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Abstract: Cable robots are widely used in the field of rehabilitation. These robots differ from other
cable robots because the cables are rather short and are usually equipped with magnetic hooks to
improve the ease of use. The vibrations of rehabilitation robots are dominated by the effects of the
hooks and payloads, whereas the cables behave as massless springs. In this paper, a 2D model of
the cables of a robot that simulates both longitudinal and transverse vibrations is developed and
experimentally validated. Then the model is extended to simulate the vibrations of an actual 3D robot
in the symmetry planes. Finally, the calculated modal properties (natural frequencies and modes of
vibration) are compared with the typical spectrum of excitation due to the cable’s motion. Only the
first transverse mode can be excited during the rehabilitation exercise.

Keywords: cable-driven robot; rehabilitation robotics; medical robot; magnetic hook; modal analysis;
vibrations

1. Introduction

There are millions of individuals in the world who currently experience various
movement-related disabilities [1] frequently as a result of sensory impairments, trau-
matic brain injuries (TBI), and musculoskeletal and neurological disorders [2,3]. Multiple
review articles and meta-analyses have considered the benefits of rehabilitation and medi-
cal robotics [4–10] and many researchers have argued that robotic rehabilitation devices
(RRDs) that emphasize intense [11], highly repetitive [12,13], and task-oriented [14] move-
ments allows for assisting rehabilitation training and recovering the functions of patient’s
limbs [15–18].

Typical power transmissions of RRDs include gear-driven, cable-driven, belt-driven,
and ball-screw-driven transmissions [19]. Compared to the other types, cable-driven re-
habilitation robots (CDRRs) offer several promising features such as low inertia, high
payload-to-weight ratio, and large workspaces [20–22]. Moreover, CDRRs actuators are
usually fixed to the ground, strongly reducing the mass to be moved; pulleys are used to
allow changes in the orientation of the cables, while the payload is connected to the
cables via hooks. Due to such features, many CDRRs have been proposed over the
years [23–29], and many more are in development these days [30–33]. Although CDRRs
have a lot of promising features, there are also some limitations and deficiencies due to the
intrinsic properties of cables, which result in unidirectional power transmission, vibrations,
and maintenance. These limitations increase the complexity of kinematic and dynamic
modeling of CDRRs [34]. The elasticity or flexibility of cables of CDRRs causes undesirable
vibrations, which may generate position and orientation errors and compromise patient
comfort. The importance of magnetic hooks is mostly related to flexibility. In fact, the
orthosis (i.e., the payload of the rehabilitation robot) can be detached and can be fitted
to a patient while another one is performing an exercise. Moreover, thanks to the hooks,
different orthoses can be installed, both passive [24] and active [35].

In a previous study [36], the effects of hook mass and pulley inertia on a cable-driven
rehabilitation robot were analyzed. Each cable was schematized by a 4-DOF model (the
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so-called “simplified cable system”) and both the longitudinal and transverse vibrations
were considered. The final results show that the first longitudinal natural frequency does
not significantly depend on the mass of the hook and on the inertia of the pulley. In
addition, the inertia of the pulley also does not affect the transverse natural frequencies.
Therefore, in the extension of the single cable vibrational model to a planar model with two
cables, it is possible to simplify the system by neglecting the effects of the inertia of pulleys
and of the mass of the hook in the longitudinal direction.

To the best of the author’s knowledge, no previous work on CDRRs has discussed
the modes of vibration of cable robots equipped with hooks. The motivation behind this
paper is to propose a vibration analysis of a cable system that reproduces the characteristics
of a wire-driven rehabilitation robot. Since massless cables are assumed, cable sagging
is negligible. This assumption is acceptable for applications that do not involve large
workspaces [37,38].

Starting from the cable system of the rehabilitation robot, in Section 2 a planar model
that evaluates natural frequencies and modes of vibration is proposed, then the planar
model is extended to a 3D analysis of modes of vibration. In both cases, the stable equilib-
rium configurations were first analyzed and free vibrations of these configurations were
studied. The numerical results and the effect of the system’s parameters on the natural
frequencies are reported in Section 3. The comparison between the analytical and the exper-
imental data is made in Section 4. In Section 5, the relation between the frequency content
of the input motion and the natural frequencies is discussed. Finally, future applications of
the cable model are illustrated and conclusions are drawn.

2. Mathematical Model for the Free Vibrations

The Maribot [29,39] (Figure 1a) is a 5-DOF CDRR composed of a rigid planar structure
(2-DOF) and a yielding structure moved by cables (3-DOF). The three cables are controlled
by DC motors fixed to rigid links, and they support an orthosis used to hold up the
patient’s arm during rehabilitation exercises (Figure 1b). Cable length and orientation are
determined by the presence of pulleys. To improve the ease of use, each cable is connected
to a magnetic hook near the orthosis, moreover, it allows the instantaneous release of the
cable when a safety-limit force is overcome. Other examples of this kind of structure can be
seen in some CDRRs such as in [23–26].

(a) (b)
Figure 1. Maribot: (a) rehabilitation robot; (b) orthosis and cable system.

2.1. Planar Model

To extend the single cable vibrational model developed in [36] to a planar model
with two cables, the system in Figure 2 was considered. The planar model is composed
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of two cables (L3 and L4) which connect the pulleys (considered to be mechanically fixed
since their inertia does not affect the transverse natural frequency) to the magnetic hooks
(mass m3 and m4). Moreover, the negligible influence of the pulleys allows us to simplify
the model of the horizontal cables L1 and L2 that connect the motors to the pulleys since
they do not influence transverse vibrations, and their longitudinal stiffness combines in
series with the stiffness of the other cables. A payload equivalent to 2/3 of the expected
load on the orthosis (mass M) is supported by two cables with length L5 and L6. To take
into account cable elastic deformation, two linear springs connect the lower cables to the
orthosis. This planar model is useful to simplify the analysis of the actual 3D model, which
will be reported in Section 2.2.

(a) (b)
Figure 2. Scheme of the analytical planar model: (a) initial configuration of the 4-bar linkage;
(b) model with elongations and rotations of links.

To generalize the planar model, the 4-bar linkage OABC was considered. It is com-
posed of three mobile links with variable lengths ai and a fixed link with constant length
(a4). In the initial configuration (Figure 2a) the cables overlap the equivalent links OA
and CB. The deflections of the springs k9 and k10, which account for cable longitudinal
deformations, are zero (the deformations due to the static load are taken into account in the
initial lengths of the cables). The main motion of the 4-bar linkage is described by rotations
ϕi with respect to the fixed reference system. The vibration analysis of the system requires
considering the small rotation of each link (θi), with respect to the configuration defined by
ϕi and link elongation ∆ai (Figure 2b). Therefore, the link length is:

ai = a0,i +∆ai, i = {1, 2, 3} (1)

where a0,i is the initial length of the link i and ∆ai is the elongation of the link i.
The scalar equations of the vector loop of the 4-bar linkage OABC are:

{ a1 cos(ϕ1 + θ1)+ a2 cos(ϕ2 + θ2)− a3 cos(ϕ3 + θ3)− a4 = 0
a1 sin(ϕ1 + θ1)+ a2 sin(ϕ2 + θ2)− a3 sin(ϕ3 + θ3) = 0

(2)

since θ4 = ϕ4 = 0.
When the analysis of small oscillations of the linkage is carried out, rotations ϕ1, ϕ2, ϕ3

are assumed constant and payload length a2 is constant. The system has 3 DOFs, which
can be associated with small rotation θ1 and to elongations ∆a1 and ∆a3. Indeed, θ2 and θ3
are dependent on the other degrees of freedom via Equation (2).

The initial lengths of the links are equal to:
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a0,1 = L3 + L5
a0,2 = b
a0,3 = L4 + L6
a0,4 = c

(3)

where b is the length of the payload and c is the distance between cable pulleys. Assuming
small oscillations, the elongation of links 1 and 3 can be calculated as:

⎧⎪⎪⎨⎪⎪⎩
∆a1 = s9 − ( L3+L5

2L3L5
)s2

3

∆a3 = s10 − ( L4+L6
2L4L6

)s2
4

(4)

where the first terms s9 and s10 are the displacements due to longitudinal cable elongations,
whereas the second terms are caused by the transverse displacements of the hooks (s3 and
s4), and can be derived by simple geometric considerations [36]. Actually, the transverse
displacement of hook 1 causes a small displacement of point D along the ideal link (OA)
rotated by ϕ1 + θ1. The same happens on link 3 due to the transverse displacement of link 2.

Then, Equation (2) is expanded considering first-order approximations of the trigono-
metric functions of small angles θ1, θ2, and θ3. The following equation holds, which makes
it possible to calculate the dependent variables (θ2 and θ3) as functions of the independent
variables (θ1, ∆a1, and ∆a3), which are contained in vector {u1, u2}.

{ θ2
θ3

} = [ −a0,2 sin(ϕ2) a0,3 sin(ϕ3)
a0,2 cos(ϕ2) −a0,3 cos(ϕ3) ]

−1

{ u1
u2

} (5)

where vector {u1, u2} is equal to:

{ u1
u2

} = { a0,1θ1 sin(ϕ1)−∆a1 cos(ϕ1)+∆a3 cos(ϕ3)
−a0,1θ1 cos(ϕ1)−∆a1 sin(ϕ1)+∆a3 sin(ϕ3) } (6)

Solving and collecting, the small rotations θ2 and θ3 are equal to:

θ2 =
a0,1θ1 sin(ϕ3 − ϕ1)+∆a1 cos(ϕ3 − ϕ1)−∆a3

a0,2 sin(ϕ2 − ϕ3)
(7)

θ3 =
a0,1θ1 sin(ϕ2 − ϕ1)+∆a1 cos(ϕ2 − ϕ1)−∆a3 cos(ϕ2 − ϕ3)

a0,3 sin(ϕ2 − ϕ3)
(8)

Equation (4) shows that ∆a1 and ∆a3 include both first-order terms and second-order
terms. In the framework of small oscillations analysis, the second-order terms can be
neglected in the calculation of kinetic energy. Therefore, the following simplified equations
of link angular velocities hold:

θ̇2 =
a0,1θ̇1 sin(ϕ3 − ϕ1)+ ṡ9 cos(ϕ3 − ϕ1)− ṡ10

a0,2 sin(ϕ2 − ϕ3)
(9)

θ̇3 =
a0,1θ̇1 sin(ϕ2 − ϕ1)+ ṡ9 cos(ϕ2 − ϕ1)− ṡ10 cos(ϕ2 − ϕ3)

a0,3 sin(ϕ2 − ϕ3)
(10)

A stable equilibrium configuration has to be found before performing a free vibration
analysis. In [40], it was shown that, if the two cables have the same length and if the CoM
of the payload lies halfway to the payload link, the configuration with ϕ1 = ϕ0 + α, ϕ2 = 0,
ϕ3 = ϕ0 − α is stable (ϕ0 is an arbitrary constant value); therefore, small oscillations about
this configuration are considered in this research. Strictly speaking, in [40] the mass of the
hooks was not taken into account, but, if this mass is small and the system is symmetric, the
cable system with hooks has the same stable configurations as the system without hooks.

The equations of motion are derived with Lagrange’s approach, the generalized
coordinates are θ1, s3, s4, s9, s10.
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In the hypothesis of massless cables, kinetic energy Ek and elastic and gravity potential
energy (Ep,el and Ep,g) are:

Ek =
1
2

m3(ẋ2
3 + ẏ2

3)+
1
2

m4(ẋ2
4 + ẏ2

4)+
1
2

M(ẋ2
G + ẏ2

G)+ 1
2

IG(θ̇2)2
(11)

Ep,el =
1
2

k9(s9)2 + 1
2

k10(s10)2 (12)

Ep,g = m3gy3 +m4gy4 +MgyG (13)

where M and IG are the payload mass and inertia, respectively, and k9 and k10 are the
stiffnesses of the linear springs that represent the stiffness of the left cables in series (L1,
L3 and L5) and of the right cables (L2, L4 and L6). The first-order approximations used to
calculate the velocities in (11) are:

{ ẋ3 = −(L3 sin(ϕ1)θ̇1 + ṡ3 sin(ϕ1))
ẏ3 = L3 cos(ϕ1)θ̇1 + ṡ3 cos(ϕ1) (14)

{ ẋ4 = −(L4 sin(ϕ3)θ̇3 + ṡ4 sin(ϕ3))
ẏ4 = L4 cos(ϕ3)θ̇3 + ṡ4 cos(ϕ3) (15)

{ ẋG = −a0,1θ̇1 sin(ϕ1)− a0,2
2 θ̇2 sin(ϕ2)+ ṡ9 cos(ϕ1)

ẏG = a0,1θ̇1 cos(ϕ1)+ a0,2
2 θ̇2 cos(ϕ2)+ ṡ9 sin(ϕ1) (16)

The calculation of gravity potential energy requires second-order approximations of
the vertical positions of masses in Equation (13). These expressions are obtained from the
loop Equation (2) considering second-order approximations of the trigonometric functions
and neglecting higher-order terms.

y3 = L3 sin(ϕ1)(1− θ2
1
2 − s3

2

2 L3
2 − θ1s3

L3
)+ L3 cos(ϕ1)(θ1 + s3

L3
)

y4 = L4 sin(ϕ3)(1− θ2
3
2 − s4

2

2 L4
2 − θ1s4

L4
)+ L4 cos(ϕ3)(θ3 + s4

L4
)

yG = a1 sin(ϕ1)− a0,1 sin(ϕ1) θ2
1
2 + (a0,1 + s9)θ1 cos(ϕ1)+ a0,2

2 (sin(ϕ2)(1− θ2
2
2 )+ cos(ϕ2)θ2)

(17)

Using Lagrange’s approach, the equations of free undamped vibrations in matrix form
are obtained:

Ms ⋅ q̈ +Ks ⋅ q = 0 (18)

where Ms is the mass matrix, Ks is the stiffness matrix of the system, and
q = {θ1, s3, s4, s9, s10}T . The mass and stiffness matrices of the general planar model have
the following structures:

MS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15
m21 m22 0 0 0
m31 0 m33 m34 m35
m41 0 m43 m44 m45
m51 0 m53 m54 m55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

KS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 0
k21 k22 0 0 0
k31 0 k33 0 0
k41 0 0 k44 0
0 0 0 0 k55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where the first three rows (coordinates θ1, s3, and s4) represent the transverse vibrations
of the cables, and the last two rows (coordinates s9 and s10) represent the longitudinal
vibrations.

If the 4-bar linkage OABC is a parallelogram with links a0,1 = a0,3, ϕ1 = ϕ3 = 3
2 π, ϕ2 = 0,

m3 = m4 = m and k9 = k10 = k, the mass and stiffness matrices become:
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Ms =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(L3 + L5)2 + 2m L2
3 L3 m L3 m 0 0

L3 m m 0 0 0
L3 m 0 m 0 0

0 0 0 M b2+4 Ig
4 b2 − 4 Ig−M b2

4 b2

0 0 0 − 4 Ig−M b2

4 b2
M b2+4 Ig

4 b2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Ks =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g (2 L3 m + L3 M + L5 M) g m g m 0 0
g m g (2 L5 m+L3 M+L5 M)

2 L3 L5
0 0 0

g m 0 g (2 L5 m+L3 M+L5 M)
2 L3 L5

0 0
0 0 0 k 0
0 0 0 0 k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

In the parallelogram configuration, the structure of the mass and stiffness matrices
clearly shows that the longitudinal vibrations of the cables are decoupled with transverse
vibrations. Finally, natural frequencies and modes of vibration are calculated by solving
the eigenvalue problem.

2.2. 3D Simplified Model

To extend the planar model to a simplified 3D model, an approach similar to the one
proposed in [40] was used. The three upper extremities of the cables (Q1, Q2, and Q3)
are assumed to lie on the same horizontal plane and form an equilateral triangle with
side length Lq. The attachment points of the magnetic hooks (mh1, mh2, and mh3) and
of the payload (P1, P2, and P3) form equilateral triangles as well, where the side length
of the payload triangle is equal to Lp. The center of mass of the payload coincides with
the centroid of triangle P1P2P3. Moreover, the three upper cables have the same length
Ld = L3 = L4 as well as the three lower cables Ln = L5 = L6. The initial configuration is
shown in Figure 3, in which there are three vertical planes of symmetry.

Figure 3. The 3D analytical model.

If the object swings in one of these three vertical planes, e.g., Q1P1PQ (P and Q are the
middle points of P2P3 and Q2Q3, respectively), it is equivalent to the motion of a planar
cable system Q1P1PQ in the same vertical plane. Hence, the motion of such a 3D cable
system in its vertical planes of symmetry can be regarded as the motion of an equivalent
planar 4-bar linkage.
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As reported in [40], in this case, the 4-bar linkage is not symmetric (a01 ≠ a03 and the
CoM is not halfway the payload link); nevertheless, the configuration of Figure 3 is still
stable. In conclusion, the modes of vibration of the 3D system can be simply calculated
considering the modes of vibration of each equivalent vertical plane.

3. Numerical Results

The link dimensions of the model are based on the actual lengths of the cable robot. In
turn, the dimensions of the cable robot depend on the patient’s size and on the rehabilitation
exercise. To perform calculations, typical values are chosen and reported in Table 1.

Table 1. Parameters of the mathematical model.

Parameter Value

IG (kg ⋅m2) 5.57 ⋅ 10−3

M (kg) 1.112
m3 = m4 (kg) 0.080

g (m/s2) 9.81
L1 = L2 (m) 0.420
L3 = L4 (m) 0.380
L5 = L6 (m) 0.110

b = c (m) 0.3
ϕ1 = ϕ3 (rad) 3

2 π
ϕ2 (rad) 0

The natural frequencies are calculated by solving the eigenvalue problem associated
with Equation (18). To facilitate the analysis of modes of vibration, it is possible to exploit
the decoupling of the system, analyzing the vibration modes for submatrixes. In particular,
modes I, II, and III, related to the transverse displacements are analyzed separately from
modes IV and V, which are related to the longitudinal displacements. The transverse and
longitudinal natural frequencies are shown in Table 2.

Table 2. Influence of horizontal cables L1 and L2 in the analytical natural frequencies.

L1 = L2 ≠ 0 L1 = L2 = 0 ∆ fn (%)
Transverse fn (Hz) Mode I 0.720 0.720 0

Mode II 4.571 4.571 0
Mode III 4.756 4.756 0

Longitudinal fn (Hz) Mode IV 19.868 22.305 12.27
Mode V 41.622 46.725 12.26

To evaluate the influence of the stiffness of the horizontal cables, the natural frequencies
of the modes of vibration are calculated considering or neglecting the lengths of cables
L1 and L2. The comparison reported in Table 2 shows that all the transverse modes are
not affected by the horizontal cables, while in the longitudinal modes the effect of the
horizontal cables leads to a deviation of about 12%. Since the transverse frequencies and
modes are the most involved during the rehabilitation exercises (as will be demonstrated
in Section 5), the influence of horizontal cables will be neglected and the following results
will consider only the effect of vertical cables L3, L5 and L4, L6.

In Figure 4, the decoupling between the longitudinal and transverse modes is numeri-
cally investigated also for the general planar model. Indeed, considering ϕ1 = ϕ0 + α and
ϕ3 = ϕ0 − α, for α < 10○ the natural frequencies of the modes vary less than 1.5% with respect
to the values calculated with α = 0. Therefore, the terms m41 = m14, m51 = m15, m43 = m34,
m53 = m35 in Ms and k41 = k14 in Ks in Equation (19) are negligible, and the transverse
vibrations can be considered numerically decoupled from the longitudinal vibrations.
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Figure 4. Correlation between natural frequencies and α: (a) trend of natural frequencies; (b) trend of
natural frequencies normalized by the nominal natural frequency of each mode (α = 0○).

3.1. Transverse Modes of Vibration

In Figure 5, the transverse modes of vibration of the planar system are represented. In
mode I, rotation θ1 is dominant, consequently, the system behaves like a parallelogram with
the orthosis translating on the plane (anti-symmetric configuration). Mode II is dominated
by the transverse translations of the magnetic hooks (s3 and s4) in the counter-phase,
maintaining a symmetrical configuration. Mode III is anti-symmetric like mode I, but the
translation of the hooks is larger than the rotation θ1 of the system.

(a) (b)

(c)
Figure 5. Transverse modes of vibration: (a) mode I; (b) mode II; (c) mode III.

3.2. Longitudinal Modes of Vibration

In Figure 6, the longitudinal modes of vibrations of the planar system are represented.
In this case, mode IV corresponds to a translation of the orthosis (bounce motion), while
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mode V corresponds to a rotation of the orthosis in the plane due to s9 and s10 displacements
in the counter-phase (pitch motion).

(a) (b)
Figure 6. Longitudinal modes of vibration: (a) mode IV; (b) mode V.

3.3. Modes of Vibration of the 3D System

To analyze the modes of vibration of the 3D system, the stable and admissible equi-
librium configuration of a three cables system proposed in [40] was considered. In order
to calculate the modes of vibration of the orthosis in the vertical plane passing through
the patient’s forearm, the generalized planar model of Figure 2b is applied in the vertical
plane Q1P1PQ. The sides Q1Q and P1P are equal to the heights of the equilateral triangles
Q1Q2Q3 and P1P2P3 and are horizontal. The sides Q1P1 and QP are, instead, inclined by
ϕ1 and ϕ3 deriving from the study of the equilibrium configuration of the quadrilateral as
explained in [40]. The mass m3 is equal to the mass of the rear hook mh1, while the mass m4
is equal to the sum of the masses of the front hooks mh2 and mh3.

The natural frequencies and modes of vibration in the vertical plane Q1P1PQ are
reported in Table 3 and Figure 7. The 3D natural frequencies are in the same range as the
ones obtained in the planar model. The cable configurations of the 3D modes of vibration
are very close to the ones of the 2D modes.

Table 3. Natural frequencies of the analytical 3D model.

Mode I Mode II Mode III Mode IV Mode V

f (Hz) 0.731 3.846 4.078 18.414 35.753

(a) (b)
Figure 7. Cont.
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(c) (d)

(e)
Figure 7. Modes of vibration of the 3D system: (a) mode I; (b) mode II; (c) mode III; (d) mode IV;
(e) mode V.

3.4. Influence of Parameters on Natural Frequencies

Maribot is a neurorehabilitation robot developed to rehabilitate acute and subacute
patients after a stroke. For this reason, the robot configurations have to adapt to the clinical
conditions of each patient (e.g., sitting or lying in bed). Therefore, the length of the cables
changes not only during each exercise but also based on the clinical conditions. It is worth
noticing that the variation in cable length leads to a variation in cable stiffness ki according
to the following equation:

ki =
Lj

Ej Aj
+ Lm

Em Am
+ Ln

En An

i = 9, 10
j = 1, 2
m = 3, 4
n = 5, 6

(22)

where Ej, Em, and En and Aj, Am, and An are the Young modulus and the section area of
cables, respectively, and Lj, Lm, and Ln are the lengths of the cables.

Since the variation in cable length leads to a variation in the natural frequency of the
structure, it is useful to study the correlation between the cable length and the natural
frequency. The parallelogram configuration was considered. In Figure 8a, cables 3 and 4
vary their lengths between 0.1 and 1.0 m and such an increase in length leads to a reduction
in the resonance frequency for each mode.

In Figure 8b, the natural frequency of each mode is normalized with respect to the
maximum value of each resonance frequency. In this case, the largest percentage of variation
is obtained with the transverse modes, with a variation that varies from +53% to −34% in
the first mode.
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Figure 8. Correlation between natural frequency and cable length L3 = L4: (a) trend of frequency;
(b) trend of frequency normalized by the nominal natural frequency of each mode (L3 = 0.38 m).

A global analysis of the influence of the parameters presented in Table 1, which refers
to parallelogram configuration, can be performed using radar plots. Figure 9 shows the
variation in the natural frequency of each mode of vibration that corresponds to a set of
multiple values of each parameter (nominal value ×0.5, ×1, ×2, ×3, and ×5).

0.2

0.5

0.7

1.0

0.2
0.5

0.7
1.0

0.2

0.5

0.7

1.0

0.2

0.5

0.7

1.0

0.2
0.5

0.7
1.0

L
3
=L

4

L
5
=L

6

Mm

b

x1/2

x1

x2

x3

x5

(a)

2

5

8

11

2
5

8
11

2

5

8

11

2

5

8

11

2
5

8
11

L
3
=L

4

L
5
=L

6

Mm

b

x1/2

x1

x2

x3

x5

2

5

8

11

2
5

8
11

2

5

8

11

2

5

8

11

2
5

8
11

L
3
=L

4

L
5
=L

6

Mm

b

x1/2

x1

x2

x3

x5

(b) (c)

5

14

23

32

5
14

23
32

5

14

23

32

5

14

23

32

5
14

23
32

L
3
=L

4

L
5
=L

6

Mm

b

x1/2

x1

x2

x3

x5

10

27

45

62

10
27

45
62

10

27

45

62

10

27

45

62

10
27

45
62

L
3
=L

4

L
5
=L

6

Mm

b

x1/2

x1

x2

x3

x5

(d) (e)

Figure 9. Influence of parameters on the natural frequency for each mode of vibration. The value of
parameters reported in Table 1 are multiplied by 0.5, 1, 2, 3, 5. (a) mode I; (b) mode II; (c) mode III;
(d) mode IV; (e) mode V.

It is worth noticing that the variation in the length of the cables L3 and L4 of 3 and 5
times is easily achievable during rehabilitation exercises. Conversely, the lengths of the
cables L5 and L6, the masses, and the distance between cables vary by a little amount by
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changing patient or exercise. The lengths of cable L1 and L2 are fixed and are not considered
in the radar plots.

Starting from the value of the nominal parameters reported in Table 1, by increasing
the length of cables L3 = L4 and L5 = L6, all the natural frequencies decrease. In particular,
considering the distance between curves, the length of cables 3 and 4 has a larger influence
on the natural frequency of mode I, while the length of cables 5 and 6 has a larger effect on
the resonance frequency in the other modes. Conversely, the increase in the payload mass
M leads to an increase in the resonance frequencies of modes II and III, and to a decrease in
the frequency of modes IV and V. The variation in payload mass has no significant effect
on the natural frequency of mode I. If the mass of the magnetic hook increases, the natural
frequencies of modes II and III decrease. The mass of the hook has a very small effect on
mode I and no effect on modes IV and V. The distance between the cables has no influence
on the natural frequency of all modes.

4. Experimental Test and Validation

To experimentally validate the planar model of Section 2, an orthosis with an arm was
simulated by means of a mock-up composed of an aluminum profile 40× 40× 300 mm with
a mass of 406 g and an additional mass of 706 g above the center of gravity of the bar (total
mass: 1111.7 g). According to the results reported in Table 2, the stiffness of horizontal
cables L1 and L2 do not influence transverse vibrations. Therefore, the magnetic hooks are
directly connected to the chassis via Dyneema cables with lengths L3 and L4 and spaced
apart by 300 mm. At the extremity of the aluminum profile, the lower ends of the nylon
cables are hooked, while at the opposite ends they are connected to the magnetic hooks. A
representation of the experimental planar cable system is shown in Figure 10a.

(a) (b)

(c)

Figure 10. (a) Experimental cable system; (b) measurement points and directions of measurement of
the accelerometer (green); excitation forces (red); (c) acquisition equipment.

The tests were carried out with the modal analysis approach [41], which is widely
used in fields of automotive engineering [42,43], aerospace engineering [44], automatic
machines [45], and robotics [46].

Two kinds of experimental tests were performed: the first with transverse excitation
and acceleration, and the second with longitudinal excitation and acceleration. In each test
configuration, the excitation was always exerted at a fixed point in the defined direction
(transverse for modes I, II, and III, and longitudinal for modes IV and V), whereas accel-
eration was measured in the various grid points reported in Figure 10b. The excitation
was performed by means of a PCB 086C03 hammer (with load cell sensitivity 2.25 mV/N),
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while the acceleration was measured by a PCB 352C23 monoaxial accelerometer (sensitivity
4.56 mV/g) built by PCB Piezotronics Inc., Depew, NY, USA (Figure 10c). In the transverse
tests the axis of the accelerometer was always perpendicular to the cable in the plane of
motion, whereas, in the longitudinal tests the axis of the accelerometer was always aligned
to the cables. Data were acquired using a NI9234 data acquisition board built by National
Instruments, Austin, TX, USA with a sampling frequency of 2048 Hz, and 16, 384 samples
for transverse modes of vibration and 4096 samples for longitudinal modes. This sampling
frequency allows us to analyze the vibration phenomena up to 1024 Hz, and, as shown
by the calculated analytical results, the natural frequencies of the modes of vibration are
well below this frequency. Measured signals were analyzed by means of ModalVIEW, a
specific software tool for modal analysis. In this way, for both configurations, four FRFs
were measured between the acceleration components and the hammer impact force. To
improve the reliability and quality of measurements, each FRF was calculated by averaging
the results obtained with three hammer blows. Measured data were then processed with
ModalVIEW to identify the natural frequencies, modal dampings, and modal shapes.

Analytical and experimental results are compared in Table 4. Considering the nominal
lengths L3 = L4 = 0.38 mm, both in transverse and longitudinal directions, the experimental
results confirm the results of the simplified analytical model with a deviation smaller than
13%.

Table 4. Comparison between analytical and experimental natural frequencies with different cable
lengths.

L3 = L4
(mm) Mode Analytical

fn (Hz)
Experimental

fn (Hz)
Experimental

ζ (%) ∆ fn (%)

0.25 Transverse I 0.842 0.834 0.455 0.95%
II 4.858 4.407 0.656 9.28%
III 5.028 4.735 0.574 5.83%

Longitudinal IV 23.261 19.878 5.868 14.54%
V 48.729 44.578 5.938 8.52%

0.38 Transverse I 0.720 0.715 1.491 0.69%
II 4.571 3.977 0.530 12.99%
III 4.756 4.280 0.637 10.01%

Longitudinal IV 22.305 19.688 4.818 11.73%
V 46.725 44.121 5.268 5.57%

0.50 Transverse I 0.644 0.634 0.816 1.55%
II 4.432 3.725 0.548 15.95%
III 4.646 4.056 0.701 12.70%

Longitudinal IV 21.520 19.218 3.178 10.70%
V 45.079 42.126 4.675 6.55%

The FRFs measured with transverse excitation are reported in Figure 11a. The first
index of the FRF represents the position and direction of measured acceleration, whereas
the second index represents the position and direction of the hammer blow. The first mode
of vibration, experimentally detected at 0.715 Hz shows amplitudes of the FRFs of nodes
9 and 10 (on the mock-up) larger than the ones of nodes 3 and 4 of the magnetic hooks,
which is consistent with Figure 5a.

The second and third modes of vibration were detected at 3.977 and 4.280 Hz (due to
excitation Ft). At this frequency, the amplitudes of nodes 3 and 4 are larger than the ones of
nodes 9 and 10, again in agreement with modes II and III, as reported in Figure 5a,b.
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Figure 11. Modulus (above) and phase (below) of the experimental FRFs: (a) transverse modes;
(b) longitudinal modes. The first index represents the measurement point and direction, whereas the
second index represents the excitation point and direction.

Coming to the results obtained with longitudinal excitation, Figure 11b shows that
vibration modes IV and V, experimentally detected, respectively, at 19.688 and 44.121 Hz,
have larger oscillation amplitudes for nodes 9 and 10 than for nodes 3 and 4.

Further experimental tests were carried out to validate the effect of the variations in cable
lengths predicted by the numerical model. Results are reported in Figure 12 that show the
moduli of the FRFs of nodes 2 and 4 in the presence of transverse (Figure 12a) and longitudinal
(Figure 12b) excitation. The peaks of the FRFs, which are related to the modes of vibration,
move as cable lengths change; nevertheless, the variation is rather small (e.g., the natural
frequency of the first transverse mode is always in the range of 0.6–1 Hz). Table 4 makes a
comparison between the measured and calculated natural frequencies. In both new cases
(L3 = L4 = 25 mm and L3 = L4 = 50 mm), the experimental measurements confirm the
results of the calculated natural frequencies with a deviation smaller than 16%.
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Figure 12. Experimental FRFs modulus in nodes 2 (above) and 4 (below); (a) transverse excitation;
(b) longitudinal excitation.

5. Frequency Content of the Input Motion

Rehabilitation exercises are performed cyclically by varying both the vertical and
horizontal positions of the orthosis. The vertical motion is obtained by changing the
length of the cables, whereas the horizontal motion is performed by the joints of the planar
robot. Both motions can excite the vibrations of the suspended system (cables + orthosis).
The frequency spectrum of excitation has to be compared with the natural frequencies
of the modes of vibration to evaluate the possible excitation of the suspended system in
resonance conditions. The typical cycle of a rehabilitation exercise has a duration of 20 s,
which corresponds to a fundamental frequency of 0.05 Hz, which is well below the natural
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frequencies of the transverse and longitudinal modes of vibration of the suspended system.
Nevertheless, the motion has not a simple harmonic law and higher-order harmonics may
be present. The vertical motion is performed by varying the lengths of all the cables with
the same motion law. In this example, a 5-degree polynomial law [47] was adopted to vary
the cable lengths from the minimum to the maximum value.

In Figure 13, the time histories and the fast Fourier transforms (FFT) of the acceleration
and velocity of the cables are reported.
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Figure 13. Periodic input motion of a five-degree polynomial in the time domain (upper) and
frequency domain (lower): (a) acceleration profile; (b) velocity profile.

Considering the FFT of the acceleration, Figure 13a shows that the longitudinal natural
frequencies of the cable system are not excited by the periodic input motion, since the FFT
tends to zero above 1.0 Hz. The transverse modes of the system are poorly excited by the
longitudinal accelerations of cables, but it can be noticed that the acceleration spectrum
has a small amplitude at the frequency of the first transverse mode, which is represented
by the vertical bar with the label fn1. Conversely, the transverse modes are excited by the
Coriolis force, which depends on the velocity of the cables and the velocity of oscillation
of the structure. Therefore, the frequency content of the velocity profile was investigated
as reported in Figure 13b. In this case, the first natural frequency is not excited during the
motion, since the FFT tends to zero over 0.35 Hz.

The horizontal motion is performed by actuating the joints of the planar robot and it
can excite the transverse vibrations of the suspended system. Additionally, in this case, the
frequency spectrum of the acceleration of the upper extremities of the cables was calculated
and the results showed that higher-order harmonics are not able to excite the transverse
modes.

6. Conclusive Remarks

A mathematical model taking into account the special features of a CDRR equipped
with magnetic hooks was developed. The results show that in most practical cases trans-
verse vibrations are decoupled from longitudinal vibrations due to cable longitudinal
compliance. Both in longitudinal and transverse directions, the natural frequencies and
modes of vibration were numerically calculated and validated through experimental tests,
which demonstrated the reliability of the analytical model with a deviation smaller than
16%. Then, considering the vertical planes of symmetry of the actual 3D model, the planar
model was extended to a 3D analysis of modes of vibration of the Maribot cable system.

The motion of the cables (variation in length) during the exercises has two effects:
the variation in the natural frequencies of the system and the excitation of the system. A
parametric analysis showed that the variation in the lengths of the cables during the exercise
has the largest effect on the natural frequency of the first transverse mode; nevertheless,
this frequency is always in the range of 0.5–1.0 Hz.
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The analysis of the typical motion laws used in rehabilitation exercises showed that
the suspended system is not excited in resonance if the cycle of the rehabilitation exercise
has a duration of about 20 s.

A future development will be the improvement of the 3D model of the orthosis to take
into account details of the stiffness and mass proprieties. Moreover, the joint reaction forces
on the magnetic hooks will be studied and the model will be extended to study forced
vibrations.

Author Contributions: Conceptualization, G.Z., A.D., M.B., and G.R.; methodology, A.D. and G.R.;
software, G.Z. and M.B.; validation, G.Z. and M.B.; formal analysis, A.D. and M.B.; investigation,
G.Z., A.D., M.B., and G.R.; writing—original draft preparation, G.Z., A.D., and M.B.; writing—
review and editing, A.D. and G.R.; visualization, G.Z. and A.D.; supervision, A.D. and G.R.; project
administration, A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Babaiasl, M.; Mahdioun, S.H.; Jaryani, P.; Yazdani, M. A review of technological and clinical aspects of robot-aided rehabilitation

of upper-extremity after stroke. Disabil. Rehabil. Assist. Technol. 2016, 11, 263–280. [CrossRef] [PubMed]
2. Maciejasz, P.; Eschweiler, J.; Gerlach-Hahn, K.; Jansen-Troy, A.; Leonhardt, S. A survey on robotic devices for upper limb

rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 1–29. [CrossRef] [PubMed]
3. Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global estimates of the need for rehabilitation based

on the Global Burden of Disease study 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020,
396, 2006–2017. [CrossRef] [PubMed]

4. Hobbs, B.; Artemiadis, P. A review of robot-assisted lower-limb stroke therapy: Unexplored paths and future directions in gait
rehabilitation. Front. Neurorobot. 2020, 14, 19. [CrossRef]

5. Weber, L.M.; Stein, J. The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation 2018, 43, 99–110. [CrossRef]
6. Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation

in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [CrossRef]
7. Chien, W.T.; Chong, Y.Y.; Tse, M.K.; Chien, C.W.; Cheng, H.Y. Robot-assisted therapy for upper-limb rehabilitation in subacute

stroke patients: A systematic review and meta-analysis. Brain Behav. 2020, 10, e01742. [CrossRef] [PubMed]
8. Narayan, J.; Kalita, B.; Dwivedy, S.K. Development of robot-based upper limb devices for rehabilitation purposes: A systematic

review. Augment. Hum. Res. 2021, 6, 1–33. [CrossRef]
9. Zuccon, G.; Lenzo, B.; Bottin, M.; Rosati, G. Rehabilitation robotics after stroke: A bibliometric literature review. Expert Rev. Med

Devices 2022, 19, 405–421. [CrossRef]
10. Moshaii, A.A.; Najafi, F. A review of robotic mechanisms for ultrasound examinations. Ind. Robot. Int. J. 2014, 41, 373–380.

[CrossRef]
11. Nelles, G. Cortical reorganization-effects of intensive therapy. Restor. Neurol. Neurosci. 2004, 22, 239–244. [PubMed]
12. Bütefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K.H. Repetitive training of isolated movements improves the outcome of

motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 1995, 130, 59–68. [CrossRef] [PubMed]
13. French, B.; Thomas, L.H.; Coupe, J.; McMahon, N.E.; Connell, L.; Harrison, J.; Sutton, C.J.; Tishkovskaya, S.; Watkins, C.L.

Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev. 2016, 11, CD006073. [CrossRef]
14. Bayona, N.A.; Bitensky, J.; Salter, K.; Teasell, R. The role of task-specific training in rehabilitation therapies. Top. Stroke Rehabil.

2005, 12, 58–65. [CrossRef] [PubMed]
15. Cao, J.; Xie, S.Q.; Das, R.; Zhu, G.L. Control strategies for effective robot assisted gait rehabilitation: The state of art and future

prospects. Med. Eng. Phys. 2014, 36, 1555–1566. [CrossRef]
16. Oujamaa, L.; Relave, I.; Froger, J.; Mottet, D.; Pelissier, J.Y. Rehabilitation of arm function after stroke. Literature review. Ann.

Phys. Rehabil. Med. 2009, 52, 269–293. [CrossRef]
17. Ceccarelli, M.; Bottin, M.; Russo, M.; Rosati, G.; Laribi, M.; Petuya, V. Requirements and Solutions for Motion Limb Assistance of

COVID-19 Patients. Robotics 2022, 11, 45. [CrossRef]
18. Prasad, R.; El-Rich, M.; Awad, M.; Hussain, I.; Jelinek, H.; Huzaifa, U.; Khalaf, K. A Framework for Determining the Performance

and Requirements of Cable-Driven Mobile Lower Limb Rehabilitation Exoskeletons. Front. Bioeng. Biotechnol. 2022, 10, 920462.
[CrossRef]

19. Gopura, R.; Bandara, D.; Kiguchi, K.; Mann, G.K. Developments in hardware systems of active upper-limb exoskeleton robots: A
review. Robot. Auton. Syst. 2016, 75, 203–220. [CrossRef]

20. Bruckmann, T.; Pott, A. Cable-Driven Parallel Robots; Springer: Berlin/Heidelberg, Germany, 2012; Volume 12.

http://doi.org/10.3109/17483107.2014.1002539
http://www.ncbi.nlm.nih.gov/pubmed/25600057
http://dx.doi.org/10.1186/1743-0003-11-3
http://www.ncbi.nlm.nih.gov/pubmed/24401110
http://dx.doi.org/10.1016/S0140-6736(20)32340-0
http://www.ncbi.nlm.nih.gov/pubmed/33275908
http://dx.doi.org/10.3389/fnbot.2020.00019
http://dx.doi.org/10.3233/NRE-172408
http://dx.doi.org/10.1007/s10072-017-2995-5
http://dx.doi.org/10.1002/brb3.1742
http://www.ncbi.nlm.nih.gov/pubmed/32592282
http://dx.doi.org/10.1007/s41133-020-00043-x
http://dx.doi.org/10.1080/17434440.2022.2096438
http://dx.doi.org/10.1108/IR-01-2014-0304
http://www.ncbi.nlm.nih.gov/pubmed/15502268
http://dx.doi.org/10.1016/0022-510X(95)00003-K
http://www.ncbi.nlm.nih.gov/pubmed/7650532
http://dx.doi.org/10.1002/14651858.CD006073.pub3
http://dx.doi.org/10.1310/BQM5-6YGB-MVJ5-WVCR
http://www.ncbi.nlm.nih.gov/pubmed/16110428
http://dx.doi.org/10.1016/j.medengphy.2014.08.005
http://dx.doi.org/10.1016/j.rehab.2008.10.003
http://dx.doi.org/10.3390/robotics11020045
http://dx.doi.org/10.3389/fbioe.2022.920462
http://dx.doi.org/10.1016/j.robot.2015.10.001


Robotics 2022, 11, 154 17 of 17

21. Khosravi, M.A.; Taghirad, H.D. Dynamic modeling and control of parallel robots with elastic cables: Singular perturbation
approach. IEEE Trans. Robot. 2014, 30, 694–704. [CrossRef]

22. Kawamura, S.; Kino, H.; Won, C. High-speed manipulation by using parallel wire-driven robots. Robotica 2000, 18, 13–21.
[CrossRef]

23. Mao, Y.; Jin, X.; Dutta, G.G.; Scholz, J.P.; Agrawal, S.K. Human movement training with a cable driven arm exoskeleton (CAREX).
IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 23, 84–92. [CrossRef] [PubMed]

24. Rosati, G.; Gallina, P.; Masiero, S. Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE
Trans. Neural Syst. Rehabil. Eng. 2007, 15, 560–569. [CrossRef] [PubMed]

25. Ball, S.J.; Brown, I.E.; Scott, S.H. A planar 3DOF robotic exoskeleton for rehabilitation and assessment. In Proceedings of the 2007
29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007;
IEEE: Piscataway, NJ, USA, 2007; pp. 4024–4027.

26. Perry, J.C.; Rosen, J.; Burns, S. Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 2007, 12, 408–417.
[CrossRef]

27. Laribi, M.; Ceccarelli, M.; Sandoval, J.; Bottin, M.; Rosati, G. Experimental Validation of Light Cable-Driven Elbow-Assisting
Device L-CADEL Design. J. Bionic Eng. 2022, 19, 416–428. [CrossRef]

28. Zuccon, G.; Bottin, M.; Ceccarelli, M.; Rosati, G. Design and performance of an elbow assisting mechanism. Machines 2020,
8, 1–15. [CrossRef]

29. Rosati, G.; Gallina, P.; Masiero, S.; Rossi, A. Design of a new 5 dof wire-based robot for rehabilitation. In Proceedings of the 9th
International Conference on Rehabilitation Robotics, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; IEEE: Piscataway, NJ,
USA, 2005; pp. 430–433.

30. Xu, P.; Li, J.; Li, S.; Xia, D.; Zeng, Z.; Yang, N.; Xie, L. Design and Evaluation of a Parallel Cable-Driven Shoulder Mechanism With
Series Springs. J. Mech. Robot. 2022, 14, 031012. [CrossRef]

31. Xu, Z.; Xie, L. Cable-Driven Flexible Exoskeleton Robot for Abnormal Gait Rehabilitation. J. Shanghai Jiaotong Univ. Sci. 2022,
27, 231–239. [CrossRef]

32. Seyfi, N.; Keymasi Khalaji, A. Robust control of a cable-driven rehabilitation robot for lower and upper limbs. ISA Trans. 2022,
125, 268–289. [CrossRef]

33. Zhong, B.; Guo, K.; Yu, H.; Zhang, M. Toward Gait Symmetry Enhancement via a Cable-Driven Exoskeleton Powered by Series
Elastic Actuators. IEEE Robot. Autom. Lett. 2022, 7, 786–793. [CrossRef]

34. Shoaib, M.; Asadi, E.; Cheong, J.; Bab-Hadiashar, A. Cable driven rehabilitation robots: Comparison of applications and control
strategies. IEEE Access 2021, 9, 110396–110420. [CrossRef]

35. Rosati, G.; Cenci, S.; Boschetti, G.; Zanotto, D.; Masiero, S. Design of a single-dof active hand orthosis for neurorehabilitation. In
Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 161–166.

36. Zuccon, G.; Tang, L.; Doria, A.; Bottin, M.; Minto, R.; Rosati, G. The Effect of Pulleys and Hooks on the Vibrations of Cable
Rehabilitation Robots. In Mechanisms and Machine Science, Proceedings of the Advances in Italian Mechanism Science, Naples, Italy, 7–9
September 2022; Springer: Berlin/Heidelberg, Germany, 2022; Volume 122, pp. 273–281.

37. Kozak, K.; Zhou, Q.; Wang, J. Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE Trans. Robot.
2006, 22, 425–433. [CrossRef]

38. Riehl, N.; Gouttefarde, M.; Krut, S.; Baradat, C.; Pierrot, F. Effects of non-negligible cable mass on the static behavior of large
workspace cable-driven parallel mechanisms. In Proceedings of the 2009 IEEE International Conference on Robotics and
Automation, Kobe, Japan, 12–17 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2193–2198.

39. Rosati, G.; Andreolli, M.; Biondi, A.; Gallina, P. Performance of cable suspended robots for upper limb rehabilitation. In
Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June
2007; IEEE: Piscataway, NJ, USA, 2007; pp. 385–392.

40. Jiang, Q.; Kumar, V. Determination and stability analysis of equilibrium configurations of objects suspended from multiple aerial
robots. J. Mech. Robot. 2012, 4, 021005. [CrossRef]

41. Ewins, D.J. Modal Testing: Theory, Practice and Application; John Wiley & Sons: Hoboken, NJ, USA, 2009.
42. Cossalter, V.; Doria, A.; Mitolo, L. Inertial and modal properties of racing motorcycles. SAE Trans. 2002, 111, 2461–2468.
43. Cossalter, V.; Doria, A.; Basso, R.; Fabris, D. Experimental analysis of out-of-plane structural vibrations of two-wheeled vehicles.

Shock Vib. 2004, 11, 433–443. [CrossRef]
44. Verbeke, J.; Debruyne, S. Vibration analysis of a UAV multirotor frame. In Proceedings of the ISMA 2016 International Conference

on Noise and Vibration Engineering, Leuven, Belgium, 19–21 September 2016; pp. 2401–2409.
45. Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A. Model updating in flexible-link multibody systems. J. Phys. Conf.

Ser. 2016, 744, 012073. [CrossRef]
46. Doria, A.; Cocuzza, S.; Comand, N.; Bottin, M.; Rossi, A. Analysis of the compliance properties of an industrial robot with the

Mozzi axis approach. Robotics 2019, 8, 80. [CrossRef]
47. Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer: Berlin/Heidelberg, Germany, 2008.

http://dx.doi.org/10.1109/TRO.2014.2298057
http://dx.doi.org/10.1017/S0263574799002477
http://dx.doi.org/10.1109/TNSRE.2014.2329018
http://www.ncbi.nlm.nih.gov/pubmed/24919202
http://dx.doi.org/10.1109/TNSRE.2007.908560
http://www.ncbi.nlm.nih.gov/pubmed/18198714
http://dx.doi.org/10.1109/TMECH.2007.901934
http://dx.doi.org/10.1007/s42235-021-00133-5
http://dx.doi.org/10.3390/machines8040068
http://dx.doi.org/10.1115/1.4052972
http://dx.doi.org/10.1007/s12204-021-2403-4
http://dx.doi.org/10.1016/j.isatra.2021.07.016
http://dx.doi.org/10.1109/LRA.2021.3130639
http://dx.doi.org/10.1109/ACCESS.2021.3102107
http://dx.doi.org/10.1109/TRO.2006.870659
http://dx.doi.org/10.1115/1.4005588
http://dx.doi.org/10.1155/2004/905629
http://dx.doi.org/10.1088/1742-6596/744/1/012073
http://dx.doi.org/10.3390/robotics8030080

	Introduction
	Mathematical Model for the Free Vibrations
	Planar Model
	3D Simplified Model

	Numerical Results
	Transverse Modes of Vibration
	Longitudinal Modes of Vibration
	Modes of Vibration of the 3D System
	Influence of Parameters on Natural Frequencies

	Experimental Test and Validation
	Frequency Content of the Input Motion
	Conclusive Remarks
	References

