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Abstract: The technological advances in computational systems have enabled very complex computer
vision and machine learning approaches to perform efficiently and accurately. These new approaches
can be considered a new set of tools to reshape the visual SLAM solutions. We present an investigation
of the latest neuroscientific research that explains how the human brain can accurately navigate
and map unknown environments. The accuracy suggests that human navigation is not affected by
traditional visual odometry drifts resulting from tracking visual features. It utilises the geometrical
structures of the surrounding objects within the navigated space. The identified objects and space
geometrical shapes anchor the estimated space representation and mitigate the overall drift. Inspired
by the human brain’s navigation techniques, this paper presents our efforts to incorporate two
machine learning techniques into a VSLAM solution: semantic segmentation and layout estimation to
imitate human abilities to map new environments. The proposed system benefits from the geometrical
relations between the corner points of the cuboid environments to improve the accuracy of trajectory
estimation. Moreover, the implemented SLAM solution semantically groups the map points and then
tracks each group independently to limit the system drift. The implemented solution yielded higher
trajectory accuracy and immunity to large pure rotations.

Keywords: visual SLAM; layout estimation; semantic SLAM; visual navigation

1. Introduction

As a human or an animal navigates through an unfamiliar environment, some form
of spatial memory is formed. This memory creates a cognitive map representing a spatial
environment and contains information about metric and directional relationships of objects
in that environment. Humans are highly visual creatures [1] and, under typical situations,
vision forms a critical foundation for representing space [2]. While extensive research
on navigational behaviour and spatial memory has been carried out in rodents, memory
research in humans has traditionally focused on more abstract, language-based tasks [1].

Recent studies have begun to address the gap in human navigation research benefiting
from the virtual reality evolution that enabled virtual navigation simulations combined
with human electrophysiological recordings [3]. These studies suggest that the medial
temporal lobe [4] (MTL) is equipped with a population of place and grid cells similar to that
previously observed in the rodent brain. We believe that recent neuroscience discoveries
related to cognitive memory could revolutionise VSLAM solutions. In this section, we
discuss the neuroscientific answers to the following questions:

• Does the human brain perform SLAM?
• How does the human brain solve navigation tasks?
• What landmarks and semantic information could form human brain spatial maps?
• What is the brain spatial mapping process?

John O’Keefe, Moser, and Edvard were awarded the Nobel Prise for medicine in 2014.
They won the prise for discovering two types of cells in the hippocampus: place cells and
grid cells. These findings significantly impacted cognitive neuroscience, particularly spatial

Robotics 2022, 11, 91. https://doi.org/10.3390/robotics11050091 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11050091
https://doi.org/10.3390/robotics11050091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-3641-4005
https://doi.org/10.3390/robotics11050091
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11050091?type=check_update&version=2


Robotics 2022, 11, 91 2 of 18

cognition. Further research found other cell types in the hippocampus, boundary vector
cells, and head direction cells [5–7].

Place cells are activated when an animal is in a specific position in an environment,
regardless of the aspects of the job at hand [8]; they include data about a specific area. Grid
cells fire at regular intervals and represent the layout of an environment. When an animal
is near a given edge of an environment, boundary vector cells show activity, providing
additional information about the animal’s relative position in its surroundings. The head
direction cells signal the animal’s head orientation. Combining these cells that code for
position, layout, borders, and head orientation creates a mental map of the environment
in a useful state for navigation. This mental map depicts the spatial organisation of an
environment without regard to a particular point of view.

Finally, it is essential to acknowledge the brain motor sensor that gives the brain
an initial guess of the body motion that helps the brain control the eye movements to
prevent disorientation and always anticipate where surrounding objects should be [9,10]. In
addition, our brain optimises the memory and calculations needed to perform its navigation
tasks by abstracting the environment to the space boundaries and objects referenced to
these boundaries [11–14].

1.1. Human Navigation Strategies

We use three basic ways to plan our trajectory to reach our goal: allocentric, egocentric,
and beacon [15]. The allocentric or spatial memory strategy is a navigational strategy
that involves intricate geometric calculations [16]. These calculations take distance and
directional information into account [17]. An environmental representation (map) is formed
and referenced outside one’s current body position. The navigator explores the environ-
ment by establishing relationships between various landmarks and orienting oneself with
respect to those landmarks [18]. Creating external maps is among the human navigation
skills [19–21]. Still, they are helped by a variety of more complicated cognitive activities
that extract abstract semantic information from landmarks [22], routes taken, and the
environment’s architecture [23–26].

Recent work in human spatial navigation has shown that the environmental bound-
aries provide a way to establish an allocentric coordinate system [27,28]. The surrounding
spatial geometry, such as the square or rectangle shape defined by an environment’s bound-
aries, can be a powerful cue for organising externally referenced knowledge. Several
investigations [29–32] have reported that aligning the objects with the environment axis
increases the accuracy of the brain’s awareness of the locations of the objects.

Egocentric representation [32] is a strategy that is more typically utilised in everyday
scenarios such as reaching for a pen or remembering where the key chain is in the room.
Our current body position is the reference in egocentric representations. The pen is on the
table in front of us, about 30 degrees around our current facing orientation. We frequently
use this type of representation to avoid collisions with objects and traverse our immediate,
peripersonal space, as demonstrated by various studies of human spatial cognition [33–35].

Several studies imply that egocentric representations are high-resolution visual snap-
shots linked to our current head direction. We may create a single coherent egocentric
representation related to our current location in space by taking a succession of these high-
resolution, static, body-referenced images [36]. These representations can then be updated
as we walk through an environment, constituting the basis for path integration [22,37].
However, these representations diminish during disorientation [34–36] or in large-scale
environments [38].

The third navigation strategy is a beacon or reaction method [8,39–41]. It requires
learning a series of behavioural actions from specific environment points that act as stimuli.
With a succession of stimulus-response associations, one can learn to navigate from home
to work in an automated manner. These responses may involve turning at a specific corner
or building, with the corner and building acting as stimuli and the response involving turn-
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ing [42–44]. The reaction approach is inflexible when the remembered route is unavailable
since it cannot create a novel way to the target place.

As a result, navigation tasks are as simple as moving closer to or farther away from
a specific object. Its position on the retina grows or shrinks, giving an important clue for
locating the object. When combined with egocentric codes like “right” and “left”, beacon
navigation is a replica of how we travel using mobile devices like GPS on our phones. Like
GPS, beacon strategies decrease the navigator’s job to simply search for a specific landmark
and link it with a response.

1.2. Mapping and Navigation Tasks in the Human Brain

We presented neuroscience and behavioural analysis findings describing how our
brain solves navigation tasks and forms a surroundings model. These findings could be
summarised as follows:

• The human brain builds short-term, high-resolution body-referenced visual maps
(egocentric) to be used with the motor sensors’ motion predictions to solve the imme-
diate navigational tasks; however, these maps fade with time and when navigating in
large spaces (environmental spaces). These maps are the equivalent of the local maps
that VO and VSLAM systems use in pose estimation.

• Alongside the egocentric maps, the human brain forms a more general representation
that integrates visual and motor sensors over time, generating allocentric environmen-
tal models. The allocentric maps are referenced outside the human body to a distinct
point or a landmark in the environment. This type of model is equivalent to the global
maps in SLAM systems.

• Unlike SLAM systems in the literature, the human brain depends on the environment’s
geometry and layout to recognise and map the visited places.

• The brain mainly tracks the surrounding objects for pose estimation. It does not
depend on feature points unless they are essential for describing the space layout or
belong to a distinct landmark. Alternatively, the brain abstracts all the background
points into colour and shade information.

These navigational guidelines resulted from generations of training and evolution of
the human brain, the most sophisticated computer that has ever existed. Designing a SLAM
solution based on these findings could yield scalable, more robust, optimised solutions.

2. Related Work

This section discusses the related research in layout estimation and semantic
SLAM applications.

2.1. Layout Estimation

Layout estimation research considers the task of estimating the spatial layout of an in-
door scene from single or multiple images. Layout estimation solutions aim to delineate the
walls, ground, and ceiling boundaries [44]. Early layout estimation solutions approached
the problem intuitively as a semantic segmentation problem, assigning geometric con-
text classes (floor, walls, and ceiling) to each pixel and then trying to obtain room layout
keypoints and boundaries based on the pixel-wised labels [45].

However, it is nontrivial to identify layout keypoints and boundaries from the raw
pixel output. Furthermore, the traditional pixel-based representation created ambiguity as
researchers have shown that CNNs often have difficulty distinguishing between different
surface identities [46]. This phenomenon largely undermines the overall room layout
estimation performance.

RoomNet [47] reformulated the task of room layout estimation as an ordered room
layout keypoint localisation problem, which can be directly addressed using CNNs as a
trainable end-to-end problem. RoomNet considered a list of different layout possibilities
with their respective keypoint definitions that could be inferred from a single image; these
possibilities are first introduced by [48] and are listed in Figure 1. These 11 layouts cover
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most possible situations under typical camera poses and common cuboid representations
under the “Manhattan world assumption” [49]. Once the trained model estimates correct
keypoint locations with an associated room type, we can simply connect these points in a
specific order to produce a boxy room layout representation.

Figure 1. Definition of scene layout types.

RoomNet adopts the SegNet architecture proposed in [50] with modifications. The
base architecture of RoomNet adopts the same convolutional encoder–decoder network
as SegNet. Using an image of an indoor scene, the system can directly identify a set of 2D
room layout keypoints to recover the room layout. Each keypoint is represented by a 2D
Gaussian heatmap centred at the true keypoint location. The encoder–decoder architecture
processes the information flow through bottleneck layers, enforcing it to implicitly model
the relationship among the keypoints that encode the 2D structure of the room layout.

RoomNet predicts room layout keypoints and the associated room type with respect to
the input image in one forward pass. To achieve this goal, the channels in the output layer
are 11 as the number of the layout scenarios shown in Figure 1. The side head selects the
output channel with fully connected layers to the bottleneck [51–54], as shown in Figure 2.

Figure 2. RoomNet base architecture.
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2.2. Semantic SLAM

Purely geometry-based maps could not provide conceptual knowledge of the sur-
roundings to facilitate complex tasks; as a result, associating semantic concepts with
geometry entities in the environment has recently become a popular research domain. Se-
mantic SLAM incorporates semantic information into the SLAM process to improve overall
performance by providing task-driven perception, resilience, and high-level understanding.
Incorporating semantic data into a SLAM pipeline has been around for a long time.

Nonetheless, the implementation was not achievable until recently, at least in a mean-
ingful fashion, because extracting semantic information from visual data was nearly impos-
sible until the epoch of deep learning. When fast and accurate semantic segmentation DNN
architectures existed, the semantic SLAM drew much attention. However, because this
occurred less than a decade ago and, despite several contributions, the topic of integrating
semantics in SLAM is still far from mature [55]. This section identifies and summarises the
primary topics of interest in semantic SLAM solutions.

2.2.1. Semantics for Loop Closing

Since it is challenging to detect a loop closing purely based on geometric features,
robust loop closing is an open problem in SLAM. Changes in the observed environment,
such as moving objects or changes in illumination, can cause dramatic changes in the
geometry of a scene. When semantics are used, the problem becomes much easier to solve.

Some researchers have concentrated their efforts on mathematically formulating the
problem of combining geometric and semantic information into a single optimisation frame-
work for semantically associating observations and performing robust loop closing [56].
Others used semantic information to train a neural network to extract 3D descriptors of the
scene [57]. To detect loop closures, 3D descriptors are compared rather than words in a bag
of binary words setting [58].

2.2.2. Semantics for Handling Dynamic Environments

Traditional SLAM pipelines have a critical flaw: they operate under the assumption
that the environment is static. The RANSAC algorithm is commonly used in SLAM to
eliminate erroneous feature correspondences. However, when a significant portion of the
view is occupied by moving objects this approach fails, causing the estimation process
to diverge. Semantics can be used in various ways to deal with this situation. Semantic
segmentation is used to detect potentially moving parts of the image and exclude them from
the tracking process entirely in a simple but effective approach. Mask-SLAM [59], which
uses DeepLabv2 [60] to perform precise semantic scene segmentation, is one approach.
Mask-SLAM discards ORB features detected within regions occupied by vehicles or the
sky because vehicles move and the sky is too far away to show any parallax.

Before discarding potentially moving objects found using semantic segmentation,
more complicated methods check if they move. DS-SLAM [61], for example, examines
whether the matched features are close to the epipolar line between frames. If multiple
matched features belonging to a potentially moving object are far from the epipolar line,
the object is considered moving. Li et al. [62] proposed a more complicated approach to
avoid moving objects when estimating camera motion, but instead of discarding them, try
to track them independently through time. They use an off-the-shelf deep network to get
2D bounding boxes of vehicles, then train their own CNN to create 3D bounding boxes
based on the 2D ones. Based on this information, they can then track each moving vehicle
separately using a motion model and an object bundle adjustment to the 3D bounding
boxes camera static.

SaD-SLAM [63] proposed an RGB-D feature-based SLAM system that utilises semantic
masks obtained using Mask_RCNN [64]. SaD-SLAM does not discard the entire features
of the moving objects; instead, it uses epipolar constraints to identify the static features
from dynamic objects to improve the accuracy and robustness of the solution. AirDOS [65]
proposed a novel approach to benefit from the fixed geometrical relations between feature
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points on the rigid moving objects to enhance the camera pose estimation accuracy. Like
SaD-SLAM, AirDOS benefits from the geometrical relations on the rigid body and builds a
4D spatio-temporal map that includes both dynamic and static objects. AirDOS identifies
the potential moving objects using instance segmentation. Then, it uses the static features
to estimate the initial ego-motion of the camera. For moving objects, the feature points are
triangulated and then their positions are tracked using optical flow. Finally, the system
removes the erroneous points before performing BA based on rigid body constraints.

2.2.3. Semantic Reasoning within an Unknown Environment

Semantic reasoning appears to be the most researched among the methods listed
above. Since this is probably the simplest way of integrating semantics in SLAM, much
research has created a dense or sparse semantic map of the environment. In this case, the
SLAM framework assigns a semantic class to each map point produced by a semantic
segmentation method. Even though the semantic maps generated by such methods can
enable advanced interactions between the system and the outside world, most do not use
them to improve the SLAM’s robustness.

Building semantic maps with objects rather than 3D points is a unique approach.
Object detectors have been used in place of feature detectors in QuadricSLAM [66,67].
The detected objects are inserted into the map in a dual quadric representation. The dual
quadrics positions and the camera pose are then estimated using a bundle adjustment.
Because ignoring traditional features reduces SLAM’s accuracy, Hosseinzadeh et al. [68]
proposed integrating dual quadric representations of objects and traditional 3D points. In-
stead of abstract object representations, a more accurate but computationally expensive and
complicated solution integrates detailed volumetric object reconstructions in the semantic
map. By fusing the geometry of objects in successive planes, the object reconstructions are
gradually refined over time. Similar concepts are implemented in a few published works,
such as MaskFusion [69] and Fusion++ [70].

A more straightforward concept has been developed by Wang et al. [71]. As a start-
ing point, ORB-SLAM2 [72] is employed. Then, the YOLO object detector [73] is used to
semantically classify the frame’s keypoints on each frame. A voting system then propa-
gates semantic information from keypoints to corresponding map points. All keypoints
associated with the map point “vote” once for their semantic class. After integrating se-
mantic information, semantics are used in feature matching, tracking, and loop closing.
More specifically, associations between keypoints and map points of different classes are
prohibited or reduced based on an adjustable ratio.

3. Proposed System

We propose a semantically improved visual SLAM solution inspired by human rea-
soning in solving navigational tasks. The proposed SLAM builds an accurate joint map
for sparse feature models for foreground objects, the environment’s geometric bounds
and detected sparse feature points to represent the background. The system depends on a
RoomNet trained network to estimate the layout keypoints in the input image sequences.
RoomNet considers a cuboid shape of the indoor spaces and infers its cuboid corners.
The proposed system then incorporates the layout constraints into the global optimisation
process to enhance the overall trajectory accuracy.

The proposed system uses ORBSLAM2 as its SLAM backbone and propagates the
semantic and geometric inferences across the tracking, mapping, and loop closure tasks
with the following contributions:

1. A complete visual SLAM system tracks and maps geometric and semantic structures
in indoor environments. The system was built on ORB-SLAM2 as its SLAM backbone
and redesigned its threads to utilise semantic observations throughout the tracking,
mapping and loop closing tasks.
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2. The system also uses an offline created object model database to provide a point of
view independent object tracking and provide the physical relationship between the
object points as a set of constraints that anchor the odometry positional drifts.

3. Because background feature points are hard to precisely re-detect and match, the
proposed system is configured to allow object points to be more influential in pose
optimisations.

4. With most of the images in the tracked sequences containing at least one cuboid corner,
tracking and mapping threads are modified to detect and track cuboid corners and
include them in the map optimisation process.

5. The proposed system introduces the idea of slicing the map into multiple geomet-
rical links. Each link represents keyframes connecting two environment corners
and exploits the geometric relationship between these corners as map optimisation
constraints.

6. Two modifications are introduced to the loop closure thread: first, the local map is
queried for objects and cuboid points to verify loop detections before accepting it.
The second modification introduces a new loop closure approach by detecting all
the cuboid corners of the traversed space. Four cuboid corners allow the system to
optimise the four edges defining the space limits.

The proposed system was tested on multiple datasets generated from the AI2Thor
environment simulator-embodied AI agents [74]; more details on the test data are presented
in the Experiments and Results section.

4. System Description

Figure 3 shows an overview of the proposed system. Like ORB-SLAM2, the developed
system consists of three threads: tracking, local mapping, and loop closing. Each thread
was redesigned to exploit the semantic and geometric information to accurately estimate
the trajectory and environment map. The system embedded an offline learnt object model
database for the common objects in the AI2Thor [74] scenes. This section presents a detailed
description of the system’s threads, highlighting the modified (grey) and the new (orange)
components introduced to the ORB-SLAM2.

Figure 3. Proposed solution flow diagram.
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4.1. Object Model Database

One of the system contributions is creating an offline sparse 3D point model database
for common objects in AI2Thor simulator scenes. The proposed SLAM system loads the
object model database in its initialisation and uses the modelled objects to increase the
robustness and accuracy of the solution. These models act as the brain memory, which does
not need to view a familiar object from all angles to recognise and track it. Additionally,
these models are optional to the system. If an object was detected and did not have a model
in the database, the system would still track its newly discovered features. In other words,
a model could be considered a partial map that only contains a specific object’s map points
and is injected into the SLAM local map once the object is detected.

Figure 4 shows the model database creation and query flow diagram. A process similar
to the ORB-SLAM2 mapping was used to create an object model. Twelve images of the
object are taken 30 degrees apart from the same distance. Then ORB feature points are
extracted and matched using the same ORB extractor and matcher from ORB-SLAM2. The
matched points are then triangulated to create a point cloud of the features. For each point,
the model saves the BRIEF descriptor and the transformation Top from the center point of
the point cloud. Finally, each point also contains the mean viewing angle at which it could
be detected.

Figure 4. Object model database flow diagram.

To query the database for new object detection, the system uses the object ID provided
by the semantic segmentation node to retrieve all models of the same kind (chair, sofa,
etc.) and then perform feature matching on the retrieved models to select the right model
and a rough estimate of its relative pose with respect to the camera frame. The feature
matching process considers the relative pose of the features and whether the detected object
is cropped by the image pounds.

4.2. Frame Preprocessing

While AI2Thor provides a semantic segmentation solution for each frame, the layout
estimation solution is still needed. The solution should be able to identify and track the
cuboid vertices of the surrounding space. RoomNet was utilised to perform this task
for its compatible and efficient representation. We trained the RoomNet network on an
AI2Thor-generated dataset. The room type and layout keypoint indices are generated for
the trajectory sequences. Finally, our presented system only considers room types 0–5, as
types 6–10 provide no real room corners (refer to Figure 1).
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4.3. System Threads
4.3.1. Tracking Thread

The tracking thread localises the camera with every input frame by finding feature
matches to the local map and minimising the reprojection error by applying motion-only
BA. The flow of the proposed system’s tracking thread is as follows:

1. After extracting ORB features from the current frame, all detected features are anno-
tated using the semantic segmentation input data.

2. The previous frame is searched for matches; the encoded semantic annotations guide
the search, limiting the mismatches and the number of match candidates. An initial
estimate of the pose is then optimised using the found correspondences.

3. Once an initial pose is acquired and we have an initial set of matches, we project the
local map points into the current frame; this includes observed feature points, object
points, and layout corner points. If the point projection lies inside the image bounds
and with a viewing angle less than 60◦, we search the still unmatched features in the
current frame and associate the map point to the best match.

4. Finally, the camera pose is optimised with motion-only bundle adjustment, a variant
of the generic BA described in Chapter 2, where the camera c pose in the world frame
w (Tcw = [Rcw|Pcw]) is optimised to minimise the reprojection error between the 3D
map points Xw matched to the current frame’s 2D keypoints xc:

Tcw = argmin
Rcw ,Pcw

∑j ρ
(
‖xj

c − πm

(
RcwXj

w + Pcw

)
‖2

∑j

)
. (1)

All map points included in the pose optimisation are fixed; only the camera pose is
optimised. Our system’s optimisation process is modified to respect the physical relation-
ship governing the map points belonging to the same object. The system considers each
matched map point an observation of either an object or the background. Background
points are usually map points that lie on surfaces like floors, walls, and ceilings. These
surfaces are generally homogeneous, making it hard to track background points accurately;
yet background points are usually the majority of the tracked map points. We propose
performing the pose optimisation with multiple subsets of the matched points. Each subset
is composed of the map points belonging to the same object instance to remedy the effect
of erroneous background matches. The final estimate is the mean of the subset estimates as
shown in the equation:

Tcw =
1
N ∑N argmin

Rcw ,Pcw
∑j ρ

(
‖xj

c − πm

(
RcwXj

w + Pcw

)
‖2

∑j

)
, (2)

where N is the number of tracked object instances; our experiments on the generated
AI2Thor dataset showed that tracking objects improve trajectory accuracy.

4.3.2. Local Mapping Thread

In ORB-SLAM2, the local mapping thread manages and optimises the local map by
performing local BA. The map management includes adding new keyframes and removing
redundant keyframes and map points. The proposed system added object management
and map layout management tasks to the local mapping thread.

Object management module: each object detection in newly created keyframes that
does not exist in the local map is considered a new object. The object model database is
queried for the detected object model. New objects are then aligned by computing the
object center point’s position and orientation using the matched points. After performing
map optimisation (global/local), the objects within the optimised map are realigned. After
object alignment, the local mapping creates object points for all the object model points
regardless of their existence in the view of the keyframe. All points are then added to the
object instance.
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Layout management module: indoor environments are characterised by limited size,
which enforces low-speed movements and many pure rotations to correct directions. In our
collected and tested datasets (real and simulated) for cuboid spaces, we noticed that over
80% of the images contain at least one cuboid corner. In the remaining 20%, the images are
either occluded by close objects or walls, suggesting that the following motion would be a
large rotation to correct the direction and avoid a collision. Large pure rotations are usually
miscalculated or could even cause the tracking thread to lose track. Tracking cuboid corners
can restore lost tracking and correct wrongly estimated rotations. Detected corners are kept
in an ordered stack in the same order of corner observations. The corner stack can only
contain four corners at max. The layout management module shown in Figure 3 as a part
of the local mapping thread limits the solution drifts as follows:

Each corner instance should contain a list of all object instances in the local map when
the corner was observed with the relative transformation between the object instance and
the corner point. Object instance lists are used in corner matching and are updated with
each new corner observation.

Each cuboid corner detected in newly created keyframes that does not have matches
in the local map is required to pass two tests. First, the corner should be cross-examined
with the previously detected corners geometrically and through object list validation to
ensure it is a new corner. Then the distance dci ,cm between the detected corner ci and the
center point of the map cm, which is updated with each new keyframe, should meet the
following condition:

dci ,cm = dmean ± 10%, (3)

where dmean is the mean distance between all the corners in the corner stack.
The first and second cuboid corners are directly inserted into the corner list. Now, the

system can correct every newly detected corner by projecting the distance between the
newly detected corner and the last inserted corner in the corner list in the direction of the
perpendicular unit basis of the last link.

With third and fourth corner detection, the estimated map is optimised using the
corrected corner point position in edge optimisations. Edge optimisation is the process
in which the geometric constraints between the different corners are enforced. The op-
timisations are performed whether the corner is new or already included in the list as
long as it is its first appearance on the current local map. An edge ei is all keyframes that
connect two subsequent corners. In other words, all keyframes inserted in the map from
the beginning of the observation of the corner i to the end of the observation of corner i + 1.
Edge optimisation is similar to local map optimisation with one key difference: corner
points are fixed.

4.3.3. Loop Closure Thread

The loop closing thread is assigned to detect large loops, verify their correctness, and
correct the accumulated drift by performing a pose-graph optimisation. Originally, the
ORBSLAM2 detects if a loop is closed by recognising the visual bag of words of a previously
visited scene. Then try to find a transformation between the two loop sides that fulfill the
loop closure.

Accepting a wrong loop could have a destructive effect on the trajectory and map
estimations and could yield unusable solutions. To prevent false loop associations, the
proposed system added an additional verification step.

Before accepting a loop candidate, the list of objects and cuboid corners in the vicinity
(local map) of the two keyframes representing the loop sides are required to find the
common detected objects and cuboid corners. The loop candidate is rejected if no common
objects/cuboid corners are found. It is also rejected if the relative transformation from the
objects/cuboid corners to the loop sides is inconsistent.

The proposed system implemented another loop closure detection approach. The new
approach is based on layout corner detection and is performed by the layout management
module in the local mapping when detecting four different and valid cuboid corners. With
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four corners already in the corner’s list and the oldest corner is redetected, a full loop
has already been navigated. In this case, we perform four edge optimisations, which is
equivalent to a loop closure.

As presented in the Analysis section, this process should yield a more accurate tra-
jectory shape and scale. In addition, edge optimisation gives a much more accurate initial
state to the full graph bundle adjustment, which decreases the number of iterations needed
to find the final state. Finally, the effect of adding a wrong cuboid point to the corner’s list
is as destructive to the solution as a wrong loop closure, which signifies the importance of
the cuboid corners’ acceptance tests performed by the layout management module.

5. Experiments and Analysis
5.1. Test Data

The developed system was tested on multiple sequences generated from the AI2Thor
environment simulator-embodied AI agents [74]. AI2Thor was created by the Allen Insti-
tute for AI in 2016 to facilitate research in many domains, including deep reinforcement
learning, object detection and segmentation, motion planning, and visual SLAM. AI2-
THOR provides near photo-realistic 3D indoor scenes, where AI agents can navigate in
the scenes and interact with objects to perform tasks. The simulator offers RGB and depth
images, annotated semantic segmentation, and navigational ground truth [75].

The experiments were performed on five stereo/RGBD image sequences generated
from the AI2Thor simulator. The sequences represent a full loop in the scenes with the
following names: TrainFloor10_1, TrainFloor10_2, TrainFloor10_3, TrainFloor10_4, and
TrainFloor10_5. The trajectories experienced many large pure rotations (with no combined
translation) to test the robustness and accuracy of the systems. The length of the sequences
varies from 1.3 K to 3.6 K steps per sequence.

AI2Thor allows data generation using simple python scripts. Data generation starts
with initialising the environment and choosing the desired scene and the moving agent
mode. The AI2Thor API allows the agent to interact with the environment by performing
different actions such as MovingAhead, RotateLeft, RotateRight, MoveBack, Crouch, and
Stand. Following each completed action, the user can export different information about the
agent, onboard sensors, and the scene. The exported data includes ground truth position,
colour images, depth images, semantically segmented images, and in-scene objects with
their bounding boxes.

The agent, by default, has a single camera and to simulate the stereo camera, a third-
party camera was added with a baseline displacement from the agent’s default camera.
After each action, the third-party camera position and orientation were updated to preserve
the camera’s stereo relation. Finally, the third-party camera images and data were exported
after its position update. Figure 5 shows a sample of the exported images from the agent
onboard camera.

Figure 5. Sample sensor data.
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5.2. Evaluation Metrics

To evaluate the proposed SLAM system against ORB-SLAM2, the estimated camera
motion for both systems is compared against the true trajectory using two frequently
utilised methods: the relative pose error (RPE) and the absolute trajectory error (ATE). RPE
measures the difference between the estimated motion and the true motion. It can evaluate
the drift of a visual odometry system [36], which is especially useful if only sparse and
relative relations are available as ground truth.

Instead of judging the drift of relative poses, the ATE tests global trajectory consistency.
ATE aligns the two trajectories and then directly evaluates the absolute pose differences.
This method is well-suited for assessing visual SLAM systems [34,39], but requires that
absolute ground truth poses are available. Furthermore, the frame rate of the ORB-SLAM2
and the proposed system in both stereo and RGBD cases are presented to evaluate the
real-time performance.

5.3. Results and Analysis

The quantitative comparison results are shown in Tables 1–3. RMSE, mean error,
median error, and standard deviation (SD) values are presented, while RMSE and SD are
more concerned because they can better indicate the robustness and stability of the system.
We also show the values of improvement compared to the original ORB-SLAM2. The
improvement values in the tables are calculated as follows:

η =
o− b

o
× 100%, (4)

where η represents the value of improvement, o represents the value of ORB-SLAM2, and
b represents the value of the proposed system.

Table 1. Results of Metric Rotational Drift (RPE).

Sequences
ORB-SLAM2 Proposed Improvements

RMSE MEAN Median S.D. RMSE MEAN Median S.D. RMSE MEAN Median S.D.

Floor10_1 4.299 3.472 3.662 2.537 2.567 2.086 2.208 1.496 40.29% 39.92% 39.71% 41.01%

Floor10_2 1.501 1.246 1.367 0.839 0.753 0.609 0.630 0.443 49.86% 51.11% 53.89% 47.21%

Floor10_3 1.395 0.936 0.728 1.035 0.798 0.648 0.639 0.467 75.88% 24.94% 53.66% 62.66%

Floor10_4 3.604 2.570 1.493 2.528 2.107 1.533 0.979 1.446 41.55% 40.37% 34.41% 42.79%

Floor10_5 3.699 3.231 3.092 1.799 2.431 2.126 2.128 1.179 34.27% 34.20% 31.19% 34.48%

Table 2. Results of Metric Translational Drift (RPE).

Sequences
ORB-SLAM2 Proposed Improvements

RMSE MEAN Median S.D. RMSE MEAN Median S.D. RMSE MEAN Median S.D.

Floor10_1 0.0036 0.095 0.064 0.164 0.0004 0.032 0.020 0.058 87.77% 68.55% 66.28% 64.62%

Floor10_2 0.0035 0.153 0.144 0.109 0.0009 0.063 0.038 0.072 73.79% 58.52% 73.42% 33.74%

Floor10_3 0.0014 0.058 0.035 0.103 0.0003 0.043 0.016 0.038 75.88% 24.94% 53.66% 62.66%

Floor10_4 0.0038 0.105 0.076 0.165 0.0016 0.098 0.075 0.083 56.89% 7.193% 1.594% 49.48%

Floor10_5 0.0004 0.045 0.030 0.047 0.0003 0.041 0.012 0.045 11.26% 7.752% 60.60% 4.074%
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Table 3. Results of Metric Absolute Trajectory Error (ATE).

Sequences
ORB-SLAM2 Proposed Improvements

RMSE MEAN Median S.D. RMSE MEAN Median S.D. RMSE MEAN Median S.D.

Floor10_1 0.696 0.552 0.504 0.424 0.23 0.181 0.158 0.142 66.96% 67.25% 68.66% 66.47%

Floor10_2 0.367 0.334 0.353 0.152 0.15 0.138 0.145 0.061 58.97% 58.74% 58.92% 60.08%

Floor10_3 1.170 0.188 0.157 1.156 0.36 0.013 0.079 0.359 69.36% 92.96% 49.72% 68.98%

Floor10_4 0.752 0.655 0.643 0.369 0.15 0.132 0.130 0.075 79.83% 79.85% 79.79% 79.76%

Floor10_5 0.717 0.514 0.478 0.499 0.261 0.176 0.162 0.193 63.53% 65.77% 66.11% 61.29%

As we can see from Tables 1–3, by tracking objects and geometrical structures in
indoor environments, the proposed SLAM solution outperforms ORB-SLAM2 by an order
of magnitude. The RMSE and SD improvement values can reach 79% in terms of ATE. The
results indicate that the proposed approach can significantly improve the robustness and
stability of the SLAM system in indoor environments.

Figures 6–10 show the estimated trajectory of the proposed SLAM system (shown in
Figures 6b, 7b, 8b, 9b and 10b) and ORB-SLAM2 (shown in Figures 6a, 7a, 8a, 9a and 10a).
The tested solution was plotted against the ground truth in all presented figures. We can
notice how starting the sequence by large pure rotation severely affects the ORB-SLAM2
trajectory estimation in sequences 3 and 4, which also suffered large inaccuracy in the first
sequence because of multiple large pure rotations. Our solution was recovered from these
rotations by tracking the environment boundaries in all cases.

Figure 6. Estimated Trajectories for Floor10_1 Sequence: (a) ORB-SLAM2, (b) SLAM system.

Figure 7. Estimated Trajectories for Floor10_2 Sequence: (a) ORB-SLAM2, (b) SLAM system.
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Figure 8. Estimated Trajectories for Floor10_3 Sequence: (a) ORB-SLAM2, (b) SLAM system.

Figure 9. Estimated Trajectories for Floor10_4 Sequence: (a) ORB-SLAM2, (b) SLAM system.

Figure 10. Estimated Trajectories for Floor10_5 Sequence: (a) ORB-SLAM2, (b) SLAM system.

Table 4 shows a comparison between the ORB-SLAM2 and the proposed system. The
tests were performed on an Intel Core i7 laptop PC with 16 GB of RAM and an RTX-2070
Nvidia graphics card. ORB-SLAM2 outperforms the proposed solution in both RGB-D and
stereo modes; however, with the reported accuracy improvements and the limited speed
that characterize most indoor applications, sacrificing the higher frame rate for accuracy
could be considered in many cases.
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Table 4. Frame rate comparison between ORB-SLAM2 vs. Proposed.

RGB-D Stereo

ORB-SLAM2 23 fps 10 fps

Proposed 17 fps 8 fps

6. Conclusions

The human brain can perform navigation-related tasks flexibly and with very low
accumulated errors. In this chapter, an improved visual SLAM system was presented.
A new indoor SLAM system is inspired by the human ability to understand and relate
semantic and geometrical information and then exploit it to navigate the environment
accurately. The proposed system incorporated RoomNet, a CNN network designed to
detect geometric properties of the image scenes and successfully used this information
to enhance its trajectory estimation. The proposed SLAM solution utilized the geometric
constrained between the environment corners to correct the system drifts and create an
improved loop closure approach. The presented work included the creation of an object
model database to provide more robust object tracking. The proposed system showed
robustness and accuracy in all tested sequences and outperformed its backbone SLAM
engine, ORB-SLAM2, especially against pure rotations.
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