speed.

To compare with the RL method easily, we put the result of MPC together with the RL
method. For the 0.1 m diameter circle trajectory, we show the roll, pitch, and yaw angle
tracking results in the task space in Figure 8. Figure 9 shows 0.2 m diameter circle roll, pitch,
and yaw angle tracking results in the task space. The results for the 0.1 m square trajectory
are shown in Figure 10. Again, Figure 10 shows the roll-pitch-yaw trajectories. Finally, the
results for the 0.2 m square target trajectory are shown in Figure 11. The roll-pitch-yaw
angle tracking results are shown in Figure 11.

5.4. The Comparison of RL and MPC

Tables 1–3 show the comparison for the roll-pitch-yaw angle tracking effect for the
0.1 m circular trajectory. Tables 4–6 show the comparison for the 0.2 m diameter circular
trajectory roll-pitch-yaw errors. For the 0.1 m square target trajectory, Tables 7–9 show the
comparison of the attitude errors. Likewise, Tables 10–12 compare the tracking results of
the 0.2 m square trajectory.

Table 1. The roll angle of the end of the robotic arm (0.1 m circle).

Time (s) Roll_MPC (Rad) Roll_RL (Rad) Roll_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 3.14 3.14 3.14 4.07 × 10−4 1.43 × 10−4

0.5 3.14 3.14 3.14 3.87 × 10−4 −8.90 × 10−4

1 3.14 3.14 3.14 4.33 × 10−4 −4.98 × 10−3

1.5 3.14 3.13 3.14 3.96 × 10−4 −8.74 × 10−3

2 3.14 3.14 3.14 3.61 × 10−4 −5.75 × 10−3

2.5 3.14 3.15 3.14 4.83 × 10−4 4.35 × 10−3

3 3.14 3.14 3.14 4.21 × 10−4 6.84 × 10−4

3.5 3.14 3.14 3.14 3.29 × 10−4 −1.58 × 10−4

4 3.14 3.14 3.14 4.37 × 10−4 −4.29 × 10−4

4.5 3.14 3.14 3.14 4.88 × 10−4 1.37 × 10−3

Robotics 2022, 11, 116 14 of 20

Table 2. The pitch angle of the end of the robotic arm (0.1 m circle).

Time (s) Pitch_MPC (Rad) Pitch_RL (Rad) Pitch_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 −1.57 −1.57 −1.57 6.66 × 10−15 −4.07 × 10−4

0.5 −1.57 −1.57 −1.57 7.67 × 10−4 −7.58 × 10−4

1 −1.57 −1.57 −1.57 7.87 × 10−4 −2.18 × 10−3

1.5 −1.57 −1.57 −1.57 8.05 × 10−4 −1.74 × 10−3

2 −1.57 −1.57 −1.57 8.11 × 10−4 −3.28 × 10−3

2.5 −1.57 −1.57 −1.57 8.05 × 10−4 1.45 × 10−3

3 −1.57 −1.57 −1.57 7.89 × 10−4 −1.96 × 10−4

3.5 −1.57 −1.58 −1.57 7.69 × 10−4 −4.39 × 10−3

4 −1.57 −1.56 −1.57 7.23 × 10−4 7.04 × 10−3

4.5 −1.57 −1.57 −1.57 7.96 × 10−4 6.37 × 10−4

Table 3. The yaw angle of the end of the robotic arm (0.1 m circle).

Time (s) Yaw_MPC (Rad) Yaw_RL (Rad) Yaw_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 7.36 × 10−15 −2.05 × 10−4 0 7.36 × 10−15 −2.05 × 10−4

0.5 −9.65 × 10−5 8.12 × 10−3 0 −9.65 × 10−5 8.12 × 10−3

1 9.61 × 10−5 2.68 × 10−3 0 9.61 × 10−5 2.68 × 10−3

1.5 −3.96 × 10−5 9.70 × 10−4 0 −3.96 × 10−5 9.70 × 10−4

2 −5.90 × 10−5 3.90 × 10−3 0 −5.90 × 10−5 3.90 × 10−3

2.5 2.90 × 10−5 7.66 × 10−4 0 2.90 × 10−5 7.66 × 10−4

3 3.38 × 10−5 −8.37 × 10−3 0 3.38 × 10−5 −8.37 × 10−3

3.5 −8.86 × 10−5 −7.24 × 10−3 0 −8.8 × 10−5 −7.24 × 10−3

4 9.58 × 10−5 4.31 × 10−3 0 9.58 × 10−5 4.31 × 10−3

4.5 5.85 × 10−5 −3.24 × 10−5 0 5.85 × 10−5 −3.24 × 10−5

Table 4. The roll angle of the end of the robotic arm (0.2 m circle).

Time (s) Roll_MPC (Rad) Roll_RL (Rad) Roll_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 3.14 3.14 3.14 4.07 × 10−4 1.43 × 10−4

0.5 3.14 3.15 3.14 4.72 × 10−4 5.14 × 10−3

1 3.14 3.14 3.14 4.40 × 10−4 −1.71 × 10−3

1.5 3.14 3.14 3.14 3.40 × 10−4 −3.64 × 10−3

2 3.14 3.14 3.14 4.28 × 10−4 −3.75 × 10−3

2.5 3.14 3.14 3.14 3.46 × 10−4 −5.92 × 10−3

3 3.14 3.13 3.14 4.54 × 10−4 −1.10 × 10−2

3.5 3.14 3.15 3.14 3.25 × 10−4 8.85 × 10−3

4 3.14 3.14 3.14 4.59 × 10−4 −6.69 × 10−4

4.5 3.14 3.15 3.14 4.75 × 10−4 6.82 × 10−3

Robotics 2022, 11, 116 15 of 20

Table 5. The pitch angle of the end of the robotic arm (0.2 m circle).

Time (s) Pitch_MPC (Rad) Pitch_RL (Rad) Pitch_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 −1.57 −1.57 −1.57 6.66 × 10−15 −4.07 × 10−4

0.5 −1.57 −1.60 −1.57 6.66 × 10−4 −2.44 × 10−2

1 −1.57 −1.58 −1.57 6.86 × 10−4 −8.60 × 10−3

1.5 −1.57 −1.57 −1.57 8.67 × 10−4 −2.43 × 10−3

2 −1.57 −1.57 −1.57 9.46 × 10−4 −1.66 × 10−3

2.5 −1.57 −1.57 −1.57 8.12 × 10−4 −1.51 × 10−3

3 −1.57 −1.58 −1.57 7.75 × 10−4 −1.00 × 10−2

3.5 −1.57 −1.60 −1.57 6.23 × 10−4 −2.93 × 10−2

4 −1.57 −1.55 −1.57 6.47 × 10−4 2.46 × 10−2

4.5 −1.57 −1.57 −1.57 7.96 × 10−4 −1.13 × 10−3

Table 6. The yaw angle of the end of the robotic arm (0.2 m circle).

Time (s) Yaw_MPC (Rad) Yaw_RL (Rad) Yaw_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 −3.64 × 10−14 −2.05 × 10−4 0 −3.64 × 10−14 −2.05 × 10−4

0.5 6.45 × 10−5 1.66 × 10−2 0 6.45 × 10−5 1.66 × 10−2

1 3.30 × 10−5 1.90 × 10−3 0 3.30 × 10−5 1.90 × 10−3

1.5 −6.78 × 10−5−5 −5.11 × 10−3 0 −6.78 × 10−5 −5.11 × 10−3

2 2.04 × 10−5 1.51 × 10−2 0 2.04 × 10−5 1.51 × 10−2

2.5 −6.10 × 10−5 −7.64 × 10−3 0 −6.10 × 10−5 −7.64 × 10−3

3 4.69 × 10−5 1.97 × 10−3 0 4.69 × 10−5 1.97 × 10−3

3.5 −8.21 × 10−5 1.38 × 10−2 0 −8.21 × 10−5 1.38 × 10−2

4 5.19 × 10−5 −6.25 × 10−3 0 5.19 × 10−5 −6.25 × 10−3

4.5 6.77 × 10−5 −3.48 × 10−2 0 6.77 × 10−5 −3.48 × 10−2

Table 7. The roll angle of the end of the robotic arm (0.1 m side length square).

Time (s) Roll_MPC (Rad) Roll_RL (Rad) Roll_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 3.14 3.14 3.14 4.07 × 10−4 1.43 × 10−4

0.5 3.14 3.14 3.14 1.35 × 10−3 3.06 × 10−3

1 3.14 3.14 3.14 1.22 × 10−4 6.64 × 10−4

1.5 3.14 3.14 3.14 1.05 × 10−3 1.46 × 10−3

2 3.14 3.14 3.14 −4.21 × 10−4 1.61 × 10−3

2.5 3.14 3.13 3.14 1.14 × 10−3 −8.94 × 10−3

3 3.14 3.14 3.14 9.41 × 10−4 −4.83 × 10−3

3.5 3.14 3.14 3.14 3.87 × 10−4 1.86 × 10−3

4 3.14 3.16 3.14 3.71 × 10−4 1.89 × 10−2

4.5 3.14 3.15 3.14 6.34 × 10−4 1.13 × 10−2

Robotics 2022, 11, 116 16 of 20

Table 8. The pitch angle of the end of the robotic arm (0.1 m side length square).

Time (s) Pitch_MPC (Rad) Pitch_RL (Rad) Pitch_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 −1.57 −1.57 −1.57 6.66 × 10−15 −4.07 × 10−4

0.5 −1.57 −1.58 −1.57 7.73 × 10−4 −6.96 × 10−3

1 −1.57 −1.57 −1.57 6.29 × 10−4 1.10 × 10−5

1.5 −1.57 −1.57 −1.57 7.50 × 10−4 −3.08 × 10−3

2 −1.57 −1.57 −1.57 1.00 × 10−3 5.17 × 10−3

2.5 −1.57 −1.56 −1.57 1.02 × 10−3 1.08 × 10−2

3 −1.57 −1.57 −1.57 7.11 × 10−4 1.21 × 10−3

3.5 −1.57 −1.59 −1.57 6.24 × 10−4 −1.67 × 10−2

4 −1.57 −1.57 −1.57 7.10 × 10−4 5.29 × 10−3

4.5 −1.57 −1.57 −1.57 7.82 × 10−4 3.52 × 10−4

Table 9. The yaw angle of the end of the robotic arm (0.1 m side length square).

Time (s) Yaw_MPC (Rad) Yaw_RL (Rad) Yaw_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 2.59 × 10−15 −2.05 × 10−4 0 2.59 × 10−15 −2.05 × 10−4

0.5 9.02 × 10−4 9.79 × 10−3 0 9.02 × 10−4 9.79 × 10−3

1 −7.33 × 10−4 2.65 × 10−3 0 −7.33 × 10−4 2.65 × 10−3

1.5 7.69 × 10−4 −1.11 × 10−2 0 7.69 × 10−4 −1.11 × 10−2

2 −5.98 × 10−4 −1.50 × 10−2 0 −5.98 × 10−4 −1.50 × 10−2

2.5 5.06 × 10−4 −1.83 × 10−2 0 5.06 × 10−4 −1.83 × 10−2

3 6.57 × 10−4 −1.55 × 10−2 0 6.57 × 10−4 −1.55 × 10−2

3.5 −1.76 × 10−4 −7.55 × 10−3 0 −1.76 × 10−4 −7.55 × 10−3

4 −5.32 × 10−4 −8.68 × 10−3 0 −5.32 × 10−4 −8.68 × 10−3

4.5 5.47 × 10−4 −5.36 × 10−3 0 5.47 × 10−4 −5.36 × 10−3

Table 10. The roll angle of the end of the robotic arm (0.2 m side length square).

Time (s) Roll_MPC (Rad) Roll_RL (Rad) Roll_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 3.14 3.14 3.14 −2.49 × 10−14 1.43 × 10−4

0.5 3.12 3.15 3.14 −2.21 × 10−2 4.45 × 10−3

1 3.14 3.14 3.14 4.42 × 10−4 −6.59 × 10−4

1.5 3.16 3.14 3.14 1.47 × 10−2 1.31 × 10−3

2 3.15 3.15 3.14 1.08 × 10−2 5.18 × 10−3

2.5 3.16 3.14 3.14 1.62 × 10−2 1.17 × 10−3

3 3.14 3.15 3.14 −2.24 × 10−3 9.98 × 10−3

3.5 3.12 3.16 3.14 −1.67 × 10−2 1.78 × 10−2

4 3.12 3.16 3.14 −1.88 × 10−2 1.35 × 10−2

4.5 3.13 3.16 3.14 −8.64 × 10−3 1.46 × 10−2

Robotics 2022, 11, 116 17 of 20

Table 11. The pitch angle of the end of the robotic arm (0.2 m side length square).

Time (s) Pitch_MPC (Rad) Pitch_RL (Rad) Pitch_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 −1.57 −1.57 −1.57 −3.55 × 10−15 −4.07 × 10−4

0.5 −1.56 −1.58 −1.57 6.06 × 10−3 −1.12 × 10−2

1 −1.56 −1.57 −1.57 1.05 × 10−2 −2.60 × 10−3

1.5 −1.55 −1.55 −1.57 1.63 × 10−2 2.25 × 10−2

2 −1.54 −1.55 −1.57 2.91 × 10−2 1.81 × 10−2

2.5 −1.53 −1.57 −1.57 4.42 × 10−2 5.35 × 10−3

3 −1.52 −1.58 −1.57 5.00 × 10−2 −5.54 × 10−3

3.5 −1.52 −1.58 −1.57 5.12 × 10−2 −1.39 × 10−2

4 −1.53 −1.57 −1.57 4.13 × 10−2 −1.34 × 10−3

4.5 −1.53 −1.57 −1.57 4.00 × 10−2 −1.21 × 10−3

Table 12. The yaw angle of the end of the robotic arm (0.2 m side length square).

Time (s) Yaw_MPC (Rad) Yaw_RL (Rad) Yaw_Demand (Rad) Error_MPC (Rad) Error_RL (Rad)

0 2.98 × 10−14 −2.05 × 10−4 0 2.98 × 10−14 −2.05 × 10−4

0.5 2.93 × 10−2 −9.36 × 10−3 0 2.93 × 10−2 −9.36 × 10−3

1 2.36 × 10−2 −1.89 × 10−3 0 2.36 × 10−2 −1.89 × 10−3

1.5 2.23 × 10−2 1.56 × 10−2 0 2.23 × 10−2 1.56 × 10−2

2 2.62 × 10−2 −7.73 × 10−3 0 2.62 × 10−2 −7.73 × 10−3

2.5 2.10 × 10−2 −1.29 × 10−2 0 2.10 × 10−2 −1.29 × 10−2

3 2.98 × 10−2 5.38 × 10−3 0 2.98 × 10−2 5.38 × 10−3

3.5 2.55 × 10−2 4.18 × 10−3 0 2.55 × 10−2 4.18 × 10−3

4 2.88 × 10−2 1.48 × 10−2 0 2.88 × 10−2 1.48 × 10−2

4.5 2.35 × 10−2 1.45 × 10−3 0 2.35 × 10−2 1.45 × 10−3

From Tables 1–9, most (88%) of the absolute values of the roll-pitch-yaw angular errors
resulting from the MPC are smaller than the corresponding errors resulting from the RL
control. That means the MPC can track the designed trajectory better than the RL method.
However, in Tables 10–12, most (83%) of the roll-pitch-yaw show larger errors by MPC,
indicating that MPC is not as effective in controlling end effector attitude.

Furthermore, looking at this experimental result, one finds that the MPC drives joints
4 and 6 into very strenuous movements and does not restore to the original position, as
shown in Figure 15. After examining the trajectory, one sees that the target trajectory
passes through the vicinity of the singularity. The model-based control cannot avoid violent
action without further treatment. The RL control, on the other hand, instinctively avoided
these movements.

When the two methods are compared, it is clear that while the MPC is very effective
in dealing with highly nonlinear system dynamics, it still necessitates the use of a model
and additional treatment for singularities. On the other hand, the RL requires no prior
knowledge of the underlying model and can drive the robotic arm through any trajectory.
In addition, it is not affected by singularity. Furthermore, as the trajectory becomes larger
and more complicated, the MPC no longer shows an advantage over the RL. This may be
because the MPC cannot accurately calculate the attitude using the forward kinematics
while the robotic six-joint angles become too large.

Robotics 2022, 11, 116 18 of 20

Figure 15. (a) The joint angles of four and six of the robotic arm (MPC vs. RL, 0.1 m diameter circle);
(b) The joint angles of four and six of the robotic arm (MPC vs. RL, 0.2 m diameter circle); (c) The
joint angles of four and six of the robotic arm (MPC vs. RL, 0.1 m side length square); and (d) The
joint angles of four and six of the robotic arm (MPC vs. RL, 0.2 m side length square).

6. Conclusions

This paper proposes a split network structure for the direct application of RL to robotic
trajectory following control. We first show that it is possible to train the RL network to
directly mimic the inverse dynamic cancellation action without the help of a precise system
model. The RL uses the modified DDPG algorithm as the underlying learning algorithm,
and the tests follow four different target trajectories. The 0.1 m circle trajectory spent
343,070 s and 22,228 episodes training. It took 65,783 s and 4378 episodes to learn the 0.2 m
circle trajectory. The 0.1 m square trajectory took 186,100 s to train, while the 0.2 m square
trajectories took 129,040 s.

This study also compares RL performance to MPC performance. The RL control
inherently avoids exercising violent movements while passing through the singularities
and still succeeds in handling large and complicated trajectory situations. The MPC requires
an accurate system model and is straightforward in implementation. However, it cannot
avoid singularity without additional treatment and fails to control in large and complicated
trajectory situations.

Comparing the two methods shows that RL successfully makes the robotic arm go
through the target trajectory without excessive joint angle movements. MPC does not need
time for training and achieves smoother control, but it requires an accurate system model.
The authors will also try to implement the controller in an experiment for future verification.

Robotics 2022, 11, 116 19 of 20

Author Contributions: Conceptualization, C.-H.T. and J.-Y.Y.; methodology, C.-H.T. and J.-Y.Y.;
software, C.-H.T., J.-J.L. and T.-F.H.; validation, C.-H.T., J.-J.L. and T.-F.H.; formal analysis, C.-H.T.;
investigation, J.-J.L.; resources, J.-Y.Y.; data curation, C.-H.T.; writing—original draft preparation,
C.-H.T.; writing—review and editing, J.-J.L. and J.-Y.Y.; visualization, J.-Y.Y.; supervision, J.-Y.Y.;
project administration, J.-Y.Y.; funding acquisition, J.-Y.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research is supported by the National Science and Technology Council, Taiwan, under
license no. MOST 108-2221-E-011 -166 -MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Luo, J.; Solowjow, E.; Wen, C.; Ojea, J.A.; Agogino, A.M. Deep Reinforcement Learning for Robotic Assembly of Mixed Deformable

and Rigid Objects. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 1–5 October 2018.

2. Singh, A.; Nandi, G.C. Machine Learning based Joint Torque calculations of Industrial Robots. In Proceedings of the 2018
Conference on Information and Communication Technology (CICT), Jabalpur, India, 26–28 October 2018.

3. Díaz-Tena, E.; Ugalde, U.; de Lacalle, L.N.L.; de la Iglesia, A.; Calleja, A.; Campa, F.J. Propagation of assembly errors in
multitasking machines by the homogenous matrix method. Int. J. Adv. Manuf. Technol. 2013, 68, 149–164. [CrossRef]

4. Nuttin, M.; Van Brussel, H. Learning the peg-into-hole assembly operation with a connectionist reinforcement technique. Comput.
Ind. 1997, 33, 101–109. [CrossRef]

5. Schaal, S. Learning from demonstration. In Advances in Neural Information Processing Systems; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 1997.

6. Peters, J.; Schaal, S. Policy gradient methods for robotics. In Proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, 9–15 October 2006.

7. Peters, J.; Schaal, S. Reinforcement learning by reward-weighted regression for operational space control. In Proceedings of the
24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007.

8. Kober, J.; Oztop, E.; Peters, J. Reinforcement learning to adjust robot movements to new situations. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011.

9. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-
policy updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017.

10. Liu, S.; Li, Y.-F.; Xing, D.-P.; Xu, D.; Su, H. An Efficient Insertion Control Method for Precision Assembly of Cylindrical
Components. IEEE Trans. Ind. Electron. 2017, 64, 9355–9365. [CrossRef]

11. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014.

12. Kormushev, P.; Calinon, S.; Caldwell, D.G. Reinforcement Learning in Robotics: Applications and Real-World Challenges. Robotics
2013, 2, 122–148. [CrossRef]

13. Wang, X.; Wang, S.; Liang, X.; Zhao, D.; Huang, J.; Xu, X.; Dai, B.; Miao, Q. Deep reinforcement learning: A survey. Front. Inf.
Technol. Electron. Eng. 2020, 21, 1726–1744. [CrossRef]

14. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations, ICLR 2016—Conference
Track Proceedings, San Juan, Puerto Rico, 2–4 May 2016.

15. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q-Learning. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 2016), Phoenix, AZ, USA, 12–17 February 2016.

16. Ansehel, O.; Baram, N.; Shimkin, N. Averaged-DQN: Variance reduction and stabilization for Deep Reinforcement Learning.
In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

17. Lee, D.; Defourny, B.; Powell, W.B. Bias-corrected Q-learning to control max-operator bias in Q-learning. In Proceedings of the
2013 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), Singapore, 16–19 April 2013.

18. He, F.S.; Liu, Y.; Schwing, A.G.; Peng, J. Learning to play in a day: Faster deep reinforcement learning by optimality tightening. In
Proceedings of the 5th International Conference on Learning Representations, ICLR 2017—Conference Track Proceedings, Toulon,
France, 24–26 April 2017.

http://doi.org/10.1007/s00170-012-4715-x
http://doi.org/10.1016/S0166-3615(97)00015-8
http://doi.org/10.1109/TIE.2017.2711551
http://doi.org/10.3390/robotics2030122
http://doi.org/10.1631/FITEE.1900533

Robotics 2022, 11, 116 20 of 20

19. Nachum, O.; Norouzi, M.; Tucker, G.; Schuurmans, D. Smoothed action value functions for learning Gaussian policies. In Pro-
ceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

20. De Asis, K.; Hernandez-Garcia, J.; Holland, G.; Sutton, R. Multi-step reinforcement learning: A unifying algorithm. In Proceedings
of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, LA, USA, 2–7 February 2018.

21. Al-Dabooni, S.; Wunsch, D.C. An Improved N-Step Value Gradient Learning Adaptive Dynamic Programming Algorithm for
Online Learning. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1155–1169. [CrossRef] [PubMed]

22. Wang, D.; Hu, M. Deep Deterministic Policy Gradient With Compatible Critic Network. IEEE Trans. Neural Netw. Learn. Syst.
2021, 1–13. [CrossRef] [PubMed]

23. Ghavamzadeh, M.; Mahadevan, S. Continuous-Time Hierarchical Reinforcement Learning. In Proceedings of the Eighteenth
International Conference on Machine Learning, Williamstown, MA, USA, 28 June–1 July 2001; pp. 186–193.

24. Tiganj, Z.; Shankar, K.H.; Howard, M.W. Scale invariant value computation for reinforcement learning in continuous time.
In Proceedings of the AAAI Spring Symposium, Palo Alto, CA, USA, 24–25 March 1997.

25. Jiao, Z.; Oh, J. A Real-Time Actor-Critic Architecture for Continuous Control. In Trends in Artificial Intelligence Theory and
Applications. Artificial Intelligence Practices; Springer International Publishing: Cham, Switzerland, 2020.

26. Chen, S.; Wen, J. Industrial Robot Trajectory Tracking Control Using Multi-Layer Neural Networks Trained by Iterative Learning
Control. Robotics 2021, 10, 50. [CrossRef]

27. Kwon, W.H.; Bruckstein, A.M.; Kailath, T. Stabilizing state-feedback design via the moving horizon method. Int. J. Control 1983,
37, 631–643. [CrossRef]

28. Nikdel, N.; Nikdel, P.; Badamchizadeh, M.A.; Hassanzadeh, I. Using Neural Network Model Predictive Control for Controlling
Shape Memory Alloy-Based Manipulator. IEEE Trans. Ind. Electron. 2014, 61, 1394–1401. [CrossRef]

29. García, C.E.; Prett, D.M.; Morari, M. Model predictive control: Theory and practice—A survey. Automatica 1989, 25, 335–348.
[CrossRef]

30. Ersdal, A.M.; Fabozzi, D.; Imsland, L.; Thornhill, N.F. Model Predictive Control for Power System Frequency Control Taking into
Account Imbalance Uncertainty. IFAC Proc. Vol. 2014, 47, 981–986. [CrossRef]

31. Chen, J.; Tang, C.; Xin, L.; Li, S.E.; Tomizuka, M. Continuous Decision Making for On-road Autonomous Driving under
Uncertain and Interactive Environments. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 June 2018.

32. Tang, Q.; Chu, Z.; Qiang, Y.; Wu, S.; Zhou, Z. Trajectory Tracking of Robotic Manipulators with Constraints Based on Model Predic-
tive Control. In Proceedings of the 2020 17th International Conference on Ubiquitous Robots (UR), Kyoto, Japan, 22–26 June 2020.

33. Lu, C.; Wang, K.; Xu, H. Trajectory Tracking of Manipulators Based on Improved Robust Nonlinear Predictive Control. In Proceed-
ings of the 2020 1st International Conference on Control, Robotics and Intelligent System, Xiamen, China, 27–29 October 2020.

34. Abbas, H.S.; Cisneros, P.S.G.; Mannel, G.; Rostalski, P.; Werner, H. Practical Model Predictive Control for a Class of Nonlinear
Systems Using Linear Parameter-Varying Representations. IEEE Access 2021, 9, 62380–62393. [CrossRef]

35. Best, C.M.; Gillespie, M.T.; Hyatt, P.; Rupert, L.; Sherrod, V.; Killpack, M.D. A New Soft Robot Control Method: Using Model
Predictive Control for a Pneumatically Actuated Humanoid. IEEE Robot. Autom. Mag. 2016, 23, 75–84. [CrossRef]

36. Lunni, D.; Santamaria-Navarro, A.; Rossi, R.; Rocco, P.; Bascetta, L.; Andrade-Cetto, J. Nonlinear model predictive control for
aerial manipulation. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL,
USA, 13–16 June 2017.

37. Guechi, E.-H.; Bouzoualegh, S.; Zennir, Y.; Blažič, S. MPC Control and LQ Optimal Control of A Two-Link Robot Arm: A
Comparative Study. Machines 2018, 6, 37. [CrossRef]

38. Guechi, E.H.; Bouzoualegh, S.; Messikh, L.; Blažic, S. Model predictive control of a two-link robot arm. In Proceedings of the 2018
International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018.

39. Car, M.; Ivanovic, A.; Orsag, M.; Bogdan, S. Impedance Based Force Control for Aerial Robot Peg-in-Hole Insertion Tasks.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain,
1–5 October 2018.

http://doi.org/10.1109/TNNLS.2019.2919338
http://www.ncbi.nlm.nih.gov/pubmed/31247567
http://doi.org/10.1109/TNNLS.2021.3117790
http://www.ncbi.nlm.nih.gov/pubmed/34653007
http://doi.org/10.3390/robotics10010050
http://doi.org/10.1080/00207178308932998
http://doi.org/10.1109/TIE.2013.2258292
http://doi.org/10.1016/0005-1098(89)90002-2
http://doi.org/10.3182/20140824-6-ZA-1003.01631
http://doi.org/10.1109/ACCESS.2021.3074741
http://doi.org/10.1109/MRA.2016.2580591
http://doi.org/10.3390/machines6030037

	Introduction
	Theoretical Background
	Deep Deterministic Policy Gradient (DDPG)
	The Modified DDPG Method
	The Differential Kinematics

	The Reinforcement Learning Structure
	Model Predictive Control B11-robotics-1928854,B12-robotics-1928854
	The Control Results
	The RL Training Results
	The Twin Delayed Deep Deterministic Policy Gradient Training
	The MPC Results
	The Comparison of RL and MPC

	Conclusions
	References

