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Abstract: Robotic arms are widely used in sectors such as automotive or assembly logistics due to
their flexibility and cost. Other manufacturing sectors would like to take advantage of this technology,
however, higher accuracy is required for their purposes. This paper integrated a multi-camera
system to achieve the requirements for milling and drilling tasks in aeronautic parts. A closed-loop
framework allows the position of the robot’s end-effector to be corrected with respect to a static
reference. This is due to the multi-camera system tracking the position of both elements due to the
passive targets on their surface. The challenge is to find an auxiliary system to measure these targets
with an uncertainty that allows the desired accuracy to be achieved in high volumes (>3 m3). Firstly,
in a reduced scenario, a coordinate measuring machine (CMM), a laser tracker (LT), and portable
photogrammetry (PP) have been compared following the guidelines from VDI/VDE 2634-part 1.
The conclusions allowed us to jump into an industrial scenario and run a similar test with a higher
payload than in the laboratory. The article ends with an application example demonstrating the
suitability of the solution.

Keywords: robotic arm; accuracy; vision system; multi-camera; guided robot

1. Introduction

Accuracy is becoming a key factor in large-scale processes and relevant European
projects such as LaVA or DynaMITE (EMPIR European Metrology Programme for Inno-
vation and Research) face these issues from different perspectives in response to critical
sectors such as Aerospace, Naval, or Wind Power [1–3]. In these industries, tracking
end-effectors of several industrial robots (arm robots or wire robots), or the position of
automated guided vehicles (AGV), are becoming critical in the progression of tasks such
as the assembly of large structures, inspections, or manufacturing [4–6]. For example, an
aeronautic requirement is to drill holes to ±0.25 mm [7]. Moreover, apart from accuracy,
the latency of these systems is a relevant issue in terms of production times [8].

Laser Tracker (LT) is the most common tool for tool center point (TCP) pose estimation
due to its reliability and ease of use. For this reason, it is used to run many robot calibra-
tions [9]. The main advantage of tracking the end-effector is that this method allows us to
study the behavior of the industrial robot using different loads or during warm-up. Both
are relevant issues that the robot testing standard ISO 92831 highlights for modification
during the characterization of the robot [10,11]. However, this technology needs an extra
accessory (i.e., T-MAC of LEICA) to measure six Degrees of Freedom (DoF) and this is the
most expensive LT unit. Furthermore, these accessories—which are usually placed on the
robot tool—add weight, which implies higher levels of uncertainty due to robot deflection.
In this sense, the photogrammetry technology becomes a real alternative to LT since it can
measure the six DoF of objects, adding some retroreflective strikers to the track elements.
Moreover, the economic cost is less than that of LT with the required accessory.

There are two strategies used to improve the accuracy of an industrial robot using
a photogrammetry system [9]: Tracking the end-effector (eye-to-hand configuration) or
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fixing the cameras on the robot and calculating the position using references (eye-in-hand
configuration). Both strategies can be used for in-process tracking or only for the calibration
of the industrial robot (Denavit–Hartenberg parameters) [12]. While the eye-to-hand
methodology is usually chosen for tracking during the process to close the control loop,
the second strategy, eye-in-hand, reduces the difficulty of the calibration procedure, since
the photogrammetry system can be clamped and removed from the robot. For example, a
robot can commit a 1.8 mm error under drilling effort, and after modeling the arm robot
using neural networks, this error can be reduced to 0.227 mm [13]. Since the robot arm
faces diverse situations, different loads, thermal distortions, speed, etc., the first strategy is
recommended for challenging applications.

This research is focused on how to industrialize a multi-camera tracking system (eye-to-
hand). The work is organized as follows: Firstly, the relevance of the uncertainty of extrinsic
parameters is studied using three different measurement systems—Coordinate Measuring
Machine (CMM), Laser Tracker (LT), and a Portable Photogrammetry (PP) system. In this
case, CMM is considered the ground truth due to the low level of measurement uncertainty
(see the Section 3 for more information). The other two systems are the candidates to be
used in large-scale volumes to measure the reference targets. It is important to choose
one of these two systems because CMM does not allow the measurement of objects out of
its reach.

After comparing LT and PP, validation was carried out in an industrial scenario
following the guideline VDI2634 part 1 [14]. In this case, LT was the ground truth used to
track the end-effector of a robotic arm as it is simultaneously tracked by a multi-camera
(MC) system.

To end the research, a simple industrial application was carried out. The temperature
of the joints was recorded while tracking the end-effector during a warm-up cycle. The aim
was to determine the temperature-induced deviation.

Before explaining the development, the state of the art of this topic is presented.

2. State of the Art

Photogrammetry is becoming an alternative for meeting the requirements of industrial
robots while minimizing the amount of investment. Currently, it is necessary to attach
targets to the object and to a reference to solve the relative positions between both. One
current trend is to skip the target and use natural targets such as drill holes or shapes of
the object to solve the problem [15]. For example, the detection of these features allows
dynamic quadruped robots to be guided through a long industrial scenario without artificial
targets [16]. However, to achieve the measurement uncertainty requirement, retroreflective
targets must be detected to track the object.

However, not only the targets are part of a successful application of photogrammetry.
Several critical points must be studied including intrinsic parameters, extrinsic parameters,
static and dynamic reference, and the layout of targets on the objects. Additionally, 2D
detection is a key factor that has been extensively studied [17,18].

The intrinsic camera parameters correct the lens distortion and the camera sen-
sor. Several models propose how to correct the lens distortion and how to carry out
the calibration [19].

The extrinsic parameters, or the camera pose, are the relative position and orientation
of the camera with respect to a reference. In a photogrammetry system, coded targets
usually help to calculate this position. In the case of a MC system, a previous measurement
is required to determine the dimensions of the reference object and the tracked object [9].
These parameters can be solved both in a pre-process task (static reference) and in real-time,
that is, during the measurements (dynamic reference) [20]. Static reference is recommended
when the cameras are in static positions regarding the references, and it is likely that
a significant number of the reference points may be hidden by the object. Instead, the
dynamic reference takes relevance when the reference is moving with respect to the camera,
or if cameras can be moved due to flexible clamping or thermal drift.



Robotics 2023, 12, 10 3 of 13

Another factor to consider is the distribution of the targets on the object. Incorrect
distribution can result in a high-uncertainty solution. It is well known that a 3D object
helps reduce the uncertainty of the measurement [3]. In some cases, it is not possible to
create a 3D structure, so the camera layout increases its weight on the error budgeting.
The same concept can be applied to the design of the reference; a 3D scenario covering
all camera sensors improves the calculation of the extrinsic parameters. Sometimes, it is
difficult to correctly position the camera regarding the work volume. To resolve this issue
Hänel et al. have developed a robust method to achieve a reliable camera location [21].

The main aim is to measure the reference to calculate the extrinsic camera parameters
in large-scale scenarios. This is also known as an Enhanced Reference System. As in the
LT network, the distribution of reference points to link the sensors (cameras or LT) is
relevant in order to obtain a reliable result [22,23]. Additionally, the high uncertainty of
the measurement may cause incorrect camera pairing. However, in photogrammetry, it is
possible to use another source to measure the reference network. For example, both CMM
and LT can measure these points in addition to photogrammetry itself. Kang et al. [24]
studied a different approach using a turntable to move the artefact.

In this paper, the relevance of the uncertainty of the reference network will be studied
according to the steps mentioned in the introduction. The novelty of this research is the
study of which technology, LT or PP, is adequate to measure the reference point of a MC. PP
is regularly used to measure the reference points [25]; however, this paper will determine
whether LT can improve the accuracy of MC systems.

Once this technology is mature, a multi-camera system will enable human–robot
collaboration, allowing both to be placed in the same space. MC can prevent a collision. This
technology will also provide a channel of communication via gestures. This communication
between robots and humans is highly challenging [26].

In the next section, the material will be explained.

3. Material

For this research, the layout is composed of four industrial cameras (Teledyne DALSA
Genie Nano 4020, Teledyne DALSA, Waterloo, SC, Canada, 12.4 MP, focal lens 16 mm). The
intrinsic camera parameters were calibrated following the strategy of [27] where a CMM
was used to carry out the task.

As mentioned previously, two scenarios are identified: A CMM in the laboratory, and
a robotic cell in an industrial environment. In the first scenario (see Figure 1), a CMM ZEISS
© ACCURA (Zeiss, Oberkochen, Germany) with a length measurement error E0 in µm of
1.2 + L/350 (L in mm). A KUKA IIWA robot (KUKA, Augsburg, Germany) was used to
move the tracking object inside the CMM workspace (see Figure 1). In the second scenario,
the robot was a Stäubli TX200 (Stäubli, Pfäffikon, Switzerland) that covers a larger volume
of work. It is important to emphasize that the robot’s accuracy did not contribute to the
uncertainty chain; the robot only moves the tracked object. In both scenarios, the LEICA
AT 402 LT (HEXAGON, Stockholm, Sweden) was used. The main specifications of this
LT are accuracy/typical values ±7.5 µm + 3 µm/m and ±15 µm + 6 µm/m of maximum
permissible error (MPE).

Fifteen target nests were distributed along the granite of the CMM (1.5 m × 1 m) with
different heights (up to 100 mm). These target nests allowed us to include a sphere to mea-
sure CMM (see Figure 2), a Spherically Mounted Retroreflector (SMR) (HEXAGON, Stock-
holm, Sweden) to measure LT, and a hemisphere with one reflective target to measure PP.

Moreover, the coded targets have a binary codification around a circle which allows
us to calculate a first approximation from the placement of the cameras. Using this ap-
proximation, the reference points are identified and used to calculate the final position of
the cameras.

Two different trackable objects have been used; both have been adapted to the end-
effector of the robot (see Figure 3). In both cases, coded targets cover the end-effector using
a 3D-printed structure to generate semispherical shapes. In this research, we placed the
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maximum number of targets, and this number will be optimized to reduce the quantity in
the future.
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Figure 2. Nest for transferring measurements between CMM, PP, and LT. (a) Nest. (b) Sphere
measurement process used to obtain the extrinsic reference by CMM. (c) Spheri-cally mounted
retroreflector (SMR) used to measure LT. (d) A retroreflective target in the hemisphere.
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Figure 3. Tracked object: (a) Used in the CMM scenario with a KUKA Iiwa robot and (b) used in the
industrial scenario with a Stäubli TX200 robot.

Moreover, six nests have been clamped into the end-effector to present the possibility
of measuring the same point using different measuring systems. The CMM measures the
point by probing a 1.5′/38.1 mm diameter sphere, the LT by measuring the position of
a same-sized spherically mounted reflector (SMR), and photogrammetry by mounting a
special target on a hemisphere.

As only the non-coded targets have been measured by the CMM and LT, two steps are
necessary to calculate the position of each camera. In the first, the coded targets provide
a codification to the non-coded targets (see Figure 4a), identifying and matching them to
the LT and CMM measurements. The position and orientation of the cameras are then
calculated by reducing the root mean square (RMS) of the reprojection of these points.
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targets to MC, and the aim of this process is in blue; the roto-translation from reference targets to
tracked object.

After solving the position of the camera with respect to the reference targets, a similar
process is carried out to solve the position of the object with respect to the reference targets
(see Figure 4b). However, in this case, the information from all the cameras is considered.
This improves the quality, reducing the uncertainty of the solution.

During the measurement of the tracked object, six non-coded targets were placed in
the nest where the CMM (laboratory scenario) and LT (industrial scenario) measure the
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position of the object. In this way, MC can calculate the same position as CMM and LT. To
determine the orientation, at least three points are required. For this kind of test, only the
relative distance is required because the orientation of the tracked object is unmodified,
and MC solves the same position measured by CMM and LT.

CMM Zeiss ACCURA is the ground truth, as the uncertainty of the process of measur-
ing with this system relates to microns (1.2 + 900/350 = 3.8 µm), and is 10 times less than
the expected error. The uncertainty sources are the machine, sphere (sphericity of 3 µm),
and nests (up to 12 µm), so the sum of squares is 12.9 µm; the main contributor is the nest.

Moreover, the LT LEICA 402 and VSET (a PP system) have been used to measure the
reference. VSET is a portable photogrammetry system developed by IDEKO [28,29].

Regarding the two scenarios, the four cameras were placed in a square shape using a
photographic tripod in the laboratory test and metallic columns in the industrial case. In
the CMM, the camera layout is around 2.5 m × 2.4 m and the height with respect to the
reference plane is approximately 0.75 m. The movement allowed inside of CMM with the
Iiwa robot was 455 mm × 376 mm × 454 mm. Meanwhile, the camera layout is smaller in
the industrial scenario due to the surrounding fence (which is 2 m × 2.1 m), but the height
with respect to the reference was twice as high to cover more volume, at around 1.5 m. In
the industrial scenario, the work volume was 900 mm × 300 mm × 200 mm.

4. Methodology

This section analyses the methodology used to measure the extrinsic reference to
calculate the poses of the cameras. This is a key point when industrializing a multi-camera
system due to the limitations of accuracy. To carry out this analysis, a CMM was chosen
as the ground truth and it was compared to two large-scale technologies: LT and PP. The
CMM performance is two orders of magnitude better (1 µm) than the two studied systems
(100 µm). The reference targets were measured three times per instrument and the best fit
was run to match all the measurements. The repeatability of instruments was analyzed and
the accuracy was compared to the CMM measurements.

Once the reference was measured, a test to check the performance of the MC was
executed. This test consists of placing the tracked object in several positions and solving
them. The only point modified during the test was the reference values of the three
systems used to study their influence. To ensure that the single change was the reference
measurement source, the same photos were processed by changing only this input. The
main assumption is that the robot does not move among the different measurements,
regardless of position. It was tested by repeating the same measurement 5 times in one
position at the tested locations, and the repeatability was 0.003 mm (standard deviation
k = 1). It is higher than a fixed element due to the contact of CMM against the robot.

The methodology used to compare the technologies was followed by the German
standard VDI/VDE 2634 part 1, which is used to calculate the Length Measurement Error
(LME) of a point-to-point measurement system. This guideline suggests manufacturing
7 bars, with each bar made of at least 5 test lengths, taking one of the sides as the origin
of the deviations. The authors adapted this guideline and instead of manufacturing the
bars, virtual bars were used, implementing the suggestion of the rate distance of the testing
volume (see Figure 5). A robot was used to help with the placement of the target spatial
position, with the distance checked by the CMM in each position. The VDI-VDE2634 part
1 standard recommends this distribution to allow us to estimate the error in the volume
with minimal effort. For each virtual bar tested, the robot moves the tracked object to the
origin and then moves to the other positions (the blue dots in Figure 5). The deviation is
the difference between the CMM and MC measurements using one side of the bar as the
origin. As mentioned, it is important to highlight that the robot did not participate in the
uncertainty chain because the CMM measures the position.
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CMM played two roles:

(a) It measured the target to calculate the extrinsic value.
(b) It measured the position of the VDI/VDE 2634 part 1.

Once the method used to measure the extrinsic references has been validated, an
industrial scenario is tested. In this test, only photogrammetry was used to measure the
targets to calculate the pose of the camera, and the same LT of the previous test was used as
the ground truth. Regarding the laboratory test, the volume is greater due to the features
of the robot (Stäubli TX200). This robot was placed on a table while the position of the
reference markers was determined.

Once the relevance of this development was obtained, a thermal study was carried
out. Specifically, the end-effector was tracked. The nominal robot distance can be modified
due to the temperature, either by warming up the robot itself or via ambient change. This
test allows us to estimate and confirm a correlation between position and temperature.

5. Results and Discussion

This section is divided into three subsections: A laboratory scenario, an industrial
scenario, and experimental use. The temporal sequence was in the same order and the
lessons from the laboratory scenario were applied to the industrial scenario.

5.1. Results and Discussion: Laboratory Scenario

Firstly, the 15 reference targets were measured three times according to the three
measurement systems. Three values were presented: Time, repeatability, and accuracy with
respect to CMM. The time is the duration of performing the measurement, the repeatability
is the average of the standard deviation of all the targets, and the accuracy is the average of
the magnitude error with respect to the CMM average positions. The results are shown in
Table 1, and as expected, the repeatability of CMM is the best. The repeatability obtained by
CMM gives an indication of the reliability of the nest. Similarly, the repeatability of LT and
photogrammetry has lower results, in that order. Thus, the portable photogrammetry is four
times less precise than the LT, which provides theoretical values similar to the datasheet.

Table 1. Repeatability and accuracy of the CMM, LT, and PP measuring the reference targets.

k = 1 XYZ (mm) CMM LT PP

Time (min) 15 12 16
Repeatability 0.0004 0.007 0.031
Accuracy with respect to CMM - 0.010 0.043
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Table 1 shows the performance of each system, but not the influence on the final
uncertainty. For this reason, the VDI/VDE 2634 part 1 was run three times and the photos
were processed with the information of each reference target. These targets provide different
extrinsic parameters and, accordingly, different results.

As Figure 6 illustrates, the deviation of the MC with respect to CMM, when the
reference points are measured by CMM, is between −0.031 mm and 0.026 mm. Table 2
shows the results of using the different references. The best results are obtained using
CMM, but with the same maximum LME as LT. In turn, when using PP, the results obtained
show the difference, but the values (LME Maximum 0.049 mm) are acceptable because the
aim is less than ±0.2 mm.
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Table 2. Results of VDI/VDE 2634 part 1 using different extrinsic reference.

(µm)
Extrinsic Reference Measurement

CMM LT PP

LME Maximum 31 31 49
LME Average 1 3 9
LME standard deviation k = 1 10 11 16

The main conclusion is that measurement uncertainty when using the PP and LT
to measure the target reference is reflected in the measurement uncertainty of the MC,
however, both technologies fulfill the aeronautic requirement of ±0.2 mm. Following
this conclusion, for the industrial scenario, PP was the only system used to measure
these points.

5.2. Results and Discussion: Industrial Scenario

A robotic cell was selected to test this technology in the most realistic environment.
The main limitation is the space needed to place the camera on the enclosure walls, which
are smaller than those in the laboratory (see Figure 7a). Moreover, to obtain a relevant
volume to track the end-effector of the robot, the camera heights were higher than in the
CMM test. Table 3 shows the main figures of this scenario.

Table 3. Dimensions of industrial scenario: Position of the cameras and volume work. * All cameras
are at the same height, 1500 mm from the table.

(mm) Camera Position Volume Work

Industrial scenario
X 2000 900
Y 2100 300
Z 1500 * 200
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Figure 7. Pictures of the industrial test scenario: (a) general view, layout of the cameras, (b) LT
Leica AT402 is measuring the SMR, and (c) portable photogrammetry system measuring the
reference target.

As previously mentioned, the reference measuring system (ground truth) is a LT Leica
AT402. It was placed in the entrance door out of the robotic cell due to a limitation of this
LT reference to measure at a distance closer than 1 m (see Figure 7b). Figure 7c shows the
measurement of the reference targets using PP.

Once the reference targets were measured, the end-effector of the robot was moved
to the VDI/VDE 2634 part 1 positions inside the cube describe in Figure 5. This guideline
suggests measuring at least seven bars and five test lengths on each bar.

The trend in the deviation differs from the laboratory scenario. The authors consider
that the differences in the tracked objects and the different layout of the reference may
contribute to the modification of these trends. It was not possible to use the same object
or to replicate the extrinsic reference. If the reference point had been measured by LT, the
deviation could have been improved slightly.

The shape of the trends is noteworthy. In both cases, they are quite similar albeit
with a different orientation (see Figure 8). For example, the number 1 bar (colored in blue)
has a higher deviation in case one. In contrast, the bar in the second case shows a similar
trend but is reduced. This tilt with respect to the origin is also clear in bar numbers 2 (red),
3 (yellow), and 4 (purple). All have less value in the second test than the first, transferring
to a negative position. The authors consider that the measurement uncertainty of the
reference targets is this tilt effect. In both cases, the maximum–minimum error is around
0.075 mm. If it is necessary to reduce this, several factors can be modified. For example, the
layout of the reference targets can be improved by creating a 3D structure with the targets,
or a high number of cameras to provide a strong ray net.
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Figure 8. Results used to measure the deviation of the MC with respect to LT following VDI-VDe
2634 part 1. (a) first measurement (LME 0.047 mm), and (b) second measurement (LME 0.041 mm).

5.3. Results and Discussion: Example of Use

To illustrate the advantages of the reliability and accuracy of the proposed solution, an
example of use was run. For 3 days, the position of the end-effector during a warm-up cycle
was recorded. At the same time, a thermal camera (FLIR SC5500) recorded the temperature
of the robot, taking measurements of the joints as the most relevant data. Figure 9 shows
the early results.
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Figure 9. Results of a warm-up cycle of three days. (a) Position recorded by the MC (X, Y horizontal
and Z Vertical), (b) an example image of Stäubli RX 600 using the thermal camera, and (c) comparison,
at the same time (h), of the temperature of the part between joints 3 and 4 (red line) and position X,
horizontal direction, in the blue line.
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Despite the information being insufficient to model the thermal behavior of this robot
arm, the results demonstrate that MC allows us to study whether the warm-up cycle is
modified. A slow warm-up will provide the option to study the transitory effects in X, and
more warm-up movement of Y and Z will show more gradient in these axes. In conclusion,
MC will allow us to study the thermal behavior of the robot.

6. Conclusions

This research explains how to measure the reference targets of a multi-camera system
at large-scale volumes. Initially, a comparison was run in a laboratory scenario to check
the performance of CMM, LT, and PP when measuring the reference targets. CMM was
considered as ground truth, and the other two technologies as possible candidates to
measure in large-scale volumes. Following the recommendation of the VDI VDE2634 part
1, the tracked object was moved to 35 positions in a volume where the MC could track the
end-effector. The conclusion was that LT and PP allowed similar results to be obtained, and
the positional uncertainty achieved the requirements for the robotic industry to branch into
the aeronautic sector.

The second step was to replicate the test under industrial conditions. Following the
conclusion of the laboratory test, LT took the role of ground truth and PP measured the
reference targets. The MC was installed in a robotic cell. The positions of the camera were
adapted to the narrow space due to the enclosure walls (see Table 4) and the volume of
work was increased thanks to the robot’s size. The value of LME raised due to the new
conditions, less space, and greater volume.

Table 4. Summary of the results from the two scenarios.

(mm) Camera Position Volume Work of the Robot Average LME

Laboratory using
industrial tool

(photogrammetry)

X 2500 X 455
0.031 mmY 2400 Y 376

Z 750 * Z 454

Industrial
X 2000 X 900

0.045 mmY 2100 Y 300
Z 1500 * Z 200

* The height of all the cameras is the same; the values in the table are the distances from the camera to the reference.

Once the LME was measured, a first approach was run to determine the behavior of
the robot during a warm-up cycle. Some parameters were modified to obtain reliable data
to model the robot. For example, the X-axis (in the robot base) warms quite fast to record
the transitory, while Y and Z axes have little effect during the warm-up cycle.

The following step was to carry out a test following the ISO 92831 to compare how
much the multi-camera can improve the position uncertainty of the robot. Moreover, the
warm-up cycle must be studied to model the robot’s behavior when it starts working from
a cooled state.

To industrialize this solution, the targets on the end-effector must maintain their
relative position to respect the robot end-effector. The same applies to the parts with
respect to the reference points. If this assumption is broken, the accuracy of the system is
compromised. So, during the design, the end-effector must be considered. Furthermore,
the main limitation of designing a MC system is the number of cameras needed to maintain
the cost-benefit ratio. Sometimes, there are external elements that block the vision of the
end effort, and at this point, MC does not provide information. Therefore, an in-depth
virtual study must be conducted to predict the influence of points of view on the accuracy.
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