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Abstract: Virtual remote laboratories have already been successfully implemented in educational
centers for practical learning of mechatronics and robotic systems. This article presents the devel-
opment of a virtual articulated UR-type robot, designed as an educational tool that is suitable for
programming and evaluating both the inverse kinematics control of the robot and the independent
control of the robot joints. The 3D model of the virtual robot was developed in the Blender V2.79
software and uses the Modbus TCP industrial communication protocol for the communication to
an external controller implemented in CoDeSys V3.5 software. The developed system allows the
students to generate and test their own control algorithm for the robot joints with the visualization
of the achieved performance in 3D and real time. Tailored control systems can be compared on
the virtual robot. In this study, a novel technique for the joint position control based on an FSM is
proposed and verified with the virtual UR5 robots to prove that the developed system is a suitable
platform to teach and learn the inverse kinematics control and independent joint control of the UR5
robotic arm.

Keywords: inverse kinematic control; independent joint control; finite state machine

1. Introduction

Information and communication technologies are valuable tools that favor teaching
and learning. Today, engineering education applies different tools such as computer simu-
lation and virtual reality through remote access and video calls for online learning. Virtual
laboratories (VL) have been developed at educational centers as educational platforms
for training engineering students in industrial processes and technological systems. The
application of VL allows to develop technical skills, specifically in mechatronics, robotics,
and automation systems, which integrate actuators, sensors, industrial control systems,
and networks.

The VL introduces users to the concept of cyber-physical systems (CPSs), which are
composed of physical systems with their computational models [1]. CPSs are capable of
connecting networked devices of different information and communication technology
systems, virtualizing different laboratories [2]. CPS is a key technology for the application
of Industry 4.0. To develop a robotics VL, dynamic models of sensors, actuators, and
mechanisms are required, in addition to a control system that can compensate for the
response of the real mechatronic system. The graphic model of the robot needs to be
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designed and animated in 3D. The VL has similar features to the digital twin. Digital
twins can be implemented with 3D models, numerical simulation, and a virtual reality
interface [3,4]. Learning kits that incorporate digital twins are practical tools for acquiring
understanding and practice of engineering concepts [5,6].

Today, there are different types of virtual laboratories oriented in different engineering
specialties such as control systems, process monitoring, robotics, mechatronics, and automa-
tion [7,8]. Research and development centers develop robotic unit platforms incorporating
3D models, designed in CAD software. Universities in China have created robotics virtual
laboratories in Unity 3D software [9] as teaching platforms. VLs have been developed for
different robot models, such as a 6DOF manipulator anthropomorphic industrial robot, to
perform autonomous object manipulation tasks in virtual environments [10]. The UR-10
robot has also been developed in augmented virtual reality [11]. Dynamics and control
systems can also be taught in interactive virtual labs using mechatronic models [12].

This work is an enhancement of a previous article [13] presenting the design, imple-
mentation, and control of a virtual UR5-type articulated robot for its use as an e-learning
platform. The 3D model of the UR5 robot was simulated and animated in the Blender V2.79
software. Codesys V3.5 software was used to develop and implement the control system
in a Hardware in the loop (HIL) simulation scheme. The robot simulator communicates
with the robot controller via the Modbus TCP industrial network protocol. The developed
system is oriented toward the teaching and learning of the kinematic control of robots
and the real-time control of the articulated joints. Users develop skills in robot inverse
kinematics and in the control of the robot actuators, which are key topics in robot design
and control courses. The challenge for the student is to design and implement the lower
control levels of the robot in an external controller, that is, the control of speed and position
of the joints, and the direct and inverse kinematic control. This document describes, in
Section 2, the methods used for the virtual robot design and, in Section 3, the methods and
control techniques applied to the virtual robot. Section 4 shows and discusses the results
obtained from the system. Lastly, the conclusions are presented in Section 5.

2. Methods for Virtual Robot Design

In this section, the software for virtual robotics laboratory development, the methods
for 3D modeling of the UR5 robot with Blender, and kinematics analysis of the UR robot
are presented.

2.1. Virtual Robotics Laboratory

Currently, robot manufacturers provide virtual 3D models of the robot, which are inte-
grated into the development and monitoring software in order to assist the programming
and operation of the robot for training purposes. Virtual robots are tools that help learning
automation in workplaces and educational institutions. The development of this project of
a virtual UR5 robot uses Blender V2.79 © software for the animation of the 3D model and
Codesys V3.5 © software for the control of the system, integrating two required levels of
robot control: joint control and inverse kinematic control. Applications developed using
Blender and Codesys communicate through a Modbus TCP industrial network protocol.
Additionally, Radmin V1.2 © software is used to provide remote access to the system.
Figure 1 shows the general scheme of the system.
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Figure 1. Virtual robot proposed configuration.

2.2. 3D Modeling of the UR5 Robot with Blender

To make the 3D model of the UR5 robot, Blender software was used as an animation
and simulation platform for the project because it is freely accessible and its work envi-
ronment allows industrial network communication. Currently there are different CAD
software companies that develop simulations and 3D models: Unity, CATIA, ANSYS,
Autodesk Inventors, and SolidWorks [14–16]. Figure 2 shows the 3D model developed
in Blender.
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Figure 2. The 3D model of Robot UR5.

2.3. Kinematics of the UR Robot

The direct kinematics of the UR5 robot can be obtained through the geometry and spa-
tial location of each one of the links that make up the system, while the inverse kinematics
can be achieved through the determination of the joint variables as a function of the position
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and end effector orientation. The UR5 robot kinematic model is necessary for the numerical
simulation and control of the UR5 virtual robot. This work studies the kinematics of the
robot using the Denavit–Hartenberg (D–H) method. Figure 3 shows the joint frames [17]
and parameter indications to define the homogeneous transform matrices [18].
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Figure 3. UR5 robot base frame.

The UR5 robot is an articulated arm model with six degrees of freedom via rotary
joints. The parameters calculated through the reference frames are represented in Table 1,
according to the D–H algorithm, where i is the joint number, αi is the angle measured
between consecutive x-axes, ai is the distance measured along the x-axis between z-axes, di
is the distance measured along the z-axis, and θi is the angle measured around the z-axis.

Table 1. D–H parameters. Adapted with permission from ref. [13]. Copyright 2021 IEEE.

i αi ai di θi

1 π
2 0 L1 θ1

2 0 a2 0 θ2
3 0 a3 0 θ3
4 π

2 0 L4 θ4
5 −π

2 0 L5 θ5
6 0 0 L6 θ6

The general homogeneous transform matrix of the D–H methodology is given by
Equation (1). The direct kinematics solution is obtained by multiplying the six homoge-
neous transform matrices as shown in Equation (2). The resultant matrix describes the
position and orientation of the end effector with respect to the base of the robot.

i−1T i =


cos θi − sin θi· cos ai sin θi· sin ai ai· cos θi
sin θi cos θi· cos ai cos θi· sin ai ai· sin θi

0
0

sin ai
0

cos ai
0

di
1

. (1)

0T6 =0T1·1T2·2T3·3T4·4T5·5T6 =


r11 r12 r13 px
r21 r22 r23 py

r31
0

r32
0

r33
0

pz
1

. (2)

This work uses a kinematic solution previously presented in [17,19]; the complete
derivation can be found in these references. By simplifying the calculation of the matrix
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in Equation (2), it is possible to obtain the equations for the orientation (Equations (3)
through (11)) and position (Equations (12) through (14)) elements.

r11 = c1c234c5c6 + c6s1s5 − c1s234s6. (3)

r12 = −c1c234c5c6 − s1s5s6 − c1c6s234. (4)

r13 = −c1c234s5 + c5s1. (5)

r21 = c234c5c6s1 − c1c6s5 − s1s234s6. (6)

r22 = −c234c5s1c6 + c5s5s6 − c6s1s234. (7)

r23 = −c234s1s5 − c1c5. (8)

r31 = c5c6s234 + c234s6. (9)

r32 = −c5c6s234 + c234c6. (10)

r33 = −s234s5. (11)

px = −c1c234s5d6 + c5s1d6 + c1s234d5 + s1d4 + c1c23a3+c1c2a2. (12)

py = −c234s1s5d6 − c1c5d6 + s1s234d5 − c1d4 + c23s1a3+c2s1a2. (13)

pz = −s234s5d6 − c234d5 + s23a3 + s2a2 + d1. (14)

The solution of the inverse kinematics of the UR5 robot is obtained from the previous
equations. The joint angles from the end effector position and orientation are given by the
following equations:

A1 = px − d6r13. (15)

B1 = d6r23 − py. (16)

Kc = pxc1 + pys1 + c234s5d6 − s234d5. (17)

Ks = pz − d1 + c234d5 + s234s5d6. (18)

θ1 = a tan 2(A1, B1)± a tan 2
(√

A2
1 + B2

1 − d2
4, d4

)
. (19)

θ2 = a tan 2(Ks, Kc)− a tan 2(a3s3, a3c3 + a2). (20)

θ3 = ±a tan 2(s2, s3). (21)

θ4 = θ234 − θ2 − θ3. (22)

θ5 = ±a tan 2(s5, c5). (23)

θ6 = a tan 2(s6, c6). (24)

3. Methods for Virtual Robot Control

In this section, several speed control schemes are presented for DC motors: speed
servo control, PID joint position control, and finite state machine for joint position control,
in addition to a comparison of the methods.

3.1. Speed Servo Control of DC Motors

The DC motor has an angular positioning system that is commonly controlled through
PID control algorithms to optimize its operation [20]. Since the motor speed is integrated in
the mechanical process, only a proportional controller is needed to control the position of a
DC motor shaft. DC motors can be used as actuators to produce the rotational movement of
the joints of the robotic arm. The dynamic response of six DC motors has to be considered
to represent the six articulations or the UR5 robot. Individual actuator models are suitable
for designing the independent control of the joints as a practical and robust approach. The
assumption of high-ratio gearboxes (i.e., 100:1) connecting the motor shaft to the mechanical
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load implies the consideration of negligible dynamic perturbations and allows the use of
simplified actuator models. The mathematical model of the servo-controlled DC motor can
be stated in two parts: the first-order dynamics of the angular speed, and the integration
of the achieved speed to obtain the angular position, as shown in Figure 4. This model
can be discretized by the Euler backward difference method (EBD) and used as a basis for
modeling of the complete robot [21].
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The angular position with respect to the speed reference is given by

Gi(s) =
1

(λis + 1)
× ki

s
=

ki

(λis2 + s)
. (25)

However, the model components can be implemented separately. The speed servo
control dynamics or first model subsystem in Figure 4 can be expressed in discrete time as

ωk = α × ωk−1 + (1 − α)× ωr. (26)

The second model subsystem or speed integrator to calculate angular position is
discretized as

qk = α × qk−1 + Ts × ki × ωk. (27)

where ωk is the current angular speed, ωr is the speed reference, qk is the current position, ki
is the integrator gain, Ts is the sampling period, and α is a parameter defined as a function
of the servo-control time constant λi and Ts, given by

α =
λi

λi + Ts
. (28)

The equations presented in this subsection are sufficient to simulate the closed-loop
dynamical response of the robot joints; under this scenario, the actuators are servomotors,
and this configuration can be used to test different position controllers.

3.2. PID Joint Position Control

A more detailed modeling and control of the speed of the robot joints can be defined if
the joint actuators are considered to be DC motors that require the implementation of speed
controllers. The proportional–integral–derivative (PID) controller is a widely used control
technique that is employed for the regulatory feedback control of dynamic systems [22].
PID is expressed in terms of the error signal I and has a proportional gain (kP), an integral
gain (kI), and a derivative gain (kD). The ideal continuous PID controller has the following
form:

u(t) = kP·e(t) + kI

∫
e(t)·dt + kD·

de(t)
dt

. (29)

For simplification, Equation (29) can be converted to Equation (30) considering a
unique common controller gain:

u(s) = e(s)·kC

[
1 +

1
Ti·s

+ Td·s
]

, (30)
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with the following tuning parameters: controller gain kC, integral time constant Ti, and
derivative time constant Td.

Equation (30) can be rearranged as Equation (31) to ease the discretization of the
control law:

Ti·s·u(s) = kC

(
Ti·Td·s2 + Ti·s + 1

)
·e(s). (31)

A discrete time representation of Equation (31) can be obtained by applying the
EBD method:

Ti·
(

uK − uK−1

T

)
= kC·

[
Ti·Td

(
eK − 2eK−1 + eK−2

T2

)
+ Ti·

(
eK − eK−1

T

)
+ eK

]
. (32)

For producing a discrete trapezoidal integration form, the last error term can be substi-
tuted by an average of two error samples in Equation (33) and expressed as Equation (34):

eK =
eK + eK−1

2
, (33)

Ti·
(

uK − uK−1

T

)
= kC·

[
Ti·Td

(
eK − 2eK−1 + eK−2

T2

)
+ Ti·

(
eK − eK−1

T

)
+

eK + eK−1

2

]
. (34)

Therefore, the expression for the control law in discrete time is

uK = uK−1 + kC·
[
(eK − eK−1) +

T
TI

·
(

eK + eK−1

2

)
+

Td
T
·(eK − 2eK−1 + eK−2)

]
. (35)

The internal model control (IMC) principle can be used to tune up the PIDs. The IMC-
PID tuning criterion generates a robust controller for a fast and non-oscillating response
despite the variations of the motor parameters [23,24].

The controller parameters for the DC motor model are as follows:

kc = Kd =
1

Km
· τm

τLC
, (36)

Ti =
τm + τLC

2
, (37)

Td = kC

(
τLek − τLek−1

)
2

(38)

where τm is the mechanical time constant, τL is the load torque, τLC is the desired closed-
loop time constant, Km is the model gain, τL_ek is the current load torque, and τLek−1 is the
previous current load.

As can be seen in Figure 5, the joint angular speed is controlled under a reference
change and with a non-negligible continuous small variation of the load. In this closed-loop
control system response, when the estimated load torque changes, the derivative term
compensates for the load torque increase or decrease while the motor speed is kept steady
at the desired speed.

The motor angular speed can be controlled by an internal loop with an IMC-PID
controller, while the motor angular position is controlled by an external loop with a
proportional controller. Figure 6 shows the complete cascade P-PID control strategy. In this
control scheme, θr and ωr are the reference signals for the external and internal controllers,
respectively, where e1 = θr– − θ and e2 = ωr– − ω. The error e1 enters the P controller block
that controls the position by adjusting the speed of the motor; therefore, the P controller
outpIt is passed as speed reference ωr. The speed error e2 enters the PID controller block;
the output of the PID controller applies a voltage to the DC motor to affect the speed. The
DC motors model requires the voltage input to develop a speedω, which is integrated to
give an angular position θ of the DC motor shaft or axis of motion. Additionally, the load
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torque acts as a disturbance variable that can be directly compensated for by the derivative
term of the PID speed controller.
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The control law for the position controller is given by Equation (39), considering a
proportional gain multiplied by the error difference between two consecutive error samples:

uK = uK−1 + kC(eK − eK−1). (39)

Since the control variable (or manipulation) is in integral form, upper and lower limits
speed limits need to be set:

uK > ωmax then uK = ωmax, (40)

uK < ωmin then uK = ωmin. (41)

Figure 7 shows the current position signal using a P controller, with kC = 1, Ti = 0.7,
and a reference signal of 25 (position set point). The speed changes determined by the
controller are observed. The maximum speed is ωMAX = 10 rad/s for one direction, and
−ωMAX = −10 rad/s for the other direction. There is a dead band in such a way that the
minimum speed is ωMIN = 0.1 rad/s for one direction, and −ωMIN = −0.1 rad/s for the
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other direction. The speed transition signal drops gradually, reaching the saturation band.
The speed is represented on the secondary axis of the graph.
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3.3. Finite State Machine for Joint Position Control

The virtual robot is designed for teaching both inverse kinematic control and basic
independent joint control strategies such as the one exposed in Sections 3.1 and 3.2. The
virtual robot can also be used for engineering research to propose novel control techniques.
In this work, a finite state machine position control strategy is introduced to test the
applicability of the virtual robot not only for education but also for research. The finite
state machine or finite automaton is defined mathematically with the quintuple G = (X, Σ,
δ, x0, Xm), where X is the set of states, Σ is the set of symbols of the events, δ represents the
events or logical functions for the transitions between states, x0 is the initial state, and Xm is
a subset of states. Transition functions are logical conditions for state change (input events
or conditions for detecting that the current stage actions are completed, and the system
can go to the next state). In the current state, actions are performed (output commands are
activated). FSM describes the behavior of the system as a machine with a finite number of
states, i.e., through status, events, and actions. FSM is a computational model that can react
to the inputs and status of the system, to make transitions from one state to another and
generate an output in a period of time [25].

3.3.1. Cascade FSM-IMC-PID for Position and Speed Control

The control strategy where an FSM is used as a position controller is depicted in
Figure 8. In the block diagram, the model of the DC motor and the inner and outer loops
are represented. The position error signal e1 enters the FSM controller block. The FSM
controller output generates a speed reference ωr. The speed error e2 is calculated and sent
as the input to the PID controller. The PID controller output is the armature voltage for the
DC motor. The DC motor process responds to the voltage input with a speed ω, which is
integrated to produce the displacement θ of the DC motor shaft.

For the DC motor position control, the automaton is defined with the following
elements: the initial state x0 = 0 corresponds to zero speed output; Xm = {x0} = {0}, i.e.,
the initial state to ensure that, when the position controller, is activated the system can
start a positioning sequence. The states are defined according to the control sequence as
X = {x0, x1, x2, x3, x4, x5} = {0, 1, 2, 3, 4, 5}, the events are Σ = {σ0, σ1, σ2, σ3, σ4, σ5}, and
the transition functions are δ = {δ0, δ1, δ2, δ3, δ4, δ5}. Figure 9 shows the state diagram of
the DC motor position control, whereω is the current speed, e1 is the position error, Dn is
the negative deceleration window, DP is the positive deceleration window, Sn is the stop
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negative window, and SP is the stop positive window. The state diagram has six states that
control the position of the motor. The initial state 0 applies zero angular speed, ω = 0. If the
position set point is changed, an error is computed. If the error is positive, e1 > SP, the FSM
goes to state 1, which generates a constant maximum speed, ωMAX , until the error reaches
a deceleration window, e1 < DP, and the FSM changes to state 2 which applies a minimum
speed, ωMIN . When the position feedback approaches the desired position, e1 < SP, state 5
is activated and enables a proportional controller, ω = kc × e1, and the transition to state
zero happens when e1 > Sn

2 . State zero applies zero speed and, therefore, stops the motor.
If the position setpoint is changed and a negative error is computed, e1 < Sn, the FSM goes
to state 3, which applies a constant maximum negative speed, −ωMAX, until the error
reaches a deceleration window, e1 > Dn; then, the FSM changes to state 4 that applies a
minimum speed, −ωMIN . When the position feedback approaches the desired position,
e1 > Sn, it goes to state 5. Finally, the FSM goes to the zero state to set zero speed if e1 <

Sp
2 .
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denote stop and deceleration error values, subscripts n and p indicate negative and positive values,
and ω is the required angular velocity which can be minimum (MIN) or maximum (MAX). Adapted
with permission from ref. [13]. Copyright 2021 IEEE.
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3.3.2. Response of the FSM-IMC-PID Controller

Figure 10 shows the use of an FSM for a controlled position change of the DC motor
shaft from a reference of 0 to 25, with the previously mentioned speed limits for the position
controller output. In this test, the maximum speed reference is maintained by the FSM
longer than the P position controller, which allows a faster response, where the time to
reach the reference value is 15 s when θ = 25 is reached and ω = 0. Then, the FSM
abruptly reduces its output and proceeds with smaller changes in the desired speed to
reach the desired position without overshoot. Speed values are read in the secondary axis
of the graph. The implementation of the FSM requires an additional stage to activate the
proportional in a small error window for the final deceleration.
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3.3.3. Comparison of FSM versus Proportional Controller

The proportional and FSM position controllers were evaluated using the IMC-PID
speed controller. Maximum speed references were selected and applied to both controllers,
and the closed-loop position control is compared below. In Figure 11, the response of
the position variable is shown using the two control schemes. The response of the FSM
controller was nonlinear; it approached the reference signal θr = 25 more quickly, and
reached the desired value in 9.83 s. In comparison, the use of the position proportional
controller settled the response in 11.33 s. The stability of the FSM controller is ensured by
the controller transitions from one state to another.
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The speed manipulations that the position controllers generate for the internal IMC-
PID speed controller are compared in Figure 12. The speed set point that the proportional
position controller generated was as expected, initially limited by the maximum speed
and later computed to be directly proportional to the position error. The FSM controller
generated two constant speed references: the maximum speed and then the constant
deceleration speed. A zero-speed reference was finally reached at time 10.46 s with the
FSM, and at time 10.8 s with the P controller. The final approach occurred with a speed
directly proportional to the small error, which could be incorporated with an additional
approaching state within the FSM.
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Figure 12. Comparison of manipulations.

Figure 13 shows a comparison of the position errors generated while using the FSM
and P position controllers. The error curves are similar except for the final transition phase.
The FSM led to smaller errors as a function of an accelerated approximation to the set point
value, with opportune deceleration to reach the final desired value with precision, i.e.,
without oscillation. The time integral of the absolute position error during the simulation
test resulted to be 6% less for the case of the FSM controller with respect to the use of the
P controller.
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The following performance indices were considered: integral square error (ISE), inte-
gral absolute error (IAE), and integral of time multiplied absolute error (ITAE). These were
evaluated for the FSM controller and the proportional controller cases during a simulation
time of 20 s covering the transient response and assuring the final stabilization of the
system. The performance indices are shown in Table 2. The FSM position control had a
better response than the only proportional controller according to the three indicators (ISE,
IAE, and ITAE).

Table 2. Performance index of FSM control and proportional control.

Performance Index FSM P %

ISE 74,466.68 78,257.19 4.84
IAE 4498.84 4814.55 6.56

ITAE 11,561.20 13,548.74 14.67

4. Results and Discussion

The virtual UR5 robot developed in Blender was implemented in a workstation with
Modbus connectivity to an external SoftPLC running in the same workstation that can be
remotely accessed. The virtual robot needs to be controlled in an HiL simulation scheme by
means of programming the CoDeSys controller.

4.1. Results

The system was developed as an educational tool for online remote training on robotic
arms particularly the UR type robot. The virtual robot is a visual interface with Modbus
connectivity to an external controller, where the student faces the challenge to develop the
code for modeling the actuators, designing and implementing the actuator control (angular
speed and position), and programming the direct and inverse kinematic equations to be
able to control the position and orientation of the robot.

Real-time control algorithms need to be developed by the user for the two critical levels
of control of the robot: the independent joint position control and the inverse kinematic
control for Cartesian position and orientation. The scheme of Figure 14 shows some possible
control configurations that can be implemented. The first selector at the left is to enable the
inverse kinematic control for the Cartesian positioning for the virtual robot for the direct
operation of the joint angles. The second selector is to enable the position control with the
herein proposed FSM-based position control that requires a servo-controlled dynamical
response in the robot actuators.
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Selectors switches can activate different settings for Cartesian mode, manual mode,
normal mode, and test mode. Vector variables are used to refer to all the joint motors. QR is
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the required value, QSP is the reference value, QM is the manual value, QVP is the process
variable value, and QCOM is the communication value. If the system is active in Cartesian
mode, it performs inverse kinematics to calculate the required angular positions of all
joints, copying the required positions to the position and velocity control reference values.
If the system in Cartesian mode is not active, the manual mode is implied to give a direct
reference to each joint; the manual values of each angle are copied to the reference values of
the position and speed control. If the system is in test mode, it executes the control of all the
joints, and then copies the value of the process variables to the communication variables. If
the system in test mode is not activated, it does not execute the position control, and the
values of the reference value are copied to the communication variables. The test mode is
used to validate the inverse kinematics.

4.2. Discussion

In industrial robots applied in production lines, it is not necessary to know about
actuator control or direct and inverse kinematic control; instead, it is required to learn the
programming language to be able to program the automation tasks and interactions of the
robot with the process. However, engineers working in robot design need to learn how
to control the robot as a mechatronic system, i.e., considering the actuators and sensors,
which implies the development of skills in control techniques at the actuator level, whereby
the control of all the robot joints can be coupled with the kinematics control of the robot.

Robotic design courses which include kinematics and control are conventionally more
theoretical since the robot controllers of commercial robots are considered as black boxes
and normally can only be used for training robotics at the user level (task-oriented). The
main feature of this implementation is to have separate entities: the virtual robot and the
robot control system, as in real robotic systems that are made up of the physical robot and
the control system. The developed systems help the students to learn practical concepts
of robot kinematics and independent joint control that are two basic control levels that
need to be implemented in the robotic arm design process. The developed system is a
virtual UR5 robot that needs to be programmed for both the joint control level and the
Cartesian control. Dynamical responses of the actuators and their position control can
be modeled, programmed, simulated, and verified in the external controller. The inverse
kinematic solution also needs to be programmed in the external controller for the control of
the virtual robot to achieve a desired Cartesian position and orientation and eventually for
trajectory tracking.

In this study, a novel joint position control strategy based on a finite state machine
was implemented in a cascade configuration with a PID internal model control for speed
control. The independent joint control strategy does not imply using the dynamic model
of the robot, but only the dynamic model of the actuators, and they can be controlled for
small variations in load torque as disturbances. The proposed control compensates for the
dynamics of the motor; that is, if the joints are controlled, it can be said that the dynamics
of the robot is controlled. This robust control allows monitoring the speed and has a torque
estimator. This strategy for independent joint control was programmed and verified, and
it was also combined with the inverse kinematic control to show the applicability of the
developed system for the learning of robotic and control subjects.

5. Conclusions

Virtual laboratories have already been successfully implemented in universities and
industries, for practical learning in postgraduate courses, workshops for students, or spe-
cialized training on automation, robotics, virtual automotive painting stations, and Industry
4.0 technology. The featured UR5 virtual robotic system was developed in Blender and
requires an external controller with Modbus connectivity to control the 6DOF articulated
virtual robot. To validate the developed system, inverse kinematics and motion control
strategies are implemented in CoDeSys SoftPLC.
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The UR5 virtual robot was developed following educational trends in technology
based on the use of computer simulation and virtual reality applications. It uses the
Radmin VPN software as remote control software, which allows us to connect to our virtual
robot from anywhere and have full control over it. The main feature of this implementation
is to have separate entities: the virtual robot and the robot control system, as in real robotic
systems that are composed of the physical robot and the control system. The hardware in
the loop architecture allows the development and verification of real-time control system
of the UR5 robot, allowing users to test different control techniques through the ModBus
communication protocol. In this study, a novel technique for the joint position control
based on a FSM was proposed and verified with the virtual UR5 robots.

The proposed system was developed as an educational platform for the implemen-
tation of the required control algorithms, i.e., for the control of each of the robot’s joints
and for the inverse kinematic control of the robot. Students can generate their own control
algorithm and test it with the 3D robot simulator. In this way, users can develop and
compare different control strategies in real time. Therefore, the system is a suitable platform
to teach and learn the kinematics of the UR5 robot and its control. Further work will include
the development of an application for task programing of virtual UR5 robot.
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