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Abstract: A continuum robot is a unique type of robots which move because of the elastic deformation
of their bodies. The kinematics of such robots is typically described using constant curvature
assumption. Such an assumption, however, does not completely describe the kinematics of a real-
life continuum robot. As a result, variable curvature assumptions describe the kinematics of the
continuum robot better, however, they are more complicated to formulate and work with. In particular,
the existing methods of solving the inverse kinematics problem of multisection continuum robots
with variable curvature suffer from a variety of deficiencies. Those deficiencies include complex
matrix calculations, singularity problems, unscalability, and inability to find a numeric solution in
some cases. In this work, we present FABRIKx: fast and reliable algorithm to solve the problem of
inverse kinematics of the multisection continuum robot with variable curvature. In particular, to
describe the variable curvature, we utilize a piecewise constant curvature assumption. The proposed
algorithm combines both tangent and chord approaches to solve the inverse kinematics problem.
The inverse kinematics of a single bending section of piecewise constant curvature is also described.
To evaluate FABRIKx effectiveness, we compare it with the Jacobian-based and FABRIKc-based
algorithms via simulation studies for different robots. The obtained results show that FABRIKx
demonstrates a higher success rate and a lower solution time.

Keywords: continuum robots; inverse kinematics; forward kinematics; FABRIK

1. Introduction

Continuum robots are flexible manipulators that move because of the elastic defor-
mation of their bodies. The flexible design of continuum robots makes them able to avoid
unwanted collisions in a confined workspace, navigate to hard-to-access areas, and grasp
objects using their body. They are used for different purposes including machining [1],
non-destructive testing, and repairs inside complex devices [2–4]. In addition, continuum
robots are able to reach hard-to-access and dangerous areas, such as outer space [5,6]
and underwater [7]. Another sphere actively using these devices is medicine, where the
continuum robots are used as endoscopes and surgical instruments for minimally invasive
surgery [8–10].

Inverse kinematics is crucial for providing autonomy, motion planning, trajectory
optimization, and obstacle avoidance for continuum robots. Despite significant attention
from researchers, inverse kinematics for multisection continuum robots remains an open
problem. This problem occurs due to the complex non-linear behavior and redundancies of
continuum robots.

The constant curvature assumption is a widely accepted approach and is used to
simplify the modeling of continuum robots. It states the following: if each section is
optimally constructed, then each section will bend such that the curvature and torsion
are approximately constant [11]. Together with the assumption that robot construction
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does not allow torsion, the constant curvature assumption allows describing the section
backbone as a circle arc. In its turn, the end-effector of the arc can be described by a virtual
robot comprising one rigid link with variable length and two to five revolution joints [12].
This significantly reduces the kinematic model parameters.

The constant curvature assumption is used to define the forward and inverse kine-
matics of continuum robots comprising non-extensible [11–13], extensible [14,15], and
telescopic sections [16,17]. The most common way to solve the inverse kinematics of
constant curvature multisection continuum robots is the usage of Jacobian-based meth-
ods [12,14]. Other options are geometric [13,18] and analytical (not appliable to multisection
robots comprising non-extensible sections) methods [15], learning-based [19] methods, and
FABRIK-based (forward- and backward-reaching inverse kinematics) algorithms [20,21].

However, a section of a real continuum is not optimally constructed, and thus the
constant curvature assumption does not properly model the backbone of the bending
section, especially when the external forces are non-negligible or the section is designed
in such a way that constant curvature is not appliable. A more realistic way to model
continuum robots is to use variable curvature. The variable-curvature kinematic model
can be described by Euler spirals [22,23], Pythagorean hodograph curves [24], mode shape
functions [25], and piecewise constant curvature assumption [26]. Piecewise constant
curvature assumption describes the deformation of a single section with a finite number of
serially connected circular arcs—subsections. The piecewise constant curvature assumption
is used to model more realistic kinematics of conically shaped continuum robots.

Nowadays, several approaches are employed to solve the inverse kinematics of mul-
tisection continuum robots with variable curvature. The Jacobian-based approach is a
commonly used approach to find inverse kinematics solutions [26]. It uses the minimum-
norm and minimax iterative algorithms to solve the inverse kinematics problem, e.g.,
Newton’s method. The Jacobian-based methods are accurate and capable of working in real
time. However, they suffer from a high computational cost, complex matrix calculations,
singularity problems, and the inability to find a solution in some cases.

Model-free approaches are used to solve inverse kinematics and control continuum
robots without an a priori known robot model. An example of such an approach is
represented by neural networks [27,28]. They create models based on data from the real
robot or accurate models to predict the inverse kinematics solution. Such models allow fast
computation of inverse kinematics without knowing physics-based models in advance. The
trained models achieve both a low error rate and low latency. However, the learning-based
approach is badly scalable and requires training a new model for each new robot design.

Model-free approaches are also used for feedback control of continuum robots. They
show better accuracy than constant curvature models because they can implement the
control policies directly from the task space in the actuation space, avoiding model mis-
matches. Model-free approaches that are used to control continuum robots are based on:
Fuzzy Logic [29], recurrent neural networks [30], and reinforcement learning [31].

The next approach is based on bioinspired algorithms such as particle swarm op-
timization [32–34], genetic algorithms [33,34], and artificial bee colony algorithms [33].
These algorithms minimize the error between the current and desired end-effector position
and orientation by changing their configuration variables. All the mentioned algorithms
successfully solve inverse kinematics in real time. However, current studies are limited to
three-section continuum robots; in this regard, the scalability of bioinspired algorithms is
unknown.

In this paper, we present FABRIKx—a fast and reliable algorithm for solving the
inverse kinematics of variable-curvature multisection continuum robots. We chose FAB-
RIK [35] as the base algorithm due to its singularity-free nature demonstrating good
results for constant curvature continuum robots [20,36]. We combine both tangent [20] and
chord [21] approaches with the piecewise constant curvature assumption. To do that, a
section of the continuum robot is simplified to one virtual revolution joint and two virtual
links with variable lengths. The links are tangent to the beginning and the end of the section.
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A joint is placed at their intersection. Tangent links are used to define the preliminary
pose of the robot during the forward-reaching stage. During the backward-reaching stage,
the chords are used to define section configuration parameters by single-section inverse
kinematics. Those parameters are used to redefine link lengths and robot pose.

Our study describes several ways to obtain an inverse kinematics solution for a single
bending section that is described by the piecewise constant curvature assumption. To prove
FABRIKx’s effectiveness, we compare it with the Jacobian-based algorithm and FABRIKc-
based algorithm in simulation for different robots. An overview of the whole algorithm is
presented in Figure 1.

Figure 1. A flowchart of the FABRIKx algorithm.

2. Forward Kinematics

To describe piecewise constant curvature forward kinematics, we use several assump-
tions [26]:

1. Continuum robots consist of N independent, consecutive sections (Figure 2a). Two bend-
ing sections have the same tangent vector at the point of their connection.

2. Each section can be divided into M subsections (Figure 2b). All subsections bend
simultaneously when the section bends. The angle between the first and the last
tangent is the bending angle of the section. Two subsections have the same tangent
vector at the point of their connection. The robot design excludes section torsion.

3. The constant curvature assumption describes subsection shape (Figure 2c). Therefore,
the end-effector of a subsection can be defined using a virtual rigid robot (Figure 2d).
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Figure 2. Kinematics structure of a variable-curvature multisection continuum robot. (a) General
robot kinematics. (b) Kinematics of the i-th section. (c) Kinematics of the j -th subsection. (d) A
virtual rigid robot that describes a subsection.

According to assumption 3, a subsection is a circular arc that can be described by a
virtual rigid robot. Transformation matrix Bi,j describing the bending of the j-th subsection
of the i-th section is defined as follows:

Bi,j =


cos
(
θi,j
)

0 sin
(
θi,j
)

Si,j·
1−cos(θi,j)

θi,j

0 1 0 0

− sin
(
θi,j
)

0 cos
(
θi,j
)

Si,j·
sin(θi,j)

θi,j

0 0 0 1

 (1)

where Si,j is the subsection length, and θi,j is the subsection bending angle that is defined
as follows:

θi,j =
wi,j·θi

∑M
k=1 wi,k

(2)



Robotics 2022, 11, 128 5 of 16

where θi is the section bending angle, and wi,j is the subsection weight. Subsection weights
are defined during robot construction.

According to assumption 2, a section is a sequence of subsections without torsion
between them. Therefore, subsections of a single section are bent in the same plane.
Transformation matrix Bi that describes the bending of i-th section is defined as follows:

Bi = TZ(ϕi)
M

∏
j=1

Bi,j (3)

where M is the number of subsections, TZ(ϕ) is the rotation around the z-axis at the section
rotation angle ϕ, and Ti,0 is the section base.

According to assumption 1, a continuum robot is a sequence of sections. The position
and orientation of the robot end-effector TN is defined as follows:

TN = T0

N

∏
i=1

Bi (4)

where T0 is the robot base, and N is the number of sections.

3. Inverse Kinematics
3.1. Single-Section Inverse Kinematics

The single-section inverse kinematics defines a single possible robot configuration that
satisfies the end-effector position PT . The single-section inverse kinematics requires the
following input data: target point PT , subsection lengths S, section weights w, and section
base frame T0. The output data are configuration variables, such as the bending angle θ
and the rotation angle ϕ.

The rotation angle ϕ of the section is defined using the PX
T and PY

T components of the
target point PT in the section base frame T0:

P = T−1
0 ·PT (5)

ϕ = atan2(PY, PX) (6)

In this work, we use three different approaches to define the bending angle θ.

3.1.1. FABRIKc-Based Method

This approach is inherited from the FABRIKc algorithm [20]. Here, the bending angle
is defined as the angle between section tangents:

θ = acos(ZBase·ZEnd) (7)

where ZBase is the z-axis of the section base, and ZEnd is the z-axis of the section end.

3.1.2. Iterative Method

The bending angle can be found through the chord angle. For constant curvature
sections, the ratio of the bending angle θ to the chord angle α is known. It is constant and
the same for all constant curvature sections. However, for the variable-curvature section,
this ratio depends on subsection lengths, weights, and the current bending angle. Examples
of the ratio between the bending angle θ and the chord angle α for the three different
sections (parameters presented in Table 1) are shown in Figure 3.
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Table 1. Section parameters.

Section Color Subsection Lengths, mm Subsection Weights

Red [10, 20, 40] [3, 2, 1]
Blue [10, 20, 40] [1, 2, 3]

Yellow [40, 20, 10] [3, 1, 1]

Figure 3. The ratio between the bending angle θ and the chord angle α for different variable-curvature
sections. The colors are explained in Table 1.

An iterative method of finding the bending angle θ using the chord angle α is the
following:

1. Define chord angle α:

α = acos
(

ZBase·P
|P|

)
(8)

2. Assume that bending angle θ′ is equal to chord angle α:

θ′ = α (9)

3. Define section endpoint P′ using forward kinematics (1)–(3) for bending angle θ′ and
rotation angle ϕ.

4. Define chord angle α′ for point P′ by (8).
5. If the difference between angles α and α′ is lower than the tolerance ε, then θ′ is a

solution. Otherwise, redefine θ′ as follows:

θ′ = α·θ′/α′ (10)

Then, go to step 3.
A flowchart of the single-section iterative inverse kinematics is presented in Figure 4.
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Figure 4. A flowchart of the single-section iterative inverse kinematics algorithm.

3.1.3. Approximation

A simpler way to get the bending angle from the chord angle is to use approximation.
To do this, a set of bending angles and the corresponding chord angles must be obtained in
advance. Then, a function properly describing this data has to be selected. This approach is
faster than the iterative one; however, its accuracy depends on approximation quality.

3.2. Multisection Inverse Kinematics

The inverse kinematics algorithm of a multisection robot searches for a robot configu-
ration (set of bending and rotation angles) that can reach a target position PT with a linear
tolerance of εL and a target orientation ZT with an angular tolerance of εA.

The algorithm starts with some initial pose, where all (2N + 1) keypoints are known.
The keypoints are the beginning of the robot, the ending of each section, and tangent
intersection points. Lengths L of tangent links are defined based on keypoints:

L2i−1 = |P2iP2i−1| (11)

L2i = |P2iP2i+1| (12)

where i = 1 . . . N is the section number.
Each iteration of the algorithm comprises forward-reaching and backward-reaching

stages. An example of an iteration of inverse kinematics for a three-section continuum
robot is reflected in Figure 5.
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Figure 5. A showcase of the FABRIKx iterative algorithm for a three-section continuum robot.
(a–c) Forward-reaching stage. (d–f) Backward-reaching stage.

3.2.1. Forward Reaching

During the forward-reaching stage, the algorithm processes the robot as if it comprises
only rigid links connected by spherical joints with no restrictions on the rotation angles.
These links are section tangents.

In the first step the point PN is moved to the target position PT :

PN = PT (13)

Then, the value of the tangent vector V is set as follows:

V = −ZT (14)
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If ZT is not specified, then:

V = PN PN−1/|PN PN−1| (15)

Then, all remaining keypoints are redefined starting from the last section N to the first
section. In order to do that, the following steps are taken. A tangent intersection point is
defined as follows:

P2(N−i) = P2(N−i)+1 + V·L2(N−i) (16)

The tangent vector is defined as follows:

V =

{
P2(N−i)P2(N−i−1)/

∣∣∣P2(N−i)P2(N−i−1)

∣∣∣, i f i 6= N − 1
−Z0, otherwise

(17)

The endpoint of the section is defined as:

P2(N−i)−1 = P2(N−i) + V·L2(N−i)−1 (18)

where i = 0 . . . N − 1.

3.2.2. Backward Reaching

Next comes the backward-reaching stage. During this stage, the algorithm defines the
configuration parameters (θ, ϕ) of each section from the first to the last section i = 1 . . . N
using single-section inverse kinematics for point P2i+1 and base Ti−1. To implement joint
limit avoidance, the bending angle θ cannot be larger than the maximum bending angle θmax:

θi =

{
θi, i f θi < θmax
θmax, otherwise

(19)

Then, forward kinematics Equations (1)–(4) are used to redefine each section end-
point P2i+1.

Next, the tangent lengths are updated using the law of sines (see Figure 6):

L2i−1 = |P2i−1P2i+1|· sin(θi − α)/ sin(π − θi) (20)

L2i = |P2i−1P2i+1|· sin(α)/ sin(π − θi) (21)

Figure 6. Angles of a single section.

For the bending angle θ = 0:

L2i−1 = L2i = |P2i−1P2i+1|/2 (22)
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The tangent intersection point is updated as follows:

P2i = Zi−1·L2i−1 + P2i−1 (23)

When the backward-reaching stage is finished, the linear and angular errors are
calculated. If the linear or angular error is bigger than the tolerance, then the algorithm
performs another iteration starting from forward reaching. Otherwise, the received bending
and rotation angles are the final solution of the inverse kinematics. A flowchart of the
FABRIKx algorithm is presented in Figure 7.

Figure 7. A detailed flowchart of the FABRIKx algorithm.

3.3. Jacobian-Based Inverse Kinematics

The Jacobian-based approach is the most common way to solve the inverse kinematics
problem for both continuum and traditional rigid robots. In this study, we use Newton’s
method. According to this method, configuration parameters are updated as follows:

xk+1 = xk + (J(xk)
T ·J(xk) + W)

−1·J(xk)·(G− F(xk)) (24)
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where xk and xk+1 are the current and next robot configuration parameters, respectively,
J(xk) is the Jacobian matrix with the parameters xk, F(xk) is the current position and the
current angular error for the parameters xk, W is the damping factor, and G is a vector
consisting of the coordinates of the target point and desired angle between the current
orientation vector and the desired orientation vector (equal to 0):

G = (XT YT ZT 0)T (25)

The current position F(xk) is defined by forward kinematics and the angle between
the target and the current vector:

F(xk) =


PN,x
PN,y
PN,z

arccos
(
ZT ·ZQ(xk)

)
 (26)

4. Simulation

In order to prove the effectiveness of the FABRIKx algorithm, we tested it on a wide
variety of robot designs (Table 2), including the following:

1. Three-section robot with three subsections per section.
2. Three-section robot with five subsections per section.
3. Three-section robot with seven subsections per section.
4. Three-section robot with nine subsections per section.
5. Five-section robot with three subsections per section.
6. Seven-section robot with three subsections per section.

Each section has two DOFs, including bending (limited by 100◦) and rotation. Each
section has a unique workspace (several examples are shown in Figure 8). The initial pose
of every robot implies that all bending and rotation angles are set to 0.

Figure 8. Sections of Robot 1: (a) Section 1; (b) Section 2; (c) Section 3. Green curves are the section
workspaces, while the curves of other colors represent section bodies for bending angles from 0 to
100◦ with a step of 10◦ (clockwise in the figure).

FABRIKx was used in two variations to solve single-section inverse kinematics, namely
an iterative method with accuracy ε = 0.006◦ (I) and a 10-degree polynomial approximation
(P). Both the Jacobian-based algorithm and the FABRIKc-based algorithm are used for
comparison.

We consider that the algorithm reaches the target if the linear error is less than 10 µm
and the angular error is less than 0.01◦. The algorithm running time was limited to 30 ms.
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We note that the running time was increased up to 0.5 s for Robots 5 and 6 using the
Jacobian-based algorithm. This case is labeled by the prefix (S).

We used 105 target positions and orientations as input of the inverse kinematics
algorithms for each robot. For this sample size, the sampling error reaches 0.41% for a 99%
confidence level. Forward kinematics provides each target using random input. Using
forward kinematics ensures that all targets have at least one solution of inverse kinematics.

Table 2. Robot parameters.

Section Subsection Lengths, mm Subsection Weights

Robot 1
(3 × 3)

1 [20, 40, 10] [1, 0.001, 3]
2 [10, 20, 40] [3, 2, 1]
3 [30, 10, 30] [1, 7, 1]

Robot 2
(3 × 5)

1 [20, 20, 40, 10, 10] [1, 1, 0.001 3, 4]
2 [10, 10, 20, 40, 20] [4, 3, 2, 1, 0.001]
3 [15, 30, 10, 30, 15] [0.001, 1, 7, 1, 3]

Robot 3
(3 × 7)

1 [30, 20, 20, 40, 10, 10, 10] [4, 1, 1, 0.001, 3, 4, 1]
2 [30, 10, 10, 20, 40, 20, 10] [1, 4, 3, 2, 1, 0.001, 4]
3 [20, 15, 30, 10, 30, 15, 20] [1, 0.001, 1, 7, 1, 3, 1]

Robot 4
(3 × 9)

1 [10, 30, 20, 20, 40, 10, 10, 10, 30] [2, 4, 1, 1, 0.001, 3, 4, 1, 3]
2 [30, 30, 10, 10, 20, 40, 20, 10, 10] [4, 1, 4, 3, 2, 1, 0.001, 4, 1]
3 [20, 20, 15, 30, 10, 30, 15, 20, 20] [4, 1, 0.001, 1, 7, 1, 3, 1, 4]

Robot 5
(5 × 3)

1 [20, 40, 10] [1, 0.001, 3]
2 [10, 20, 40] [3, 2, 1]
3 [30, 10, 30] [1, 7, 1]
4 [10, 50, 10] [0.001, 1, 0.001]
5 [10, 50, 10] [3, 1, 3]

Robot 6
(7 × 3)

1 [20, 40, 10] [1, 0.001, 3]
2 [10, 20, 40] [3, 2, 1]
3 [30, 10, 30] [1, 7, 1]
4 [10, 50, 10] [0.001, 1, 0.001]
5 [10, 50, 10] [3, 1, 3]
6 [20, 40, 10] [3, 0.001, 1]
7 [10, 40, 20] [3, 0.001, 1]

5. Results and Discussion

Simulations were carried out using MATLAB 2021b on Windows 10 with an Intel
Core i7-4790K 4.00 GHz CPU and 16 GB RAM. The performance of the algorithms was
evaluated by success rate and operating time. The obtained simulation results are presented
in Table 3.

The results verify the effectiveness of the proposed algorithm. Both FABRIKx variants
show a high success rate (from 58.9% to 93.8%). The difference between the success rates of
the FABRIKx variants is small (lower than 2%) and appears because of the higher speed of
FABRIKx (P). In general, the FABRIKx algorithm outperforms the FABRIKc-based algorithm
by 1–15% and the Jacobian-based algorithm by 0–60% in terms of success rate.

The differences in the success rates of Robots 1–4 show that the success rate of FABRIKx
decreases with an increasing number of subsections. We assume that using 2-degree
polynomial interpolation, the success rate will reach ~50% at 16 subsections of the three-
section continuum robot. This case demonstrates that FABRIKx is scalable in subsection
number. At the same time, the Jacobian-based algorithm improves its success rate with the
increase of the subsection number. FABRIKx (P) and Jacobian-based algorithms become
equal in terms of success rate at nine subsections of the three-section continuum robot.

Differences in the success rates between Robots 1, 5, and 6 show that the number
of sections significantly affects the success rate of all inverse kinematics algorithms. The
success rates of the FABRIKx, FABRIKc-based, and Jacobian-based algorithms dropped to
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approximately 60%, 53%, and 0%, respectively. Increasing the running-time limit improves
the results of the Jacobian-based algorithm, but it is still significantly low (5%) and unable
to operate in real time. This proves that the proposed algorithm has better scalability in the
number of sections.

The difference in success rate (up to 15%) between the FABRIKx and FABRIKc-based
algorithms proves that using chords in the backward-reaching stage is more effective than
using tangents. The FABRIKc-based algorithm shows the same or up to 1.5 times slower
solution speed compared to the FABRIKx (P) algorithm.

Table 3. Simulation results.

Algorithm Success Rate, %
Solution Time, ms Iteration

Mean Median Mean Median

Robot 1
(3 × 3)

FABRIKx (I) 92.8 4.5 3.2 16 11
FABRIKx (P) 93.8 3.3 2.1 17 11

FABRIKc 78.5 4.4 2.3 29 14
Jacobian 81.3 8.1 5.9 34 25

Robot 2
(3 × 5)

FABRIKx (I) 92.4 5.3 4.0 17 12
FABRIKx (P) 93.6 3.6 2.4 18 12

FABRIKc 79.5 4.3 2.2 27 13
Jacobian 83.7 7.9 6.0 32 24

Robot 3
(3 × 7)

FABRIKx (I) 86.7 6.4 4.7 19 13
FABRIKx (P) 88.5 4.2 2.8 20 14

FABRIKc 75.8 4.9 2.6 30 15
Jacobian 84.4 7.3 5.1 28 19

Robot 4
(3 × 9)

FABRIKx (I) 82.8 6.7 4.9 19 14
FABRIKx (P) 84.9 4.4 2.9 21 14

FABRIKc 73.4 5.0 2.7 30 15
Jacobian 84.9 7.4 5.2 27 19

Robot 5
(5 × 3)

FABRIKx (I) 69.3 5.8 4.5 12 10
FABRIKx (P) 70.7 4.1 3.1 13 10

FABRIKc 70.0 4.0 3.0 16 12
Jacobian 0.3 26.0 26.6 28 28

Jacobian (S) 13.3 138.7 98.4 128 90

Robot 6
(7 × 3)

FABRIKx (I) 58.9 7.4 6.0 12 10
FABRIKx (P) 60.4 5.4 4.1 13 10

FABRIKc 53.1 8.2 6.2 24 18
Jacobian 0 N/A N/A N/A N/A

Jacobian (S) 5.2 401.3 411.0 60 61

The solution time shows that FABRIKx can operate in real time. FABRIKx (P) outper-
forms the Jacobian-based algorithm by 1.5–2 times in solution time. FABRIKx (I) has the
same solution time or 1.5 times faster than the Jacobian-based algorithm. The difference
between the solution time for both variants of FABRIKx shows that the algorithm can
be further improved by using more accurate and/or faster single-section forward and
inverse kinematics algorithms. For example, a neural network trained on real robot data
or an accurate model can be used to achieve accurate and fast solutions [37]. Another
possible option is to replace two sections of a robot with two virtual tangent links. This is
possible because an analytical solution is achievable for the given position and orientation
of the endpoint.

The achieved results demonstrate that the proposed FABRIKx algorithm can improve
autonomy, motion planning, trajectory optimization, and obstacle avoidance of multisection
continuum robots with variable curvature by providing fast and accurate inverse kinematics
solutions. Having inherited the nature of the FABRIK algorithm, the proposed FABRIKx
algorithm possesses a wide variety of advantages including simple implementation, low
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latency, lack of singularity, an easy-to-modify approach, and scalability in both the number
sections and subsections.

6. Conclusions

The paper proposes the FABRIKx algorithm which can be used for solving inverse
kinematics of a multisection continuum robot of variable curvature. In the algorithm,
variable curvature is approximated by a piecewise constant curvature assumption. The
proposed FABRIKx combines both tangent and chord approaches to solve the inverse
kinematics problem. In particular, tangents are used to define the preliminary positions
of the robot during the forward reaching stage while chords are used to define the final
pose of the robot by single-section forward and inverse kinematics during the backward
reaching stage. Additionally, we present a way to solve a single-section inverse kinematics
problem as a special case.

FABRIKx is able to identify solutions for 58.9% to 93.8% of scenarios. For the ma-
jority of studied scenarios, the algorithm outperforms the FABRIKc-based algorithm by
1–15% and the Jacobian-based algorithm by 0–60% in terms of success rate. Also, the
key advantages of the algorithm are the scalability in both the number of sections and
subsections, and it does not suffer from singularity problems. In addition to that, FABRIKx
can operate in real-time and works 1.5 to 2 times faster than the Jacobian-based algorithm
and up to 1.5 times faster than the FABRIKc-based algorithm. The algorithm allows further
modifications by using more accurate and faster single-section forward and inverse kine-
matics if such information is available for specific scenarios. The proposed algorithm can
improve autonomy, motion planning, trajectory optimization, and obstacle avoidance of
multisection continuum robots with variable curvature.
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