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Abstract: Being an emerging technology, robotic manipulation has encountered tremendous advance-
ments due to technological developments starting from using sensors to artificial intelligence. Over
the decades, robotic manipulation has advanced in terms of the versatility and flexibility of mobile
robot platforms. Thus, robots are now capable of interacting with the world around them. To interact
with the real world, robots require various sensory inputs from their surroundings, and the use of
vision is rapidly increasing nowadays, as vision is unquestionably a rich source of information for a
robotic system. In recent years, robotic manipulators have made significant progress towards achiev-
ing human-like abilities. There is still a large gap between human and robot dexterity, especially
when it comes to executing complex and long-lasting manipulations. This paper comprehensively
investigates the state-of-the-art development of vision-based robotic application, which includes the
current state, components, and approaches used along with the algorithms with respect to the control
and application of robots. Furthermore, a comprehensive analysis of those vision-based applied
algorithms, their effectiveness, and their complexity has been enlightened here. To conclude, there is
a discussion over the constraints while performing the research and potential solutions to develop a
robust and accurate vision-based robot manipulation.

Keywords: computer vision; machine learning; robot manipulation; sensors; vision-based control

1. Introduction

Robotic manipulation alludes to the manner in which robots directly and indirectly interact
with surrounding objects. Such interaction includes picking and grasping objects [1–3], moving
objects from place to place [4,5], folding laundry [6], packing boxes [7], operating as per
user requirement, etc. Object manipulation is considered the pivotal role of robotics. Over
time, robot manipulation has encountered considerable changes that cause technological
development in both industry and academia.

Manual robot manipulation was one of the initial steps of automation [8,9]. A manual
robot refers to a manipulation system that requires continuous human involvement to
operate [10]. In the beginning, spatial algebra [11], forward kinematics [12–14], differential
kinematics [15–17], inverse kinematics [18–22], etc. were explored by researchers for pick
and place tasks, which is not the only application of robotic manipulation systems but the
stepping-stone for a wide range of possibilities [23]. The capability of gripping, holding,
and manipulating objects requires dexterity, perception of touch, and response from eyes
and muscles; mimicking all these attributes is a complex and tedious task [24]. Thus, re-
searchers have explored a wide range of algorithms to adopt and design more efficient and
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appropriate models for this task. Through time, manual manipulators got advanced and
had individual control systems according to their specification and application [25,26].

Along with the individual use of robotic manipulation systems, it has a wide range of
industrial applications nowadays as it can be applied to complex and diverse tasks [27].
Hence, typical manipulative devices have become less suited in these times [28]. Different
kinds of new technologies, such as wireless communication, augmented reality [29], etc.,
are being adopted and applied in manipulation systems to uncover the most suitable and
friendly human–robot collaboration model for specific tasks [30]. To make the process more
efficient and productive and to obtain successful execution, researchers have introduced
automation in this field [31].

To habituate to the automated system, researchers first introduced automation in
the motion planning technique [3,32], which eventually contributed to the automated
robotic manipulation system. Automated and semi-automated manipulation systems not
only boost the performance of industrial robots but also contribute to other fields of
robotics such as mobile robots [33], assistive robots [34], swarm robots [35], etc. While de-
signing the automated system, the utilization of vision is increasing rapidly as vision is
undoubtedly a loaded source of information [36–38]. By properly utilizing vision-based
data, a robot can identify, map, localize, and calculate various measurements of any ob-
ject and respond accordingly to complete its tasks [39–42]. Various studies confirm that
vision-based approaches are more appropriate in different fields of robotics such as swarm
robotics [35], fruit-picking robots [1], robotic grasping [43], mobile robots [33,44,45], aerial
robotics [46], surgical robots [47], etc. To process the vision-based data, different approaches
are being introduced by the researchers. However, learning-based approaches are at the
center of such autonomous approaches, as in the real world, there are too many devi-
ations and learning algorithms that help the robot gain knowledge from its experience
with the environment [48–50]. Among different learning methods, various neural network-
based models [51–54], deep learning-based models [49,50,54–56], and transfer learning
models [57–60] are mostly exercised by the experts of manipulation systems, whereas
different filter-based approaches are also popular among researchers [61–63].

This paper presents some recent notable works on robotic manipulation systems,
specifically focused on vision-based approaches. Moreover, the current state, the issues
researchers addressed throughout the experiments, their approaches, and the proper appli-
cations of such models have also been analyzed here. Researchers use a variety of control
tactics to manipulate robots, but this study will focus exclusively on vision-based decision
making in robotic applications. The control techniques for manipulating robots are beyond
the scope of this study. The primary contributions of this study are four-fold:

• Presenting the current state of the vision-based robotic system with a chronological
progression until now.

• Reviewing algorithmic highlights of various approaches, including used components
and applied vision-based control theory. We scrutinize all the proposed methods and
identify the most adopted ones in this field.

• Generalizing the focused application. We review all the approaches and narrow down
the essential applications.

• Summarizing the barriers. We sum up all the mentioned studies and present the
barriers as well as potential solutions here.

The rest of the paper is structured as follows: Section 2 briefly represents the inclusion
and exclusion criteria of the studies, Section 3 discusses the current state to date, Section 4
presents some brief information about the components used in these studies, Section 5
summarizes the experimental environments, Section 6 represents the control theories
used in the selected publications, Section 7 discusses the focus applications, Section 8
discloses the challenges and potential solutions for the vision-based approaches in the
robotic manipulation systems, Section 9 contains discussion, and finally, Section 10 portrays
the conclusion.
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2. Journal Selection

Studies were chosen by performing a systematic electronic search of a handful of
databases as of 1 August 2022, by the authors who specialized in computer vision and eye-
gaze control areas. The timeline of the studies was limited to the last seven years to focus on
the recent advancement in this field. The search was performed in the following databases;
IEEE Xplore, Elsevier B.V., arXiv, Springer, Hindawi, MDPI, and Wiley. While searching,
the following keywords were used; “vision-based robotic manipulation”, “vision-based
telerobot review”, “computer vision”, “vision-based surgical robots”, and “vision for robust
robot manipulation”. Figure 1 illustrates the overall inclusion and exclusion criteria of the
selected studies.

Figure 1. Inclusion and exclusion criteria of the selected studies.

This search identified approximately 320 relevant publications for consideration. How-
ever, after initial screening (keyword mismatch, out-of-scope papers resulting during
keyword search), 215 studies were shortlisted for review. After that, some of the publi-
cations were excluded based on selection criteria (specific aim, duplicate studies, review,
etc.), and 46 studies were narrowed down (aligned with manuscript scope) for the in-depth
review. The authors went through all the relevant sections of the studies, including the
abstract, introduction, methodology, experiments, conclusion, and future work sections
of all the selected papers (n = 46) to identify the other significant information such as the
addressed problem, contribution, approach, control theory, experiment setup, complexity,
and communication protocol.

3. Current State

A common structural assumption for manipulative tasks for a robot is that an object or
set of objects in the environment is what the robot is trying to manipulate. Because of this,
generalization via objects—both across different objects and between similar (or identical)
objects in different task instances—is an important aspect of learning to manipulate.

Commonly used object-centric manipulation skills and task model representations are
often sufficient to generalize across tasks and objects, but adapting to differences in shape,
properties, and appearance is required. A wide range of robotic manipulation problems
can be solved using the vision-based approach as it works as a better sensory source for
the system. Because of that and the availability of a fast processing power, vision-based
approaches have become very popular among researchers who are working on robotic
manipulation-based problems. A chronological observation depicting the contributions of
the researchers based on the addressed problems and their outcomes is compiled in Table 1.
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Table 1. Chronological progression of the vision-based approach.

Year Addressed Problems Contributions Outcomes

2016 [64–66] Manipulation [64] and grasping control strategies [66] using
eye-tracking and sensory-motor fusion [65].

Object detection, path planning, and navigation [64]; Control of
an endoscopic manipulator [65]; Sensory-motor fusion-based

manipulation and grasping control strategy for a robotic
hand–eye system [66].

The proposed approach has improved performance in calibration,
task completion, and navigation [64]; Shows better a

performance than endoscope manipulation by an assistant [64];
Demonstrates responsiveness and flexibility [66].

2017 [67–73]

Following human user with robotic blimp [70]; Deformable
object manipulation [67]; Tracking and navigation for aerial
vehicles [68,73]; Object detection without GPU support [69];

Automated object recognition for assistive robots [71];
Path-finding for humanoid robot [72].

Robotic rope manipulation using vision-based learning
model [67]; Robust vision-based tracking system for a UAV [68];

Real-time robotic object detection and recognition model [69];
Behavioral stability in humanoid robots and path-finding

algorithms [72]; Robust real-time navigation [70] and long-range
object tracking system [70,73].

Robot successfully manipulates a rope [67]; System achieves
robust tracking in real-time [68] and proved to be efficient in
object detection [69]; Robotic blimp can follow humans [70];

System was able to detect and recognize objects [71]; Algorithm
successfully able to find a path to guide the robot [72]; System

arrived at an operational stage for lighting and weather
conditions [73].

2018 [74–81]

Real-time mobile robot controller [74]; Target detection for safe
UAV landing [75]; Vision-based grasping [76], object sorting [79],
and dynamic manipulation [77]; Multi-task learning [78]; Learn

complex skills from raw sensory inputs [80]; Autonomous
landing of a quadrotor on moving targets [81].

Sensor-independent controller for real-time mobile robots [74];
Detection and landing system for drones [75]; GDRL-based
grasping benchmark [76]; Effective robotic framework for

extensible RL [77]; Complete controller for generating robot arm
trajectories [78]; Successfully inaugurate a camera-robot

system [79]; Successful framework to learn a deep dynamics
model on images [80]; Autonomous NN-based landing controller
of UAVs on moving targets in search and secure applications [81].

The mobile robot reaches its goal [74]; The system finds targets
and lands safely [75]; System grasps better than other

algorithms [76]; Real-world reinforcement learning can handle
large datasets and models [77]; Method is a versatile manipulator
that can accurately correct errors [78]; Placement of objects by the
robot gripper [79]; Generalization to a wide range of tasks [80];

Successful autonomous quadrotor landing on fixed and moving
platforms [81].

2019 [82–89]

Nonlinear approximation for mobile robots [82]; Control of
cable-driven robots [83]; Leader–follower formation control [84];

Motion control for a free-floating robot [85]; Control of soft
robots [86]; Approach an object when obstacles are present [87];

Needle-based percutaneous using robotic technologies [88];
Natural interaction control of surgical robots [89].

Effective recurrent neural network-based controller for
robots [82]; Robust method for analyzing the stability of the

cable-driven robots [83]; Effective formation control for a
multi-agent system [84]; Efficient vision-based system for a

free-floating robot [85]; Stable framework for soft robots [86];
Useful system to increase the autonomy of people with

upper-body disabilities [87]; Accurate system to identify the
needle position and orientation [88]; Smooth model to use eye

movements to control a robot [89].

System outperforms existing ones [82]; Vision-based control is a
good alternative to model-based control [83]; Control protocol

completes formation tasks with visibility constraints [84]; Method
eliminates false targets and improves positioning precision [85];
System maintained an acceptable accuracy and stability [86]; A
person successfully controlled the robotic arm using the system

[87]; Framework shows the proposed robotic hardware’s
efficiency [88]; movement was feasible and convenient [89].

2020 [90–95]

Grasping under occlusion [90]; Recognition and manipulation of
objects [91]; Controllers for decentralized robot swarms [92];
Robot manipulation via human demonstration [93]; Robot

manipulator using Iris tracking [94]; Object tracking of visual
servoing [95].

Robust grasping method for a robotic system [90]; Effective
stereo algorithm for manipulation of objects [91]; Successful

framework to control decentralized robot swarms [92];
Generalized framework for activity recognition from human
demonstrations [93]; Real-time iris tracking method for the

ophthalmic robotic system [94]; Successful method for
conventional template matching [95].

Method’s effectiveness validated through experiments [90];
R-CNN method is very stable [91]; Architecture shows promising

performance for large-sized swarms [92]; Proposed approach
achieves good generalized performance [93]; Tracker is suitable

for the ophthalmic robotic system [94]; Control system
demonstrates significant improvement to feature tracking and

robot motion [95].
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Table 1. Cont.

Year Addressed Problems Contributions Outcomes

2021 [96–102]

Human–robot handover applications [96]; Imitation learning for
robotic manipulation [97]; Reaching and grasping objects using
a robotic arm [98]; Integration of libraries for real-time computer
vision [99]; Mobility and key challenges for various construction
applications [100]; Obtaining the spatial information of operated

target [101]; Training actor–critic methods is RL [102].

Efficient human–robot hand-over control strategy [96];
Intelligent vision-guided imitation learning framework for

robotic exactitude manipulation [97]; Robotic hand–eye
coordination system to achieve robust reaching ability [98];
Upgraded vision of a real-time computer vision system [99];

Mobile robotic system for object manipulation using
autonomous navigation and object grasping [100];

Calibration-free monocular vision-based robot
manipulation [101]; Attention-driven robot manipulation for

discretization of the translation space [102]

Control shows promising and effective results [96]; Object can
reach the goal positions smoothly and intelligently using the

framework [97]; Dual neural-network-based controller leads to
higher success rate and better control performance [98];

Successfully implemented and tested on the latest
technologies [99]; UGV autonomously navigates toward a

selected location [100]; Performance of the method has been
successfully evaluated [101]; Algorithm achieves state-of-the-art

performance on several difficult robotics tasks [102].

2022 [103–109]

Micro-manipulation on cells [103]; Collision-free navigation
[104]; Highly nonlinear continuum manipulation [105];

Complexity of RL in broad range of robotic manipulation task
[106]; Uncertainty in DNN-based prediction for robotic grasping
[107]; Path planning for a robotic arm in a 3D workspace [108];
Object tracking and control of a robotic arm in real-time [109].

Path planning for magnetic micro-robots [103]; Neural radiance
fields (NeRFs) for navigation in 3D environment [104]; Aerial

continuum manipulation systems (ACMSs) [105];
Attention-driven robotic manipulation [106]; Robotic grabbing
in distorted RGB-D data [107]; Real-time path generation with
lower computational cost [108]; Real-time object tracking with

reduced stress load and a high rate of success. [109].

Magnetic micro-robots performed accurately in complex
environment [103]; NeRFs outperforms the dynamically

informed INeRF baseline [104]; simulation demonstrates good
results [105]; ARM was successful on a range of RLBench

tasks [106]; System performs better than end-to-end networks in
difficult conditions [107]; System significantly eased the

limitations of prior research [108]; System effectively locates the
robotic arm in the desired location with very high accuracy [109].
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Figure 2 represents the basic categorization of the problems addressed by the re-
searchers. The problems are primarily divided into two categories: control-based problems
and application-based problems. Each of these problems is further categorized into several
sub-categories. While dealing with control-based problems such as human demonstration-
based control [78,93,97], vision (raw images)-based control [74,82,83,85,86], multi-agent system
control [84,92,100,105], etc., researchers have tried and succeeded to solve them by adopting
vision-based approaches. The addressed control-based problems are designing a vision-based
real-time mobile robot controller [74], multi-task learning from demonstration [78,102,106],
nonlinear approximation in the control and monitoring of mobile robots [82], control of cable-
driven robots [83], leader–follower formation control [84], motion control for a free-floating
robot [85], control of soft robots [86], controllers for decentralized robot swarms [92],
robot manipulation via human demonstrations [93], and imitation learning for robotic
manipulation [97].

Figure 2. Categorization of problems addressed by the researchers.

Similarly, while solving application-based problems such as object recognition and
manipulation [67,69–71,77,79,80,91,101], navigation of robots [68,72,73,75,99,104,108,109],
robotic grasping [76,90,107], human–robot interaction [96], etc., researchers successfully
applied vision-based approaches and obtained very promising results. The addressed
application-based problems are the manipulations of the deformable objects, such as
ropes [67], a vision-based tracking system for aerial vehicles [68], object detection with-
out a graphics processing unit (GPU) support for robotic applications [69], detecting and
following the human user with a robotic blimp [70], object detection and recognition for au-
tonomous assistive robots [71], path-finding for a humanoid robot [72] or robotic arms [108],
navigation of an unmanned surface vehicle [73], vision-based target detection for the safe
landing of UAV in both fixed [75] and moving platforms [81], vision-based grasping for
robots [76], vision-based dynamic manipulation [77], vision-based object sorting robot
manipulator [79], learning complex robotic skills from raw sensory inputs [80], grasping
under occlusion for manipulating a robotic system [90], recognition and manipulation of
objects [91], human–robot handover applications [96], targeted drug delivery in biological
research [103], uncertainty in DNN-based robotic grasping [107], and object tracking via a
robotic arm in a real-time 3D environment [109].

4. Components

The main component of any vision-based system is the sensory input devices and the
primary sensory input source of vision-based manipulation systems is cameras to perceive
the 3D physical world. Researchers used a variety of cameras during their research and
tested the system’s performance accordingly.

While dealing with object detection and robot manipulation tasks, most researchers
use basic RGB cameras [69,70,72,74–83,85,88,89,106,108] and applied their proposed model
to design different detection and control systems. However, for the systems that interact
with humans for example, human–robot handover applications [96], wheelchair naviga-
tion [64], control of autonomous assistive robots [71], robot manipulation learning via hu-
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man demonstrations [93], researchers preferred a depth camera for getting 3D information
about the surrounding. Among different commercially available depth cameras, Microsoft
Kinect [64,67,90,96,98], RGB depth camera [71,84,87,107], and RealSense [93,99,102] are
mostly used and utilized by the researchers. For various robot navigation tasks, some
researchers preferred stereo cameras [66,73,91,100,109] to handle the issue of depth percep-
tion as it is similar to 3D perception in human vision. Similarly, while developing the control
system of soft robots, researchers found the endoscopic [86,90] and microscopic [97,103]
cameras very useful because of their random window reading ability. Monocular cam-
eras [68,101,104] and eye trackers [65] have also been used by several experimenters in
different studies.

On the other hand, researchers used more than one camera [72,73,80,91,92,96,97,108,109]
to achieve a better performance and complete the tasks properly. In several cases, Li-
DAR [75] is also used along with the camera setup. Attaching gimbal [68,75] with the
camera is also popular among researchers. Figure 3 and Table 2 represents different sensory
input for vision-based systems and applications along with their advantages. Even with to-
day’s cutting-edge technologies, vision-based systems researchers still face issues including
reflected patterns, drift, accumulation error, low spatial resolution, line-of-sight obstruction,
and ambient light saturation. According to recent studies, photometric approaches are
gaining popularity over geometric approaches, as are multi-depth 3D cameras.

Figure 3. Different input components and their applications.

Table 2. Component (sensory input) used in different vision-based manipulation systems.

Input Category Advantages Potential Application

RGB Camera Capture real-time images with
a wider range of colors.

Object detection and robot
manipulation/control.

Depth Camera (Kinect, RGBD,
RealSense)

Sense depth of different
objects and associate with an
RGB camera for real-time
image capture.

Robot control system that
includes human interaction.

Stereo Camera
Mimic human binocular
vision by using multiple
lenses.

Robot navigation and object
recognition.

Endoscopic/microscopic
Camera

Capture images with the
higher resolution
magnification capability.

Soft robot control.

Monocular Camera Ensure true field of view in
low cost and lighter weight. Target tracking.

Eye-Tracker Track the movement of eyes in
real time.

Eye-tracking-based robot
control.



Robotics 2022, 11, 139 8 of 20

5. Experimental Environments

Researchers examined the models and compared their performances in order to val-
idate the performance of the proposed models. Real-time experiments and simulated
platforms were both used by the scientists for testing the performance. Real-time ex-
periments were the most popular among researchers when solving vision-based robotic
manipulation problems [64–67,70,71,73,74,78,83,86,87,90,99–101,103,107,109].

On the other hand, a lot of studies preferred exploring both real-time and simulated
platforms at the same time and had presented both the results [68,72,75,77,79–82,84,89,95–
98,102,108]. For efficiency, few researchers took the best values of parameters from the
simulated experiments and applied them to the actual experiments [91,97]. Only Simulated
experiments were only exercised by few researchers [69,76,85,88,92,94,104–106]. Figure 4
presents two experiments where the implementations were performed on a simulated
platform and also applied to an actual robot.

Figure 4. Experiments performed both in simulated platforms and actual robots. (a,b) Demonstration
of object sorting robot manipulation [79], and (c,d) demonstration of leader–follower formation
control both in real experiments and in simulated platforms [84].

6. Control Theories

While implementing vision-based robot manipulation systems, researchers have of-
fered a number of methods and approaches, although learning-based approaches were the
most popular. Different machine learning and deep learning models have been used by
researchers for processing image or video data for making decisions by the system and
robust output.

While designing the system architecture, to process input data, researchers used deep
learning techniques and adopted a variety of modified neural networks into their sys-
tem such as deep neural networks (DNNs) [69,81,85,108], deep reinforcement learning
(DRL) [101], deep Q-learning [102], graph neural networks (GNNs) [92], neural network-
based brain emotional nesting network (BENN) [98], probabilistic neural network (PNN) [65],
etc. Different types of convolutional networks are the most popular among scientists as
they have some unique features that work really well with image data. Thus, researchers
applied convolutional neural networks [67,69,88–90,92,94,97], action primitive convolu-
tional neural networks (AP-CNN) [93], and regions with convolutional neural networks
(R-CNNs) [91,93], and achieved robust and generalized performance form the systems.
Recurrent neural networks (RNNs), another variation of artificial neural networks also suc-
cessfully examined by the experts in some systems [78,80,82]. Different pre-trained models
are also gaining notable popularity among researchers especially for the data-processing
tasks as these models are trained over millions of data, well known for their remarkable
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performance, and available for use. As these models can save make significant savings in
terms of training and computational time, researchers adopted some pre-trained models
such as ResNet-50 [90], ResNet-18 [88], DenseNet [89], and U-Net [97] into their models
and obtained a smooth, robust, and effective performance by the systems.

Likewise, different machine learning algorithms were also exercised by the researchers
during the development of different successful robot manipulation models. While dealing
with the tracking system for aerial vehicles, a machine learning algorithm was applied by the
researchers for the object detection task [68]. Similarly, other well-known machine learning
algorithms such as support vector machine (SVM) [65,66,72], fuzzy logic [75,91], reinforcement
learning (RL) or Q-learning [76,77,80,106,108], OpenCV [65,75,83,87,89,100,108], CAMShift
algorithm [84,109], Haar feature classifier [70,73,99], clustering [64,107], etc. are widely
exercised by the researchers for detection, classification, and object tracking tasks in their
robot manipulation system architecture. Table 3 displays different learning-based methods
and the accuracy employed by the researchers in the focused studies.

Table 3. Learning-based methods applied in the vision-based approaches along with accuracy.

Study NN CNN RNN Pre-
Trained SVM Fuzzy RL/ Q-

Learning OpenCV Haar
feature CamShift ML/

Clustering
Accuracy

(%)

[66] X -

[67] X -

[68] X 96.10

[69] X X -

[70] X -

[72] X -

[73] X 98.57

[75] X X -

[76] X -

[77] X 96

[78] X 88

[80] X X 83

[81] X -

[82] X -

[83] X -

[84] X -

[85] X 99.8

[90] X X 98

[91] X X 99.22

[92] X X -

[93] X 90

[97] X X 89

[64] X -

[94] X 89.16

[65] X X X -

[87] X 92

[88] X X 99.55

[89] X X X 90

[98] X 96.7

[107] X 97

[108] X X X -

[109] X 99.18
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For various detection tasks, different filter and feedback-based approaches were also
explored by some researchers. Window filters [93], Kalman filter [96,103], pose filter [104],
and other filters were applied successfully in some study and effective performances were
achieved by the systems. Similarly, color, motion, and shape-based cues [71], A* method [72,87],
image-processing toolbox in Matlab [79], cerebellar model articulation method [82], color
quantization method, adaptive control [105], and mask function [85], refinement mod-
ule [97] were also applied by researchers while solving robotic manipulation problems.

For the control segment, Gaussian and regression evaluation [68,74,86], eye-in-hand
visual servo control framework [83,86,91], PID controller [70,75,81], and leap motion con-
troller [78] were most popular among the scientists. Although other algorithms such as ran-
dom actions sample- and planning-based control method [80], geometry methods [85,109],
principal component analysis [93], etc. were successfully explored by the researchers as
well for controlling the action of the robotic systems. Table 4 presents different deterministic
methods applied in the vision-based manipulation and their accuracy.

Table 4. Deterministic methods applied in the vision-based manipulation along with accuracy.

Study Filters A* Method Gaussian Eye-in-Hand PID Instance/Image
Segmentation Geometry Method Others Accuracy (%)

[68] X -

[70] X -

[71]
Phase-based

representation
96.1

[72] X -

[74] X 97.75
[75] X -

[78]
Leap motion

controller 88

[79] Matlab toolbox -

[80]

Random
actions

sampled
method

83

[81] X -

[82]

Cerebellar
model

articulation
controller

-

[83] X -

[85] X X 99.8
[86] X X -

[91] X 99.22

[93] X

Bayesian
probability

model
90

[96] X -

[97] X
Refinement

method
89

[87] X 92

[107] X
Plane

extraction
97

[109] X 99.18

Researchers have shown their innovation and creativity while designing the system
but we still can generalize and categorize the basic structure of those systems into two
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categories: learning-based models, and filter/mask-based approaches. In both designs, the
model takes image or video data as input, pre-processes them, and sends them through
a network. In the learning-based model, the network is usually a neural network where
the processed data pass through different types of layers, such as the convolution layer,
recurrent layer, etc., for extracting different kinds of information from it. Similarly, in the
filter/mask-based design, the network is generally a filtering/masking network where the
processed data pass through different types of filters and masks for extracting different
kinds of information from it. Then, both networks detect and identify different features and
pass them to the action planning section of the network. In this section, the system processes
the information gathered from the previous network and plans actions accordingly. Finally,
the system executes the action planned by the network. Figure 5 illustrates the generalized
system architecture exercised by the researchers while solving the vision-based robotic
manipulation problems.

Figure 5. Generalized structure of the systems: (a) shows the generalized architecture of learning
based models; and (b) shows the generalized architecture of filter/masking based approaches for the
robotic manipulation problems.

7. Applications

Vision-based autonomous robot manipulation for various applications has received a
lot of attention in the recent decade. Manipulation based on vision occurs when a robot
manipulates an item utilizing computer vision with the feedback from the data of one or
more camera sensors. The increased complexity of jobs performed by fully autonomous
robots has resulted from advances in computer vision and artificial intelligence. A lot of
research is going on in the computer vision field, and it may be able to provide us with more
natural, non-contact solutions in the future. Human intelligence is also required for robot
decision-making and control in situations in which the environment is mainly unstructured,
the objects are unfamiliar, and the motions are unknown. A human–robot interface is
a fundamental approach for teleoperation solutions because it serves as a link between
the human intellect and the actual motions of the remote robot. The current approach of
robot-manipulator in teleoperation, which makes use of vision-based tracking, allows the
communication of tasks to the robot manipulator in a natural way, often utilizing the same
hand gestures that would ordinarily be used for a task. The use of direct position control of
the robot end-effector in vision-based robot manipulation allows for greater precision in
manipulating robots.

Manipulation of deformable objects, autonomous vision-based tracking systems, track-
ing moving objects of interest, visual-based real-time robot control, vision-based target
detection as well as object recognition, multi-agent system leader–follower formation con-
trol using a vision-based tracking scheme and vision-based grasping method to grasp the
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target object for manipulation are some of the well-known applications in vision-based
robot manipulation. We have classified the application of vision-based works into six
categories: manipulation of the object, vision-based tracking, object detection, pathfind-
ing/navigation, real-time remote control, and robotic arm/grasping. The summary of
recent vision-based applications are mentioned in Table 5.

Table 5. Application of vision-based works.

Study Manipulation of
Object

Vision-Based
Tracking Object Detection Path Finding/

Navigation
Real-Time
Remote Control

Robotic Arm/
Grasping

[67] X

[68] X

[69] X

[70] X X

[71] X

[72] X X

[73] X X

[74] X X

[75] X X

[76] X

[77] X X X

[78] X X X X

[79] X X X X

[80] X X

[81] X X

[82] X X

[83] X X

[84] X X

[85] X X

[86] X X X

[90] X X

[91] X X

[92] X X X

[93] X X

[96] X X

[97] X X

[64] X X

[94] X X

[65] X X

[87] X X X X

[95] X X

[88] X X

[89] X X X X

[66] X X

[98] X X X

[99] X

[100] X X

[101] X X

[102] X
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Table 5. Cont.

Study Manipulation of
Object

Vision-Based
Tracking Object Detection Path Finding/

Navigation
Real-Time
Remote Control

Robotic Arm/
Grasping

[103] X X

[104] X

[105] X

[106] X

[107] X

[108] X

[109] X X

8. Challenges and Potential Solutions

Researchers from diverse academic fields have effectively implemented vision-based
techniques in robotic manipulation tasks. As a result, these methods have emerged as
one of the most promising means currently available. Even though the performances of
those systems were exceptional, there is still some potential for development in virtually
all studies, as well as a lot of obstacles to overcome.

To begin with, not all suggested systems were subjected to real-world testing; instead,
trials were only conducted on simulated platforms [69,76,85,88,92,94,100,102–104,106].
There is a significant possibility that the system may not perform as well in the actual
world, although the experimental results were impressive. Therefore, additional real-world
trials should be included in future research.

The most prevalent function of a robot vision system is to identify the position and
orientation of a known object. Consequently, the challenges associated with both have
typically been resolved in most integrated vision solutions. However, still, the deformation
of the object caused by force or movable joints, background, incorrect camera placement,
and occlusion can cause considerable problems for robotic vision techniques.

While the majority of studies covered numerous experiments, in the majority of in-
stances, the experiments were conducted under various assumptions, such as that humans
will not move excessively fast was assumed in a study [70], and exploring new areas was
left for future research [67,69,71,74,76,77,80,81,83,93,106–108]. Few research also failed to
handle dynamic tasks [72,86,99] and noted the need for new data [67,78] to enhance the
performance of their suggested solutions. Consequently, robustness is yet to be determined
by this research. Therefore, researchers should concentrate on developing a more reliable
control system for vision-based robot manipulation system.

The human eye is more adaptable and sensitive than imaging sensors. A vision sensor
will be unable to detect objects reliably if it is exposed to improper lighting. There are
numerous solutions to the lighting problem. Active lighting can be incorporated into the
vision sensor itself. Other solutions include infrared lighting, environment-fixed lighting,
and technologies that employ other forms of light, such as lasers.

When offering learning-based methodologies employing visual input, several re-
searchers attempted to add autonomy into their system but failed and reserved them for
future study [68,71]. Additionally, hardware components and sensors/camera upgrades
throughout time were maintained for future research and development [96,108,110], as
well as the examination of alternative potential system architectures [65,71,72,74,77]. To
achieve versatility in this subject, further research has to be conducted.

The amount of time and space required for computing is still an unresolved issue
for vision-based systems. For the suggested solutions to be implemented in real time, the
models need to analyze the input and respond appropriately quickly. Therefore, further
research must be done to reduce the time needed for processing, and the complexity of the
computations reference [96]. Table 6 summarizes the categorization of the vision-based
methods based on computational complexity.
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Table 6. Computational complexity of the vision-based approach.

Studies Complexity Proposed Solution

[68,71,73] Low
Frame-difference and machine learning-based approach; Color, motion, and shape
cues, and phase-based object representation; Haar-like feature, line detection,
fine-tuned object detection, and template matching-based approach.

[64,70,72,74,75,79,86,87,
95,99,100,107,109] Moderate

Haar feature-based design, Kanade Lucas Tomasi method, 3D localization, and
PID controller-based system; SVM and A* algorithm-based method; Thresholding
colors, mask function, and color quantization-based process; Color-based image
processing using OpenCV, fuzzy logic, and PID-based control; Image processing
tool in Matlab and visual basic-based system; Eye-in-hand visual servo and a local
Gaussian-based process; K-means algorithm and Voronoi diagram-based path
planning model; Cube decomposition and A* algorithm-based system; Model-free
feedback controller; Planar extraction and clustering-based instance segmentation
and grasping pose estimation; Combination of triangulation and the CAMSHIFT
algorithm for tracking a target object.

[65–67,69,76–78,80–
85,88–94,96–98,101–
106,108]

High

Deep CNN model; Proposal layer and CNN-based method; Deep RL algorithm;
RL and DNN-based framework; leap motion, Playstation, and NN-based
controller; Random action sampled method, RL model with RNN-based video
prediction, and planning-based control; Vision-based RNN, an emotional network,
and a recurrent loop-based structure; Kinematics, Lyapunov analysis, and vision
models; Combination of DNN and PID for landing of UAV; CamShift
algorithm-based architecture; Deep learning, reference marker, and geometry
methods-based approach; ResNet-50-based object detection method, an image
recognition network, and a deep grasping guidance network-based framework;
R-CNN-based model and an eye-to-hand stereo camera configuration; CNN- and
GNN-based architecture; Action primitive CNN, window filter, R-CNN, principal
component analysis, and action planner-based framework; Kalman filter, Wiener
forthcoming human hand position estimation, and a local path planning
algorithm-based architecture; U-Net-based CNN model, an image segmentation
method, a policy module, and a refinement module-based system; CNN-based
network; SVM and PNN-based model; Face-detector module in OpenCV, Deep
CNN model, and ROS master robot arm controller-based system; Vision servoing,
AdaBoost-SVM, and hybrid force and motion optimization-based method; Rough
reaching movement controller (pre-trained RBF), inverse kinematics, brain
emotional nesting network (BENN), and adaptive laws-based controller;
Combination of Q-learning, computer vision, and neural networks for robotic
path planning.

Some challenges relate more to the approach to vision setups than the technical
aspects of vision algorithms. A common pitfall is having overly optimistic expectations for
a computer’s visual capabilities. The best results can be achieved from a technological tool
by making sure that one’s expectations are in line with the technology’s capabilities.

9. Discussions

Vision sensors offer a large amounts of information about the environment in which
robots operate. As a result, vision is critical for robots that operate in unstructured settings.
In structured settings, vision is also important to provide some flexibility or looseness in
order to consolidate workplace conditions. As a result, a significant amount of research has
been conducted in order to build vision-based robot controllers. In the early 1970s, the first
vision-based robot control system was described [111]. Progress in vision-based control
has been sluggish since then, owing to the need for specialized and costly pipelined pixel-
processing hardware. However, as processing power and sensor technologies improve, we
may expect to see more scientific studies in the vision-based control field. The constraints
of vision sensors, long-time image processing, picture resolution, and frame rate are critical
issues with vision-based robot control. Despite the existence of relatively fast cameras and
updated algorithms, and visual measurement sampling frequencies are still lower than the
frequency of positioning encoders and angular position sensors. Visual measurements are
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frequently required in the context of dynamic robotics to offer feedback for controlling or
estimating the dynamic state variables of the system. In a feedback-based robot control
system, the sample rate must be high enough, and the sensor latency must be minimized
to achieve the controller stability and robustness. When calculating the state variables
parameters of the system for state feedback robot control, the sensor latency of the visual
observations must be taken into account. When visual measurements are combined with
high-frequency position data, the feedback controller can be executed at a higher frequency,
resulting in improved stability and quick convergence. In addition, when integrating
the measurements, the sensor latency of the visual measurement techniques must be
considered appropriately. Otherwise, when the end-effector of a robot is moving, vision
provides incorrect information. The visual observations are unreliable due to the low
sampling frequency and sensor latency. The images have faults due to the camera sensor’s
low resolution, motion blur, and the inclusion of noise in the picture. When taking a
single assessment at each instant, as is customary in a vision-based robot control, three-
dimensional flexible robot motion dynamics and control become more challenging. In
three-dimensional vision-based robot control, more than one camera can be used efficiently.
Visual measurements that are subject to ambiguity may cause undesired oscillations and a
decrease in accuracy. Still, by comparing a single image to several measures, more precise
estimations of target motion can be generated.

The manipulation of real-world things is one of machine intelligence’s most significant
constraints. Robots can learn complicated manipulation tasks using vision-based learning
techniques. Improving vision-based robot manipulation performance might be a good
trend in tackling the problems as robotic technology and sensor technologies advance. The
goal of this study is to provide a general review of the evolution of vision-based control
technologies for robot manipulation. More information will be accessible to manipulate
robots as existing imaging technologies progress and new control algorithms are developed.
As a result, we hope that our review study will help develop autonomous robotic systems
with human-like manipulation abilities.

10. Conclusions

This paper delivers a comprehensive study on vision-based approaches in the field
of robotic manipulation systems. Different innovative and exceptional manipulation tech-
niques have recently been introduced by researchers. Nonetheless, vision-based approaches
have found their popularity among researchers because of their accuracy and promising
performance. Forty-six recent papers have been accumulated together by prioritizing both
control and application-based problems and analyzed for this study. After summing up
all the studies, we can state that among all the mentioned methods, different deep neural
networks and deep convolutional network-based approaches are the most popular ones;
contrarily, different conventional methods are becoming less popular among researchers
nowadays. While designing the system architecture, researchers have mostly followed two
types of structure, learning-based models, deterministic and filter/mask-based approaches.
Both the simulated platform and the real-world environment were equally explored by
the researchers during the testing of the proposed models. Basic RGB cameras and USB
cameras were mostly used by them; nevertheless, for the systems that interact with humans,
researchers preferred depth cameras for getting more information about the surrounding.
Additionally, further exploration is needed to resolve the addressed open challenges so
that vision-based approaches can have more efficient and practical applications in the field
of robotic manipulation.
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3D Three-Dimensional
ACMs Aerial Continuum Manipulation System
APCNN Action Primitive Convolutional Neural Networks
ARM Attention-Driven Robot Manipulation
BENN Brain Emotional Nesting Network
CNN Convolutional Neural Networks
DCNN Deep Convolutional Neural Networks
DN DenseNet
DNN Deep Neural Networks
DRL Deep Reinforcement Learning
GDRL Generalized Deep Reinforcement Learning
GNN Graph Neural Networks
GPU Graphics Processing Unit
INeRF Inverting Neural Radiance Field
ML Machine Learning
NeRF Neural Radiance Field
NN Neural Network
PID Proportional–Integral–Derivative Control
PNN Probabilistic Neural Network
RCNN Regions with Convolutional Neural Networks
RBF Radial Basis Function
RL Reinforcement Learning
RNN Recurrent Neural Networks
ROS Robotic Operating System
SVM Support Vector Machine
UAV Unmanned Aerial Vehicle
USV Unmanned Surface Vehicles
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