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Abstract: In classical Cartesian space position control, KD, the end-effector follows the set-point
trajectory with a stiffness expressed in the directions of the external coordinates through the stiffness
matrix, K, and with a damping proportional to the first-order derivatives of errors of the external
coordinates through the damping matrix, D. This work deals with a fractional-order extension of
the Cartesian space position control, KDHD, which is characterized by an additional damping term,
proportional to the half-order derivatives of the errors of the external coordinates through a second
damping matrix, HD. The proposed Cartesian position control scheme is applied to a SCARA-like
serial manipulator with elastic compensation of gravity. Multibody simulation results show that
the proposed scheme was able to reduce the tracking error, in terms of mean absolute value of the
end-effector position error and Integral Square Error, with the same amount of Integral Control Effort
and comparable maximum actuation torques.
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1. Introduction

In robotics and mechatronics, the mathematical concepts of derivatives and integrals are
used both to express the dynamics of continuous-time mechanical systems, and to define their
control strategies. While dynamic modelling usually exploits only integer-order (IO) derivatives
and integrals, in the conception of a control algorithm it is also possible to adopt fractional-order
(FO) derivatives and integrals to improve the closed-loop dynamic performance.

Fractional calculus (FC) deals with the concepts of non-integer-order derivatives and
integrals. Although its origin dates back to the seventeenth century, only in the last decades
has there been a renewed and growing interest in FC, also motivated by research on chaos
theory [1]. FC is now used in physics [2], biology [3] and medicine [4], and is particularly
effective in modeling multi-scale phenomena [5].

In addition to its application in the basic sciences, FC is applied in technological
applications, principally for control system design. The PID scheme is undoubtedly the
most widespread control approach for any kind of closed-loop system, and it is based on
the evaluation of the first-order time derivative and integral of the error. Consequently, the
most intuitive way to apply FC to the PID scheme is to generalize the orders of integration
and derivation, giving rise to the well-known PIλDµ, also known as FOPID (fractional-
order PID). FOPID was first proposed by Podlubny [6] for single-input single-output (SISO)
systems, and its features, benefits and possible tuning criteria are extensively discussed in
the scientific literature [7,8].

Instead of replacing first-order terms with FO ones, as in FOPID, an alternative way to
apply FC to control synthesis is to add FO terms with intermediate orders to the first-order
ones, as in the PDD1/2 [9] and PII1/2DD1/2 [10] proposed by Bruzzone et al., which can be
included in the category of distributed-order PID (DOPID) controls, recently defined by
Jakovljevic et al. [11]. In the PDD1/2 control scheme, without integral action, the classical
PD control is modified by introducing a half-derivative term, proportional to the derivative
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of order 1/2 of the error; in the PII1/2DD1/2, with integral action, a half-integral term is also
present, proportional to the integral of order 1/2 of the error. Simulations and experimental
tests show that the introduction of the half-integral and half-derivative terms make it
possible to reduce the error in the position control of mechatronic axes, with similar values
of maximum control output [10] or settling energy [12].

Moving from single-input single-output (SISO) systems to multi-input multi-output
(MIMO) robotic systems, FC can be applied to impedance control and Cartesian space
position control [13,14]. In general, impedance controllers use the Jacobian matrix to
transform the Cartesian generalized forces, expressed in the directions of the external
coordinates of the end-effector, into the required joint generalized forces. If it is necessary
to impose a compliant behavior to the end-effector in some directions in order to control
the contact forces with the environment, the corresponding elements of the stiffness matrix
(K) are lowered; in contrast, high stiffness is imposed for the directions which must be
accurately position-controlled. For all directions, the damping matrix D adds a proper
damping, proportional to the first-order derivatives of the errors of the external coordinates.
If all the external coordinates must be position-controlled, impedance control becomes a
PD-type Cartesian space position control, in which stiffness and damping are defined in
the Cartesian space rather than in the joint space [15].

FC can be used to obtain alternative definitions of the damping term of impedance/Cartesian
space position control, in order to improve the system behavior. FO extensions of impedance
control were recently proposed in [16,17], in which the end-effector damping is not pro-
portional to the first-order derivative of the position error, as usual, but to a FO derivative
with generic order, thus generalizing to MIMO systems the PDµ scheme for SISO systems.
In contrast, the FO extension of impedance control which generalizes the PDD1/2 scheme
to MIMO systems, named KDHD, was proposed in [18] for a purely translational parallel
robot and in [19] for a six-degrees-of-freedom parallel robot. In the KDHD scheme, a half-
derivative damping term defined by the matrix HD is added to the stiffness and first-order
damping terms, defined by the matrices K and D.

In the present paper the KDHD algorithm is applied in simulation to a serial SCARA-
like RRFbR robot with elastic balancing, focusing on Cartesian space position control, with
high stiffness for all the external coordinates. We propose a methodology to derive the
tuning of the KDHD control starting from a given KD control. Simulation results show that
the KDHD scheme can be used to reduce the trajectory tracking error with equal Integral
Control Effort and comparable maximum values of the joint torques.

There are two main novelties of this paper with respect to [18,19]. The first is related to the
robotic architecture: the proposed control is applied to a serial robot instead of a parallel robot;
moreover, elastic balancing of gravity is present. The second is related to the aim of the KDHD
algorithm: Cartesian space position control instead of impedance control, without interactions
with the environment and primarily analyzing the trajectory tracking error.

In the remainder of this paper, Section 2 describes the RRFbR SCARA-like serial architec-
ture and its main kinematic and dynamic properties; Section 3 discusses the KDHD control of
the RRFbR robot, highlighting the differences with respect to the classical KD control; Section 4
discusses the multibody model used for the KD–KDHD comparison; Section 5 presents the
simulation results of the comparison and proposes a method to derive the KDHD tuning from
a given KD and Section 6 outlines conclusions and future developments.

2. The RRFbR SCARA-like Manipulator with Elastic Balancing

The considered RRFbR SCARA-like architecture derives from the RRPR SCARA
architecture [20], replacing the third prismatic joint (P) with a four-bar mechanism (Fb)
with parallelogram shape placed in a vertical plane, which provides the vertical mobility
of the end-effector. The advantages of this solution are the elimination of the prismatic
joint, with the consequent friction issues, and the ease of adding mass balancing or elastic
balancing of the gravitational forces [21].
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In this work, the RRFbR scheme with elastic balancing shown in Figure 1 is considered.
Similar to the SCARA, this robot performs a 4-DOF motion with three translations and
one rotation around a vertical axis (Schoenflies motion, [22]), suitable for a wide range of
industrial applications.
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Figure 1. The RRFbR SCARA-like architecture with elastic balancing (blue: actuated revolute joints;
green: passive revolute joints).

The RRFbR architecture comprises seven links, from the base (link 0) to the end-effector
(link 6). In Figure 1 the actuated joints (joint 1 to joint 4) are represented in blue. Joint 3 is
the only actuated revolute joint of the four-bar mechanism; the remaining three passive
revolute joints of the four-bar mechanism are represented in green. The axes of the actuated
revolute joints 1, 2 and 4 are vertical; consequently, the corresponding motors are not
loaded by gravity. On the contrary, the actuator of joint 3 is loaded by the gravitational
forces acting on links 3 to 6. Therefore, to add a partial static balancing, reducing the torque
of actuator 3 in steady state, a torsional spring can be added on joint 3, acting in parallel
with actuator 3.

An alternative method to obtain static balancing involves adding a counterweight
placed on link 3. Mass balancing and elastic balancing of the RRFbR architecture are
compared in [21]. Mass balancing has the advantage of being exact for all angular positions
of link 3, while elastic balancing is exact only for one angular position of actuator 3, and
only approximated in the others. Nevertheless, elastic balancing reduces the inertial forces
and avoids the encumbrance of the counterweight, with possible interferences with link 1
and with the environment; therefore, in the following only elastic balancing is considered.

Figure 2 shows the simplified kinematic scheme of the RRFbR architecture with elastic
balancing. The internal coordinates are collected in the vector θ:

θ =
[
θ1 θ2 θ3 θ4

]T , (1)

where θi is the angular position of the i-th actuated joint. The vector of the external
coordinates collects the three components of the end-effector reference point E with respect
to the origin of the fixed reference frame O(x,y,z) and the angle of rotation θ of the end-
effector around the z axis (Figure 2):

x =
[
x y z θ

]T . (2)



Robotics 2022, 11, 152 4 of 14

Robotics 2022, 11, x FOR PEER REVIEW 4 of 15 
 

 

the origin of the fixed reference frame O(x,y,z) and the angle of rotation θ of the end-
effector around the z axis (Figure 2): 

T
x y z θ=   x . (2) 

 
Figure 2. Kinematic scheme of the RRFbR architecture with elastic balancing. 

The direct position kinematics is expressed by the following expressions, which can 
be obtained from the geometry represented in Figure 2: 

( ) ( ) ( )θ θ θ θ= + +2 1 3 3 1 2cos cos cosx l l , (3)

( ) ( ) ( )θ θ θ θ= + + 2 1 3 3 1 2sin cos siny l l , (4)

( )θ= − −1 3 3 4sinz l l l , (5)

θ θ θ θ= + +1 2 4 . (6)

Deriving Equations (3)–(6) with respect to time, it is possible to obtain the Jacobian 
matrix, Equation (7), which expresses the direct velocity kinematics; in Equation (7), for 
brevity, si indicates sinθi, ci indicates cosθi and sij indicates sin(θi + θj): 

2 1 3 3 12 3 3 12 3 3 12

2 1 3 3 12 3 3 12 3 3 12

3 3

 ,
0
0

0 0 0
1 1 0 1

l s l c s l c s l s c
l c l c c l c c l s s

l c

=
− − − − 
 + − =
 −
 
  

x Jθ

J



. (7) 

In [21], the detailed dynamic model of the RRFbR architecture without static balanc-
ing is obtained by means of the Lagrange equations, neglecting friction in the joints: 

τ
θθ =

∂ ∂= − +
∂∂ 

4

1
i ji j

jii

d L L J F
dt

, (8) 

where τi is the torque of the i-th actuator; L is the Lagrangian function, which is the differ-
ence of the kinetic energy Ec and of the gravitational energy Eg; Jji is the element (j,i) of the 
Jacobian matrix J and Fj is the j-th element of the vector F of the generalized forces applied 
by the end-effector on the environment, in the directions of the four external coordinates: 

Figure 2. Kinematic scheme of the RRFbR architecture with elastic balancing.

The direct position kinematics is expressed by the following expressions, which can
be obtained from the geometry represented in Figure 2:

x = l2 cos(θ1) + l3 cos(θ3) cos(θ1 + θ2), (3)

y = l2 sin(θ1) + l3 cos(θ3) sin(θ1 + θ2), (4)

z = l1 − l3 sin(θ3)− l4, (5)

θ = θ1 + θ2 + θ4. (6)

Deriving Equations (3)–(6) with respect to time, it is possible to obtain the Jacobian
matrix, Equation (7), which expresses the direct velocity kinematics; in Equation (7), for
brevity, si indicates sinθi, ci indicates cosθi and sij indicates sin(θi + θj):

.
x = J

.
θ ,

J =


−l2s1 − l3c3s12 −l3c3s12 −l3s3c12 0
l2c1 + l3c3c12 l3c3c12 −l3s3s12 0

0 0 −l3c3 0
1 1 0 1

 (7)

In [21], the detailed dynamic model of the RRFbR architecture without static balancing
is obtained by means of the Lagrange equations, neglecting friction in the joints:

τi =
d
dt

∂L

∂
.
θi

− ∂L
∂θi

+
4

∑
j=1

JjiFj, (8)

where τi is the torque of the i-th actuator; L is the Lagrangian function, which is the
difference of the kinetic energy Ec and of the gravitational energy Eg; Jji is the element
(j,i) of the Jacobian matrix J and Fj is the j-th element of the vector F of the generalized
forces applied by the end-effector on the environment, in the directions of the four external
coordinates:

F =
[
Fx Fy Fz Mz

]T . (9)

The expressions of the actuator torques (8), available in [21], are not reported here for
the sake of brevity. The x and y components of the moment applied to the end-effector are
supported by the joints and, in absence of friction, do not influence the actuation torques.
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Introducing elastic balancing on joint 3, the third equation of system (8) becomes:

τ3 = d
dt

∂L
∂

.
θ3

− ∂L
∂θ3

+
4
∑

j=1
Jj3Fj + τel,3(θ3)

= d
dt

∂L
∂

.
θ3

− ∂L
∂θ3

+
4
∑

j=1
Jj3Fj + k3

(
θ3 − θ3p

)
,

(10)

where k3 is the torsional spring stiffness and θ3p is the angular position of joint 3 at which
the elastic return force of the spring is null. A good equilibration can be obtained imposing
that in static conditions, with links 3 and 4 horizontal (θ3 = 0) and without payload, the
spring moment exactly balances the gravitational effects acting on the robot arm, obtaining
τ3 = 0; this can be obtained with a negative value of θ3p. This condition will be applied in
the following.

Let us note that, depending on constructive requirements, the balancing spring can be
placed on the actuated joint 3 or on another passive revolute joint of the four-bar mechanism
without influencing the dynamic model; it is also possible to use more springs in parallel,
distributing the stiffness on the four-bar joints. However, placing elastic elements only on
the revolute joints connected to link 2, closer to the base, is favorable because it reduces the
arm inertia.

3. KDHD Control of the RRFbR Robot

The classical KD impedance control/Cartesian space control with gravity compensa-
tion of the RRFbR arm is expressed by the following control law:

τ = JT(θ)
(

KKD(xd − x(θ)) + DKD(xd − x(q))(1)
)
+ τg(θ). (11)

In Equation (11), the vector τ collects the four actuation torques (τ1 . . . τ4); xd is the
time-varying vector of the set-point trajectory expressed in the external coordinates; the
superscript (i) indicates the i-th-order time derivative; τg(θ) is the vector of the gravity
compensation torques and KKD and DKD are the stiffness and damping matrices, which
express the desired linear end-effector compliance.

In general, the matrices KKD and DKD, on the basis of the robot mobility, define the
translational impedance, the rotational impedance or both [23]. In case of robots with
Schoenflies motion, such as the RRFbR arm, their size is 4 × 4, and it is reasonable that
the 1-DOF rotational behavior is decoupled from the translational behavior. Consequently,
KKD and DKD are block-diagonal, with a 3 × 3 submatrix representing the translational
impedance and the fourth diagonal element representing the rotational impedance.

Since gravity acts only on joint 3, as discussed in Section 2, all the elements of τg(θ)
are null except the third, which has the following expression:

τg,3(θ3) = −(m3lG3 + m4lG4 + l3(m5 + m6))g cos θ3 + k3
(
θ3 − θ3p

)
, (12)

where mi is the mass of link i, lG3 and lG4 define the positions of the centers of mass of links
3 and 4, G3 and G4, and l3 is the length of the links 3 and 4 (Figure 2). In Equation (12) there
is the sum of two terms; the second term takes into account the elastic return force of the
balancing spring: the first term (negative, since the torque required to compensate gravity
is opposite to the positive direction of θ3) is partially compensated by the action of the
balancing spring, as desired, so the necessary gravity compensation torque τg,3 is reduced
by the second term, usually positive, since θ3p < 0, as discussed in Section 2. Imposing exact
static balancing (τg,3 = 0) when links 3 and 4 are horizontal (θ3 = 0) in Equation (12) leads
to the following relationship, which can be used to define the spring parameters k3 and θ3p:

θ3p = −(m3lG3 + m4lG4 + l3(m5 + m6))g/k3. (13)
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The KDHD control law is derived from the KD control law (11), with the addition of a
damping term proportional through the half-derivative damping matrix HDKDHD to the
half-derivative (derivative of order 1/2) of the external coordinates error:

τ = JT(θ)
(

KKDHD(xd − x(θ)) + DKDHD(xd − x(q))(1) + HDKDHD(xd − x(q))(1/2)
)
+ τg(θ). (14)

Accordingly, the KD and KDHD control laws, (11) and (14), respectively extend
the PD and PDD1/2 schemes from one dimension to the four-dimensional space of the
Schoenflies motion. As discussed in [18,19], the half-derivative of a function of time f (t) can
be calculated by using the following n-th order digital filter, derived from the Grünwald–
Letnikov definition [24]:

f (t)(1/2) ∼= f (kTs)
(1/2) ∼=

1
Ts1/2

(
n

∑
j=0

wj f ((k − j)Ts)

)
, k = [t/Ts], (15)

where [y] indicates the integer part of y, and the n + 1 filter coefficients wj are:

w0 = 1, wj =

(
1 − 3

2j

)
wj−1 , j= 1 . . . n. (16)

The digital filter (15), which is used in the control law (14) to numerically evaluate the
half-derivative of the error of the external coordinates, takes into account only the recent
past of the derived function, in the interval [t–L, t]. In contrast, the exact calculation of an
FO derivative involves the complete time history of the derived function. Consequently,
Equation (15) introduces an approximation, which is usually accepted according to the
short-memory principle [24]. Nevertheless, this approximation leads to an alteration of the
end-effector stiffness, which should depend only on the stiffness matrix and not on the
half-derivative matrix. To solve this problem, the following modification of the stiffness
term can be introduced [18]:

τ = JT(θ)


KKDHD −

n
∑

j=0
wj

T1/2
s

HDKDHD

(xd − x(θ))+

+DKDHD(xd − x(q))(1) + HDKDHD(xd − x(q))(1/2)
)
+ τg(θ)

(17)

The effectiveness of the stiffness compensation of the KDHD control law (17) was
verified in [18,19]. The KDHD control law (17) will be compared in the following with the
classical KD algorithm, expressed by Equation (11).

4. Dynamic Model of the RRFbR Arm with KD and KDHD Control

The KD and KDHD control laws were compared by means of the simulation environ-
ment Simscape MultibodyTM by MathWorks. The multibody model is shown in Figure 3,
comprising two equal RRFbR manipulators, one with KD control and one with KDHD con-
trol, for a quicker comparison. The robots are subject only to gravitational forces. Friction
in joints is neglected, in agreement with the analytical model discussed in Section 2.

Table 1 collects the main geometrical and mass parameters of the RRFbR arm that
were used in the simulations.

In this comparison, a trajectory composed of six phases is considered. In each phase,
the end-effector set-point position moves from the reference position xref along a direction
parallel to one axis of the fixed reference frame O(x,y,z) for a distance d in a time tmov,
stops at xref + ∆x for a time tstop, then returns to xref in tmov and stops again for tstop, always
keeping constant the end-effector orientation (θ = 0). The reference position xref is defined
by the following internal coordinates: [−45◦, 90◦, 0◦, −45◦]; consequently, it corresponds
to the robot arm semi-bent, in a central zone of the workspace. Moreover, in this position,
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links 3 and 4 are horizontal, and the gravity force action is compensated exactly by the
balancing spring. The displacements ∆x of the six phases are respectively (d, 0, 0), (0, d,
0), (0, 0, d), (−d, 0, 0), (0, −d, 0), (0, 0, −d). For each phase there is a gone and a return
motion, with the same duration tmov, while the stops have duration tstop; therefore, the
overall duration of the six phases is 12(tmov + tstop). Moreover, each motion is divided into
three parts: acceleration, with duration αtmov; constant velocity, with duration (1–2α)tmov;
and deceleration, with duration αtmov (s-curve motion). Consequently, the set-point motion
is completely defined by the parameters d, tmov, tstop and α.
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Table 1. Main geometrical parameters (Figure 2) and mass properties of the 3-PUU parallel robot.

Symbol Parameter Value Unit

l1 length of link 0 0.900 m
l2 length of link 1 0.330 m
l3 length of links 3 and 4 0.330 m
l4 vertical distance between link 1 and point E 0.387 m
lG1 c.o.m. position of link 1 (Figure 2) 0.165 m
lG3 c.o.m. position of link 3 (Figure 2) 0.165 m
lG4 c.o.m. position of link 4 (Figure 2) 0.165 m
m1 mass of link 1 10 kg
m2 mass of link 2 5 kg
m3 mass of link 3 5 kg
m4 mass of link 4 5 kg
m5 mass of link 5 12 kg
m6 mass of link 6 3 kg
θref reference central position (internal coordinates) [−45, 90, 0, −45] ◦

xref reference central position (external coordinates) [0.467, 0, 0.513, 0] m, ◦

θ3p θ3 position with spring in neutral position −15 ◦

k3 balancing spring stiffness 247.3 Nm/rad

Figure 4 shows the set-point motion characterized by d = 0.15 m, tmov = 0.3 s, tstop = 1 s
and α = 0.2, in terms of position, velocity and acceleration. These parameters correspond to
trapezoidal velocity profiles of the displacements with maximum velocity of ±0.625 m/s.
Acceleration alternates null values and constant values of ±10.416 m/s2 with duration



Robotics 2022, 11, 152 8 of 14

αtmov = 0.06 s. This set point motion corresponds to the time histories of the internal
coordinates shown in Figure 5.
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The end-effector orientation is kept constant along the planned motion. Nevertheless,
this assumption does not limit the generality of the analysis because, as discussed in
Section 3, it is reasonable to have the 1-DOF rotational behavior decoupled from the 3-DOF
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translational behavior, adopting block-diagonal stiffness and damping matrices. With this
hypothesis and in absence of friction in the joints, the rotational behavior related to θ4 and
τ4 is completely decoupled, and the tuning of the corresponding stiffness and damping
matrix elements can be performed by the criteria already extensively discussed for the
PDD1/2 control of SISO second-order linear systems [9,12].

5. Simulation Results

Figure 6 shows some synthetic results of the KD/KDHD comparison for the set-point
motion of Figures 4 and 5 (d = 0.15 m, tmov = 0.3 s, tstop = 1 s and α = 0.2). The considered
sampling time is Ts = 5 ms and the filter order for the calculation of the half-derivatives is
n = 10; these values are suitable for a real discrete-time implementation on a commercial
controller. In this comparison, the Integral Control Effort (ICE) and the Integral Square
Error (ISE) of the end-effector translational coordinates are compared:

ICE =
4

∑
i=1

Tsim∫
0

τ2
i dt, (18)

ISE =

Tsim∫
0

(
(xd − x)2 + (yd − y)2 + (zd − z)2

)
dt, (19)

where Tsim is a simulation time sufficiently long to take into account the residual vibrations.
Moreover, in the comparison:

• For the KD control law, the stiffness matrix KKD is diagonal, with the first three
diagonal elements kKD,x = kKD,y = kKD,z = 8·105 N/m, and kKD,θ = 5·102 Nm/rad; the
damping matrix DKD is diagonal, with diagonal elements dKD,x = dKD,y = dKD,z =
dxyz, and dKD,θ = 7.5 Nms/rad; and the translational damping dxyz is varied in the
simulations in the range from 2·103 to 6·103 Ns/m;

• For the KDHD control law, the stiffness matrix KKDHD is again diagonal, and the
elements kKDHD,x, kKDHD,y, kKDHD,z and kKDHD,θ are the same as in the KKD matrix, but
with the addition of the stiffness compensation of Equation (17); the matrix DKDHD is di-
agonal, with diagonal elements dKD,x = dKD,y = dKD,z = dxyz, and dKD,θ = 3.75 Nms/rad;
the matrix HDKDHD is also diagonal, with diagonal elements hdKDHD,x = hdKDHD,y =
hdKDHD,z = hdxyz, and hdKDHD,θ = 2.4·104 Nms1/2/rad; in the simulations, the first-
order translational damping dxyz varies from 2·103 to 6·103 Ns/m, and the half-order
translational damping hdxyz varies from 0 to 1.7·104 Ns1/2/m.

Figure 6 shows in red the 3D graphs of the Integral Control Effort (left) and of the
Integral Square Error (right) as functions of the first-order translational damping dxyz and
of the half-order translational damping hdxyz; the intersections of these surfaces with the
planes at hdxyz = 0 Ns1/2/m represent the KD behavior, without half-derivative damping.

From the analysis of Figure 6, it is possible to observe that increasing dxyz and hdxyz
(that is, increasing the damping) leads to higher control effort and lower integral error. In
order to evaluate the potential benefits of the KDHD control over the classical KD, the
proposed method aims to assess if it is possible to obtain lower error using the same control
effort. In Figure 6 (left), the green horizontal plane at 44,200 N2m2s represents the ICE
value of the KD controller with dxyz = 5 · 103 Ns/m. This plane intersects the red surface of
the KDHD Integral Control Effort with good approximation along a straight, yellow dotted
line in Figure 6 (left). This straight line corresponds to this linear relationship between the
translational first-order and half-order coefficients:

hdxyz = 47,200 − 9.44 dxyz. (20)

This means that the KDHD controllers fulfilling this relationship have approximately
the same ICE as the original KD controller with dxyz = 5 · 103 Ns/m. Let us note that,
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according to relation (20), a decrease of the first-order damping is compensated by an
increase of the half-order damping.
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The trace of the linear relationship (20) is also represented in Figure 6 (right), on the
horizontal plane which corresponds to 2.41 · 10−5 m2s, which is the ISE value of the KD
controller with dxyz = 5·103 Ns/m. The red surface of the ISE of the KDHD control is lower
than the green plane along the linear hdxyz–dxyz path for any positive value of hdxyz. This
means that replacing an amount of first-order damping with some half-order damping
reduces the Integral Square Error while keeping constant the Integral Control Effort.

This is confirmed by the plots in Figure 7, which show the ISE of the KDHD control
(blue plot) and hdxyz (orange plot) as a function of dxyz, applying the linear relationship
(20): as dxyz decreases from 5000 to 0 Ns/m and hdxyz increases from 0 (KD control) to
47,200 Ns1/2/m (KDHD control without first-order damping, named KHD), the Integral
Square Error decreases from 2.41 · 10−5 m2s to 2.02 · 10−5 m2s (−16%).
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On the other hand, the complete replacement of the first-order damping with the
half-order damping increases the maximum absolute values of the actuation torques, which
are represented in Figure 7 (right) as percentages with respect to the KD control with
dxyz = 5 · 103 Ns/m (τ4 is constant, due to the planned motion, with constant orientation of
the end-effector).

A possible compromise to reduce the Integral Square Error while keeping nearly
constant the maximum absolute values of the actuation torques is located near the middle
(dxyz = 2.5 · 103 Ns/m, hdxyz = 23,600 Ns1/2/m).

Figures 8–10 show the time histories of the errors of the translational external coordi-
nates, ex, ey and ez, comparing:

• The KD control with dxyz = 5 · 103 Ns/m;
• The KDHD control with intermediate tuning (dxyz = 2.5 · 103 Ns/m, hdxyz = 23,600

Ns1/2/m);
• The KHD control with dxyz = 0 Ns/m and hdxyz = 47,200 Ns1/2/m.
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Table 2 collects the main performance indexes for the three controllers. From the
analysis of Figures 8–10, and from the data collected in Table 2, it is possible to observe
that the peak errors are similar for the three controllers, with a maximum reduction of
−2.45% for the KHD with respect to KD (ey coordinate), but the mean errors decrease
more remarkably moving from KD to KHD, coherently with the ISE plot in Figure 7 (left).
In particular, the reductions of the mean absolute values of the translational errors with
respect to KD are around −5 ÷ −6% for the KDHD, and −10 ÷ −11% for the KHD, while
the Integral Square Error decreases were −8.7% for the KDHD and −16.2% for the KHD.

Table 2. Comparison of the main performance indexes of the three controllers (KD, KDHD, KHD),
with percentage variations of KDHD and KHD with respect to KD.

Symbol Parameter KD KDHD KHD

ex,max maximum absolute value of the x error (mm) 4.979 4.970 (−0.17%) 4.882 (−1.93%)
ey,max maximum absolute value of the y error (mm) 3.833 3.817 (−0.41%) 3.739 (−2.45%)
ez,max maximum absolute value of the z error (mm) 2.676 2.652 (−0.89%) 2.642 (−1.27%)
ex,mean mean absolute value of the x error (mm) 0.359 0.338 (−5.65%) 0.320 (−10.7%)
ey,mean mean absolute value of the y error (mm) 0.352 0.334 (−5.08%) 0.318 (−9.65%)
ez,mean mean absolute value of the z error (mm) 0.187 0.176 (−5.51%) 0.167 (−10.7%)
τ1max maximum absolute value of the torque τ1 (Nm) 172.8 171.6 (−0.71%) 191.6 (+10.9%)
τ2max maximum absolute value of the torque τ2 (Nm) 90.2 94.2 (+0.98%) 157.2 (+4.31%)
τ3max maximum absolute value of the torque τ3 (Nm) 157.2 164.1(+4.17%) 167.9 (+6.47%)
τ4max maximum absolute value of the torque τ4 (Nm) 1.67 1.57 (−5.79%) 1.67 (0%)

ISE Integral Square Error of the translational
coordinates (m2s) 2.41 · 10−5 2.20 · 10−5 (−8.7%) 2.02 · 10−5 (−16.2%)

On the other hand, as shown in Figure 7 (right) and Table 2, the peak values of the
actuator torques are similar for the KD controller and the KDHD with intermediate tuning,
while they are higher for the KD (up to +10.9% for actuator 1, which is the most loaded).

Moreover, the zooms of the peak zones in Figures 8–10 show that the behavior of the
KHD is more oscillatory than those of the KD and KHD, which is generally not desirable.

6. Discussion

The procedure used here to tune the KDHD control starting from a given KD control
is applicable for a generic manipulator, and can be summarized as follows:

• A set-point motion, which covers a significant part of the workspace, is selected;
• Multibody simulations are performed varying the first-order translational damping

dxyz and the half-order translational damping hdxyz, creating the 3D map of the ICE;
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• The locus of the dxyz - hdxyz combinations with the same ICE of the given KD controller
is identified;

• Simulations are performed along this dxyz–hdxyz path, starting from null hdxyz (KD
control) and arriving at null dxyz (KHD control);

• Along this path, the main performance indexes (Integral Square Error, maximum and mean
absolute values of the external coordinates error, maximum absolute values of the actuation
torque) are evaluated, to select the KDHD tuning on the basis of a proper compromise;

• In general, a combination of first-order damping and half-derivative damping, inter-
mediate between pure KD and pure KHD, makes it possible to reduce the tracking
error with similar values of the maximum actuation torques, while the KHD has even
lower tracking error, but also higher peaks of the actuation torques.

These outcomes are coherent with the results obtained for SISO systems controlled by
means of the PDD1/2 scheme, for which a proper combination of first-order and half-order
damping is preferable [9,25]. Nevertheless, the error reduction which can be achieved by
introducing the half-order damping in Cartesian space control for the considered elastically
balanced manipulator is much lower than the reduction achievable for a single mechatronic
axis with inertial load, with equal maximum actuation torque of around −50% [26]. This is
because in some phases the actuation torques must overcome not only the inertial forces, but
also the elastic and gravitational forces, which are perfectly compensated only when links
3 and 4 are horizontal (θ3 = 0); these torque components are equal for the two controllers,
and the half-derivative damping brings benefits only related to the transient behavior in
the acceleration/deceleration phases; as a consequence, the overall performance benefit is
lower with respect to an almost linear system with purely inertial load.

Some limitations of the proposed approach are as follows:

• The tuning is based on an arbitrarily selected set-point motion, which must be chosen
in order to be representative of the typical working conditions;

• The first-order and half-order damping coefficients dxyz and hdxyz are imposed to be
equal for the three translational external coordinates;

• The tuning of the rotational behavior is fixed.

In future research, these topics will be addressed in order to obtain more general results.
However, the discussed simulation results confirm the potential benefits of fractional-order
calculus, and in particular of the KDHD scheme, in the Cartesian space control of robotic
manipulators. Moreover, an interesting research direction is the application to mechanisms
with flexible links [27,28].
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