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Abstract: How good is a robot? Three challenges arise from this question: first, defining performance
from the robot’s observable behavior; second, quantifying performance with an index that is ob-
tainable through direct measurement or computation, and representative of the measured quantity;
third, ensuring that this procedure is repeatable and general, to enable performance comparison,
benchmarking, and an increase of safety and efficiency standards. However, the landscape of perfor-
mance metrics for industrial manipulators is fragmented, and limited effort is being made toward a
unified framework. This survey aimed at collecting, classifying, and analyzing the key works on the
topic, with a focus on mechanical performance metrics for industrial robots. Two diverging trends
are outlined, with commercial standards adopting a limited set of metrics and academic research
encouraging the development of new performance indices. The shortcomings of both approaches are
highlighted, providing a perspective on how future research could proceed.

Keywords: robot performance; robot design; optimization; robot analysis; mechanism analysis;
performance index

1. Introduction

Which robot should I buy? When acquiring industrial robots, we compare their
specifications, such as accuracy, speed, weight, workspace size, installation size, or price, to
select the one that is most suitable to our needs.

How large should my robot be? When designing a robot, we select its shape, topology,
and dimensions to optimize its behavior for the desired task(s).

Which path should my robot follow? When moving a robot, we choose the fastest or
most convenient path.

These questions have different answers, but they all require an evaluation or mea-
surement of robot performance. In the first case, we can select an optimal solution by
directly comparing the numerical specifications of the robots. In the other cases, we model
the influence of design parameters (e.g., topology, shape, or dimensions) or operational
parameters (e.g., motion variables or exerted force) on the outcome to identify the values
that achieve the desired result in the best way possible. To do so, we need numbers that
quantify how good a robot is at doing something.

Sometimes, the conventional specifications of a robot (i.e., what we find on a com-
mercial datasheet) are enough to know if a robot meets our task requirements. However,
specific scenarios might require task-oriented performance indices to examine different
facets of a robot’s behavior and quantify the influence of a set of parameters on the out-
come. Once this relationship is established, the optimal value of those parameters can be
computed by maximizing or minimizing the chosen index, through a specific algorithm
(e.g., goal attainment, Newton–Raphson, minimax, and genetic algorithms).

While a variety of metrics and optimization procedures have been proposed to measure
and improve robot performance, different methods have often been developed indepen-
dently from each other, with a fragmented research effort rather than aiming at a unified
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framework. As summarized in Table 1, only a few surveys on the topic can be found in the
literature, and most of them refer to specific kinds of robots, applications, or metrics, rather
than discussing robot performance in general terms.

Historically, works on general robot performance can be found from the 1980s [1–3],
when the field appeared less scattered than nowadays. This can be attributed to the smaller
variety of robotic systems on the market, mostly limited to industrial robotic arms [4].
The late 1990s and the early 2000s saw an increasing interest in performance metrics for
manipulators, as documented by a rising number of related works [5,6] (see Appendix A
for detailed numerical data). Works from those years often focused on parallel robots [7–11],
and their comparison to serial architectures [9]. The widespread availability of mobile
robots caused a surge in research papers on optimal path planning in the 2000s [12–19].
These works often focused on the optimization algorithm, and performance metrics were
discussed as objective functions.

Despite a rising number of relevant publications (see Appendix A), the most recent
general surveys on manipulator metrics can be found in the early 2010s [20,21], when new
research trends divided the field even further. Human–robot interaction (HRI) faced the
challenge of finding a quantitative, objective index for subjective characteristics, such as
trust and comfort [20–25]. The solution was to shift from mechanical engineering to social
sciences, merging methodologies from both disciplines. Multi-robot systems (e.g., swarms)
also required tailored performance metrics to quantify robustness, flexibility, aggregation,
and pattern formation [26–30].

Table 1. Previous surveys on metrics for robot performance.

Reference(s) Performance Metrics Type(s) of Robot Year(s)

[1] Mechanics Manipulators 1984

[4] Mechanics, Logistics, Economics Manipulators 1991

[5,6] Mechanics Manipulators 2000–2006

[7–11] Mechanics Manipulators (parallel) 2005–2007

[20,21] Mechanics Manipulators 2012–2015

[12,13] Mechanics Mobile robots (legged) 2012

[14–18] Mechanics Mobile robots (path planning) 2007–2018

[19] Mechanics Mobile robots (UAV) 2020

[20,23–25] Mechanics, Logistics, Social Human-robot interaction 2006–2017

[26,27] Mechanics Multiple robots 2006

[28–30] Mechanics Multiple robots (swarm) 2007–2016

[31] Mechanics, Logistics Manipulators 2017

While all these applications call for distinct approaches, mechanical performance
metrics are still at their core. Different methods have often been developed in parallel
to obtain similar results, since efforts at standardizing performance, even within smaller
subfields, has been scattered at best. This might suggest a lack of interest in the topic, but
the rich literature published in recent years proves otherwise, hinting at researchers using
and developing new metrics while working in isolated bubbles, due to a lack of a central
driving force. Therefore, comparing robot performance is possible for similar robot designs
and similar tasks, as in the example in Figure 1, but becomes difficult (or impossible) when
different designs or operations are considered.
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Figure 1. The need for unified performance metrics is here explained with two examples. In the
first one, we need to evaluate the performance of a robot during two different operations; without a
standard set of metrics across different applications, it is difficult to estimate which task the robot is
more suited to. In the second example, two different robots are both able to perform similar operations.
Selecting the best robot, however, could be challenging if the formulation of the chosen performance
index, or the experimental procedure to evaluate it, changes according to robot architecture, geometry,
or motion parameters.

For this reason, this survey aimed at comparing and classifying existing metrics to
provide an up-to-date and organized overview of performance evaluation for industrial
manipulators. Previous general surveys, such as [20,21], report a comprehensive collection
of metrics, but discussion is limited to technical features of isolated indicators. Conversely,
an in-depth critical perspective on the whole field is here reported. Different approaches
and metrics are described to highlight their advantages and disadvantages, with a focus on
kinematic, static, and dynamic performance indices. The main optimization procedures are
discussed in relation to different kinds of metrics. Finally, current research trends and open
challenges in the field are analyzed to identify future research directions.

Overall, this review provides a comprehensive foundation to robot performance
evaluation, explaining the main methodologies and techniques in this well-established, but
fragmented, field and outlining the gap between commercial and research applications.
As such, this article can interest both an industrial and academic audience, introducing
the topic to engineers who are just approaching the field while providing an organized
discussion with a critical perspective for experienced researchers.

2. Methodology

The term performance is interchangeably used to indicate both the act of executing a
task or function and how well that task or function is done. When referring to robotic
systems, performance metrics thus assess the capabilities of a robot through indicators that are
usually, but not always, numerical (for example, robot topology can be classified through
letters or categories, and capabilities can be represented by logical values).

Not unlike other kinds of measurement, performance metrics aim at facilitating the
description, analysis, and comparison of robots by systematically assigning values to their
properties. As such, these metrics must be meaningful and consistent throughout the field.
Therefore, a general performance index would be favored over a specific one to compare
a wider range of systems. However, generic metrics are often unable to capture every
facet of interest and, thus, characterize specific functions of robot behavior. This need for a
compromise between consistency and meaningfulness led to the development of different
categories of performance metrics, for which a classification is here proposed, according to
the index’s (in)dependency on pose, task, scale/unit, and physics (see Table 2).
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Table 2. A summary of the proposed classification (excluding physics).

Does the Index Depend on . . . Yes No

. . . pose or configuration? Local Global

. . . task, trajectory, or path followed? Extrinsic Intrinsic

. . . unit or scale? Absolute Relative

2.1. Pose Dependency: Global and Local Metrics

Performance metrics can be classified according to their dependency on robot pose
or configuration. A global index is independent from the robot’s motion variables, while a
local index is a function of the robot’s current configuration and could result in a different
value for each point of the workspace.

• Global metrics. Global metrics can either refer to pose-invariant features or represent
an extension of local metrics. The latter is often obtained by taking the minimum,
maximum, or average value of a local index throughout the workspace. A global
index describes performance with a single number for an immediate comparison with
other robots. However, global metrics are blind to gradients of behavior. A local index
with a value of 0 in half of the workspace and 1 in the remaining half would result
in a global index of 0.5 when taking the average value, while another robot with a
local index of 0.5 throughout the entire workspace would be represented by the same
global index but show stark differences in local behavior. This issue is often solved at
a global level by taking the worst value of a local index as the global one, “flattening”
performance to its worst in the workspace.

• Local metrics. Local metrics can describe how robot performance varies point by
point, at the cost of higher complexity and the lack of a single value to characterize the
system. While this approach prevents fast comparison to other robots, local metrics
can be used to detect kinematic singularities and to enable further optimization on
given tasks (e.g., path planning on a trajectory that optimizes a local index).

2.2. Task Dependency: Intrinsic and Extrinsic Metrics

An intrinsic index is a function of the robot’s parameters only (e.g., Jacobian ma-
trix, link dimension) and is task-invariant, whereas an extrinsic index measures robot
performance in relation to a specific task and is, thus, dependent on task parameters (e.g.,
trajectory, time limitations).

• Intrinsic metrics. A good performance on intrinsic metrics characterizes the capability
of a robot to perform generally well and is, thus, suggested for robots designed or
acquired for generic or flexible usage. Intrinsic indices are, thus, preferred in open-
ended applications, such as commercial systems.

• Extrinsic metrics. When a set of tasks is clearly defined as the robot use case, extrinsic
metrics might be more relevant, as they measure how good the robot is within stricter
task-oriented requirements. In general, extrinsic indices are favored for specific oper-
ations that require performance close to the technological limits of the system (e.g.,
custom robots for specific tasks).

2.3. Physics: Kinematic, Static, and Dynamic Metrics

Performance metrics can be classified according to the kind of physical behavior that
they aim to evaluate. Since this manuscript focuses on mechanical performance, the two
main branches of physics involved are kinematics and dynamics. However, specific appli-
cations might require different metrics related, for example, to thermal or electromagnetic
performance, or to any other relevant physics subfield. While these metrics are not dis-
cussed here, they should be considered when evaluating a system that cannot be fully
characterized by classical mechanics.
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• Kinematic metrics. Kinematic metrics characterize the behavior of a robotic system in
relation to its motion and are a function of its architecture, topology, and geometry.
Most of the data commonly found on commercial robot datasheets are kinematic
metrics, including accuracy, repeatability, speed, and workspace. For robot analysis,
Jacobian-based kinematic indices have arguably been the most successful to evaluate
performance both at local and global levels.

• Static and dynamic metrics. Dynamic metrics quantify performance in terms of loads
acting on the system and are significantly affected by the robot’s inertial characteristics.
Commercial dynamic metrics are related to the robot’s payload and power consump-
tion, whereas more complex indices are used for path planning. When the inertial
effects on the system can be safely neglected, static metrics can be used, instead of
dynamic ones, to simplify problem formulation and system evaluation.

• Other metrics. While most mechanical indicators are related to kinematics, statics,
and dynamics, other kinds of metrics are sometimes used. For example, qualitative
indicators and rate of success are common in human–robot interaction. These metrics
tend to be field dependent and, as such, difficult to transfer to other robots.

2.4. Index Anatomy

In the previous paragraphs, performance metrics were introduced in a qualitative way.
However, as our aim was to quantify the behavior of a robot and “translate” it into easily
readable values, the form and derivation of an index are extremely important, as the same
performance can be described in multiple different ways, whether we measure it in its
absolute value or in a dimensionless, relative scale.

• Absolute metrics. An absolute index expresses the performance of a robot as acquired,
evaluated, or computed in a measurement system. This implies that the index is
measured against a scale and, thus, characterized by its own unit of measure, which
could be, for example, meters, meters per second, kilograms, Newtons, or any other
unit. The main advantage of an absolute index is immediacy, as any trained engineer,
technician, or person in the trade can evaluate the index thanks to its familiarity with
the unit. For example, if we are told that a robot has a payload of 4 kg, we instinctively
know that it can be used to lift a shoe, might struggle with a heavy backpack, and
will definitely fail with a car. However, an absolute number in a vacuum is useless: in
the previous example, we are unconsciously evaluating the requirements (less than
1 kg for a shoe, between 1 and 10 kg for the backpack, around 1000 kg for the car)
and comparing them to our limit. When requirements are not known, unfamiliar,
or difficult to instinctively understand, the advantages of absolute metrics wane.
Furthermore, if we are comparing systems that perform the same task in different
ways, we might measure their performance with indices in different units or scales,
which are not comparable in absolute values.

• Relative metrics. While less immediate to quantitively grasp than absolute metrics,
relative indices enable better and faster comparison, independent from scale and
unit. A relative index is usually obtained from an absolute index by dividing it
by a reference value, which might be, for example, a requirement, a standard, or a
previous measure. As such, relative metrics are dimensionless and only convey our
distance from the reference. As such, a key challenge of relative metrics is selecting a
meaningful reference. Even though the numerical value of a relative index is arbitrary,
scales from 0 to 1, −1 to 1, or percentiles are usually preferred. Relative metrics might
be seen as less meaningful than absolute ones: for example, lifting a load that is 60% of
our payload does not tell us anything about how much that load is without additional
information. However, they allow the establishment, at a glance, of not only whether
our robot would succeed in a specific task, but also of our margin of success (or failure).
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3. Standard Metrics

We usually start evaluating commercial robots from the technical specifications on
their datasheet. Even though these metrics are mostly used to set performance boundaries,
rather than to analyze the robot’s behavior in detail, they are the conventional performance
indicators in robotics. A non-comprehensive list of common metrics among industrial
robots is reported in Table 3. Most of these indicators, which usually appear on commercial
robot datasheets, are global and intrinsic, as they aim at outlining the robot’s characteris-
tics with immediacy, to enable comparison with competitors. Conversely, extrinsic and
local metrics are suggested by the US National Institute of Standards and Technology
(NIST) as key performance indicators to capture empirical evidence of performance in a
desired operation [31].

Table 3. Examples of metrics from robot specifications and standards [31].

Index Pose Dependency Task Dependency Physics Type

Weight Global Intrinsic Dynamics Commercial

Payload Global Intrinsic Dynamics Commercial

Joint range Global Intrinsic Kinematics Commercial

Workspace Global Intrinsic Kinematics Commercial

Speed Global Intrinsic Kinematics Commercial

Moment of inertia Global Intrinsic Dynamics Commercial

Accuracy 1 Global Intrinsic Kinematics Commercial

Repeatability 1 Global Intrinsic Kinematics Commercial

Degrees of freedom Global Intrinsic Kinematics Commercial

Power consumption 2 Global Extrinsic Dynamics Commercial

Temperature range Global Intrinsic Other Commercial

Joint pose Local Extrinsic Kinematics Standard

Joint velocity Local Extrinsic Kinematics Standard

Joint current Local Extrinsic Dynamics Standard

Actuation latency Global Intrinsic Other Standard

Pose travel time Local Extrinsic Kinematics Standard

Accuracy 1 Local Extrinsic Kinematics Standard

Repeatability 1 Local Extrinsic Kinematics Standard

Energy consumption 2 Global Extrinsic Dynamics Standard

Job execution time Global Extrinsic Kinematics Standard
1 Accuracy and repeatability appear as global intrinsic metrics in commercial datasheets and as local extrinsic
metrics in NIST standards, as the latter measures local performance over a given point dataset, while commer-
cially measuring an extension to a global value (representing the worst performance in the workspace) is used.
2 Power consumption is estimated for typical use on commercial datasheets, but the procedure is not standardized
and differs among manufacturers. The energy consumption indicator suggested by the NIST standard, instead,
represents the power consumption over the course of the target manufacturing operation.

While the datasheets of robots for specific applications, or with peculiar architectures,
could include unusual indicators, the metrics in Table 3 are quite standardized across a
wide range of robots, manufacturers, and markets. Furthermore, they are commonly used
in research papers to characterize and optimize robot designs. However, their generality
makes them suited to a coarse design selection, rather than a fine tuning of robot perfor-
mance. As such, more refined kinematic, static, and dynamic metrics represent a better
solution for complex optimization problems or demanding tasks.
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4. Kinematic Performance

Kinematic indices only depend on a robot’s geometrical and motion parameters,
considering neither forces and torques acting on the system nor its mass and inertial
properties. Kinematic metrics, thus, include motion limits, such as motion range, collision
avoidance, maximum speed, and maximum acceleration, as well as precision indicators,
such as accuracy, repeatability, and resolution [7,32]. Common kinematic metrics are
summarized in Table 4; while a more comprehensive listing can be found in previous
surveys [20,21]. Herein, the most successful ones were selected with the aim of encouraging
the use of widespread and general metrics, rather than new (but often similar or equivalent)
ones that are relevant to a more limited number of works or systems.

Table 4. Common performance metrics.

Index Formulation Pose
Dependency

Task
Dependency Physics Description Ref.

Accuracy 1,2 Max or mean
error value Global Intrinsic Kinematics Capability to achieve a

desired pose [32]

Repeatability 1,2 Max or mean
error deviation Global Intrinsic Kinematics Capability to return to the

same pose multiple times [32]

Resolution 3 – Global Intrinsic Kinematics Smallest incremental
motion [32]

Workspace
volume 1,4 V =

∫
W dW Global Intrinsic Kinematics

Volume of the region of
space reachable by the

end-effector
[21]

Workspace
index WSI = nws

nobj
Global Extrinsic Kinematics Reachable percentage of

the objective workspace [33]

Manipulability
index µ =

√
||JJT || Local Intrinsic Kinematics

Local amplification factor
from actuation to

end-effector motion
[34]

Condition
number κ = ||J||||J−1 || Local Intrinsic Kinematics

Local amplification factor
from actuation to

end-effector motion
[35]

Global
conditioning

index
η =

∫
W κ−1dW∫

W dW
Global Intrinsic Kinematics

Average amplification
factor from actuation to

end-effector motion
[35]

Global
transmission

index 1
GTI = |cos µ| Local Intrinsic Statics

Quality of transmission
from input wrench to

output motion
[36]

Stiffness
matrix 1 KC = J−TKϑJ−1 Local Intrinsic Statics

Stiffness (relationship
between load and

corresponding deflection)
[37]

Dynamic
manipulability µd =

√
||J
(
MMT)−1JT || Local Intrinsic Dynamics

Acceleration capability
from a known actuation

force/moment
[38]

Energy
consumption 1 Varies Global Extrinsic Dynamics Energy required to

perform an operation [39]

1 Multiple definitions and formulations are available for this index. 2 This index is usually provided as a global
(worst performance in workspace) measure, but it could be formulated locally. 3 This index is obtained from
hardware specifications. 4 This index is usually provided as intrinsic, but it could be formulated differently to
include task-specific constraints (e.g., known obstacles).

4.1. Precision

The performance of a robot in tasks where positioning is critical (e.g., machining
tasks [40], pick and place [41]) is usually defined through precision metrics. Three common
indicators are used in this regard: accuracy, repeatability, and resolution [32], illustrated in
Figure 2. Several Jacobian-based indicators, detailed below, can also act as local indicators
of robot precision.
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Figure 2. A graphical representation of accuracy and repeatability in a task that requires hitting
the center of a target: a low accuracy results in points being far from the center, whereas a low
repeatability increases the area in which points are scattered.

• Accuracy. Robot accuracy represents how capable a robot is at achieving a desired
pose. It is usually expressed as the displacement between the desired pose and the pose
reached by the robot when the desired one is provided as input. Since the robot realizes
a pose by calculating the corresponding actuation through its kinematics, accuracy
is a function of its modeling parameters, including (but not limited to) the following:
link lengths, joint type and position, other geometrical parameters, environment, tool,
and fixture models. As such, accuracy can be increased by precise measurement,
calibration, and tuning of these values [42–46].

• Repeatability. Complementary to accuracy, repeatability is the ability of a robot to
return to the same pose multiple times. It is usually computed by commanding the
robot to reach a set of poses in a recursive way and estimating the maximum radius
among the spheres that enclose the set of locations reached for each configuration [32].
This metric is not related to accuracy. The spheres may not include the desired points
at some (or all) of those locations, as we aim at measuring the robot’s reliability
and consistency, rather than its margin of success. Whereas accuracy can be usually
improved through calibration or error compensation, repeatability is a function of
parameters that are intrinsic to the robot’s architecture and design, such as joint and
motor backlash, friction, motion transmission, and assembly tolerances.

• Resolution. Resolution represents the smallest incremental motion that can be pro-
duced and measured by the manipulator. It mostly depends on the resolution of the
robot’s sensors (e.g., motor encoders) and of its actuation technology (e.g., step size of
a stepper motor) [32].

4.2. Workspace

The workspace of a robot represents a region of space that can be reached by its tool,
or end-effector. This region can be obtained through different definitions with different
results [7]. Common definitions for optimization include the reachable workspace (reach-
able points with at least one orientation [47,48]), translation workspace (reachable points
with a given orientation [49–51]), orientation workspace (reachable orientations in a given
point [52,53]), and the dexterous workspace (reachable points with all orientations [54–57]).
When evaluating a robot in term of its workspace, we usually tend to use intrinsic met-
rics, computing workspace volume by considering the robot’s geometrical constraints, i.e.,
joint limits, actuation range, self-collision, singular configurations. However, extrinsic
workspace metrics can be adopted when analyzing tasks where the workspace is char-
acterized by obstacles or other environmental conditions that reduce the robot’s range
of motion.
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• Workspace volume. Most commercial datasheets provide workspace data both directly,
by reporting the shape of the robot’s workspace, and indirectly, through joint limits. A
single index is challenging to define, with the volume V of workspace W, evaluated
either numerically, analytically, or geometrically (Figure 3, [58]) and expressed as
arguably being the only popular one [7,21]. However, nonlinear kinematics and the
lack of closed-form solutions for most architectures makes evaluating workspace
volume complex and time-consuming, especially in recursive optimization algorithms
where the computation is repeated a large number of times. Furthermore, workspace
volume does not always represent the robot’s actual performance. Since shape is not
considered, this value might include regions of space that are irrelevant for most tasks.
To address this issue, an operational workspace, defined as the largest cylinder, sphere,
parallelepiped, or prism inscribed in the reachable workspace, is sometimes used
instead of the robot’s own workspace. Since workspace volume is an absolute index,
relative formulations have been proposed to evaluate its size with respect to the size
of the robot [59].

V =
∫

W
dW, (1)

• Workspace index. Task-oriented workspace metrics can be obtained by including
obstacles and specific environmental conditions in workspace volume computations,
as mentioned earlier. However, a more significative index can be obtained by compar-
ing the robot’s workspace to the desired operational volume. To avoid complicated
modeling, this can be achieved by discretizing the workspace in voxels (the equivalent
of a 3D pixel, i.e., a small cubic volume around a node of a 3D grid; other shapes or
definitions of discrete volumes can be used) and comparing the number of objective
voxels in the workspace nws to the total number of objective voxels nobj as

WSI =
nws

nobj
. (2)

This workspace index WSI ranges from zero to one and represents the reachable
percentage of the objective workspace [33]. Many recent works adopted similar workspace
index definitions by comparing the workspace volume to a reference value [60–64].

Figure 3. Three representations of the same workspace: a discrete point-based formulation (a), the
exact workspace volume from an analytical or algebraic formulation (b), and a division in discrete
volumes (c). The discrete point cloud can be easily computed through forward and inverse kinematics
by discretizing actuator motion or target operational space, respectively; however, workspace volume
can only be approximated from this formulation (unless the robot under examination is discretely
actuated, e.g., [65]). Algebraic and analytical formulations are more complex but result into exact
values. A volume discretization represents a compromise between the previous two methods.
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4.3. Jacobian

A large family of kinematic performance metrics is defined through the Jacobian
matrix J of the robot, which represents the relationship between joint/actuator velocity and
the resulting end-effector velocity [8,66] as:

.
x = J

.
q (3)

where x =
(

x, y, z, ϑx, ϑy, ϑz
)T defines the position and orientation of the end-effector,

q = ( q1, q2, . . . , qn)
T is the current position of each actuator (up to the n degrees of

freedom of the robot), and
.
x and

.
q are their respective time derivatives. As such, the

Jacobian links actuator performance, which is usually easily measurable, to the behavior
of the end-effector, enabling a quick evaluation from accessible and reliable data and
establishing a linear relationship between the manipulator motion and its corresponding
actuation. As illustrated in Figure 4, this “amplification factor” from motor to end-effector
is represented by mapping a bounded error at the actuators

.
q, described by the hypersphere

|| .q|| ≤ 1 , into an ellipsoid in the generalized Cartesian space
.
x as:

|| .q|| ≤ 1⇒ .
xTJ−TJ−1 .

x ≤ 1 (4)

Figure 4. Representation of the manipulability ellipsoid from actuation to cartesian space.

The shape and volume of this ellipsoid were proposed to characterize the manipulator
dexterity [34]. However, this formulation suffers from its dependency on scale, dimensions,
and frame, which can lead to physical inconsistencies [67,68]. Nevertheless, several metrics
based on this concept have been proposed.

• Manipulability index. The manipulability index µ, proposed by Yoshikawa in 1983 [34],
is computed as:

µ =
√
||JJT || (5)

• Condition number. Given the above-mentioned limitations of manipulability mea-
sures, in 1991 Gosselin and Angeles proposed using the condition number of the
Jacobian matrix as a measure of the accuracy of both the Cartesian velocity of the robot,
as a function of joint rates, and the static load on the end-effector, as a function on load
cells on the joint axes [35]. The condition number κ, defined as:

κ = ||J||||J−1|| (6)

Represents the error amplification factor intrinsic to the robot’s structure. This for-
mulation avoids the limitations of previous manipulability measures and, different to
Yoshikawa’s manipulability index, conveniently ranges from one to ∞. As such, its recipro-
cal represents an “ideal” relative index with a value of zero in singular configurations and
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one corresponding to the best performance. The condition number has been fairly success-
ful in recent works, with many examples in different fields and applications (e.g., [69–71]).

All these metrics characterize robot performance in a single pose, since the numerical
values of the Jacobian matrix vary in different points of the workspace. Therefore, they
can be used to identify an optimal operation path which only moves through a trajectory
characterized by the highest possible values of these local indices. However, if we aim
at characterizing the overall robot performance, this concept can be expanded to obtain a
global index by evaluating an average throughout the workspace [72–76].

• Global conditioning index. The global conditioning index η [35] is defined for a
volume W as:

η =

∫
W κ−1dW∫

W dW
. (7)

Other local metrics can be similarly expanded to formulate analog global indicators,
evaluating the average of the index in the objective workspace volume.

Overall, Jacobian-based metrics are extensively used for both serial and parallel
architectures in mechanism synthesis and design [69], workspace optimization [77,78], path
planning [79], and control [80], as they capture robot performance both at a local and global
level and can be easily adapted to evaluate a wide variety of situations. However, their
limitations should not be overlooked. Since the Jacobian matrix is a non-homogeneous
matrix, that includes both rotation and translation and is dependent on the choice of
physical unit, numerical results from Jacobian-based calculations should always be critically
evaluated to ensure they represent the robot’s real behavior.

4.4. Remarks

While kinematic performance is critical for all kinds of robots, it is worth noting that all
the metrics introduced in this section were first developed to study manipulators. This can
be partially attributed to robotic arms being the first robotic system to reach technological
maturity; however, another key factor is that many manipulation and machining tasks are
characterized by strict requirements on precision and speed that need to be satisfied before
considering the dynamic aspects. Other systems, such as mobile robots, depend more on
dynamic features, such as energy consumption, inertial effects, and dynamic balance [12].
Kinematic metrics are less relevant for those robots, as static or dynamic performance
indicators are needed for a significant evaluation.

5. Static and Dynamic Performance

Static metrics evaluate the performance of a robot under the effect of a load and
are common for relatively slow operations (with limited accelerations). Dynamic metrics
generalize static formulations by considering inertial effects. The most common static and
dynamic performance indicators are linked to force transmission, stiffness, and power
consumption. These metrics are widely used and are critical for robots in dynamic envi-
ronments, such as underwater and aerial robots, or those requiring dynamic balance for
functioning, such as bipeds.

5.1. Statics

• Global transmission index. The concept of transmission performance has been used
to evaluate robots since its introduction in the 1990s [81,82] and has been quite popular
for the evaluation of parallel mechanisms [36,83–85]. The transmission index aims at
measuring the quality and efficiency of a robot at transforming inputs into outputs.
The following formulation:

GTI = |cos µ| (8)
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Computes the Global Transmission Index GTI as the cosine of its pressure angle µ,
defined as the angle between the transmission wrench screw (characterizing the input load
on the system) and the corresponding output twist screw (i.e., motion). Even though a
more general formulation was published [36], the reported example in (7) is here preferred
as being easier to understand. While wrench transmission is at the core of this index, most
formulations of transmission metrics, including its general one [36], only depend on the
kinematics of the system. As such, this measure could also be classified as a kinematic index.

• Stiffness matrix. Stiffness plays a key role in the operation and control of any robotic
system, and it is often evaluated from the robot’s stiffness matrix, which describes
the relationship from the static wrench and corresponding deflection [86]. When
linear elasticity in the actuators is considered, two kinds of stiffness matrix are usually
studied: a Cartesian stiffness matrix KC, which evaluates the deflection at the end-
effector ∆x caused by wrench f as:

f = KC∆x, (9)

and a joint-space stiffness matrix Kϑ , which computes joint deflection ∆q from joint load
τ as:

τ = Kϑ∆q. (10)

These two stiffness matrices are linked by a Jacobian dependent relationship: since
∆q = J−1∆x and f = J−Tτ, Equation (10) can be rewritten as f = J−TKϑJ−1∆x, yielding:

KC = J−TKϑJ−1. (11)

This result is often used to characterize the end-effector’s elastic response to a load and
can also be expanded to include passive joints [37]. A numerical index can be extracted from
the stiffness matrix (e.g., determinant). With this formulation, stiffness evaluation is local
and characterized by the disadvantages of Jacobian-based metrics. Different formulations
(e.g., energy-based [87–89] or deflection-based [90]) can overcome this disadvantage at the
cost of limited generality. Nevertheless, stiffness optimization is critical in tasks that require
high precision, such as machining [91–95].

5.2. Dynamics

Whereas kinematic and static metrics characterize (quasi-)static configurations, dy-
namic metrics are needed to describe how motion affects robot performance (e.g., with
inertial effects, Coriolis and centrifugal forces, and gravity). Therefore, dynamic metrics
often depend on the task under examination and are used for path planning or control,
rather than design or robot selection.

• Dynamic manipulability index. The manipulability index, while originally related
to kinematics only, has been expanded for a dynamic formulation by including the
inertia matrix M of the system [38], as:

µd =

√
||J
(
MMT)−1JT ||. (12)

This index is intrinsic, and, as such, it can be used to evaluate the dynamic performance
of the robot without defining an arbitrary task beforehand. However, as an expansion
of the kinematic manipulability, it still suffers from the same limitations and posture
dependency. Other kinematic concepts have been similarly adapted to include dynamics
(e.g., conditioning index [96], inertial ellipsoid [97], and manipulability ellipsoid [98]), but
their usage has been scattered because of more successful and/or efficient approaches to
path planning (e.g., energy, potential field [99]).
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• Energy consumption. A widely used indicator of dynamic performance is energy
consumption. Given the large variety of robots that have been characterized with en-
ergy consumption indicators, including multi-robot systems [100], legged robots [101],
wheeled robots [39], industrial robots [102,103], and drones [104], many formulation
have been proposed, all directly modeling energy or power consumption. Further
energy- and power-based indicators, such as the power manipulability index [105]
and the energy performance index [106], achieve more general, relative, or intrinsic
measures. Nevertheless, the immediacy of energy (or power) consumption (easy to
read and use practically, for example, for dimensioning a battery or finding the most
energy-efficient path [107,108]) makes it successful, despite its disadvantages (scale
dependency, task dependency, and variety of formulations).

6. Optimization

Performance metrics are mostly used either for directly comparing robots or as a tool
for design or motion optimization. Regarding the latter, any of the numerical indicators
presented in the previous section can be used as an objective function fi of an optimization
problem, which can be stated in its general form as:

min F(r); g(r) ≤ 0; h(r) = 0 (13)

where r = [r1 r2 · · · rm]
T is a vector containing the design and control parameters of the

entire system, and F(r) = [ f1(r) f2(r) · · · fn(r)]
T is the vector of the performance indicators to

optimize. The system is limited by p inequality constrains g(r) =
[
g1(r) g2(r) · · · gp(r)

]T and
t equality constraints h(r) = [h1(r) h2(r) · · · ht(r)]

T. The variables m and n are the number
of parameters and of metrics to optimize, respectively, so that F : Rm → Rn [109,110].

When a single index (n = 1) is sufficient to characterize robot performance, the
problem statement is reduced to a simple minimization problem and can quickly converge
to a solution. However, when this is not the case, multi-objective optimization (n > 1) is
required, introducing additional challenges, such as selecting a representative set of metrics
and identifying a single solution out of a set of optimal ones. These two challenges are
strictly intertwined: multi-objective optimization leads to contradictory results when a
feasible solution that minimizes simultaneously all the objective functions does not exist.
Thus, it is necessary to find the optimal solutions to the problem (known as the Pareto front)
as those solutions which cannot be improved in any of the objectives without degrading at
least another one [109].

• Metrics selection. When selecting multiple metrics, robot behavior should be captured
as widely as possible. Optimizing two Jacobian-based indices at the same time,
for example, is likely to result in similar parameter sets which are both close to
optimization, because of formulation similarities. A superficial reading might find this
advantageous, as it removes the hassle of selecting the right solution, but an equivalent
result is likely achieved by a single-objective optimization in a more efficient way. For
this reason, the objective functions should be metrics with independent formulations
and represent distinct facets of robot behavior. Whenever multiple distinct metrics
yield similar results, a critical analysis is, thus, necessary to identify and remove
redundant indicators.

• Finding a solution. Once the objective functions have been selected and the Pareto
front computed, a single solution must be chosen out of all the feasible ones. While
an arbitrary solution could be used, several procedures have been formulated to
guide the user in making an informed decision [66,111–113]. More recently, machine
learning has been replacing traditional optimization procedures, by providing an
accurate and time-efficient solution for optimization problems that allow data-based
approaches [114–116]. Data-driven approaches, such as learning, are evidently
advantageous, not only for solution selection but also computation. However, their
results should not be taken for granted: these techniques act as a black box between
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input (problem formulation) and output (optimal parameter set), and the reliability
of their results should be carefully evaluated.

7. Discussion
7.1. Open Challenges

This manuscript provides a collection of popular robot performance metrics, highlight-
ing the main methodologies and techniques for the evaluation of manipulators. However,
three key challenges are faced when developing, or using, performance indicators:

• Index relevance. A successful index requires fine tuning between general description
and describing a facet of the robot’s performance in detail. An index that is too
generic might become meaningless, but a very specific index hinders comparison or
loses immediacy. This challenge is exacerbated by the diverging needs of developers
and users of robot performance metrics: industry and academia. Commercial and
industrial applications favor intrinsic and/or global metrics, which cover a large
variety of applications and robots and, thus, appeal to a wider audience. Researchers
generally prefer extrinsic and/or local metrics, since generic metrics might neglect
specific aspects required for a particular development.

• Fragmented research field. The indicators reported in this article, while being represen-
tative of the entire field, are only a small portion of it. Given the wide variety of robots
and applications, no individual index or optimization method is expected to work
for every scenario, but current usage of performance indices is extremely fragmented,
and no standard exists, even within specific subfields and applications. Multiple
causes are behind this issue, such as the following: specific tasks might benefit from a
tailored performance index; the computation of an existing index might be difficult for
a specific scenario, and a variant preferred; an index for a specific case might not be
representative of performance in a more general scenario; or new designs (e.g., soft
and continuum robots, and drones) might display features and behaviors that cannot
be described by existing metrics.

• Limited research scope. Apart from these technical challenges, the lack of research
focus on the topic represents an additional obstacle to the standardization and further
development of the whole field. Research on performance indices is often a small part
within large projects focusing on design or control. Thus, these metrics are perceived
as a means to an objective end rather than the objective itself, hindering efforts toward
a unified framework. This issue became clear when examining the relevant scientific
literature: most works on the topics, including many of the general surveys referenced
in this article, only mentioned metrics as a necessary part of optimization procedures,
without discussing their formulation, relevance, and generality.

7.2. Future Outlook

Previous surveys on the topic ([20,21]) suggest defining new metrics to remove the
dependency on scale, dimension, frame, and order of currently used ones. However, that
position is not shared herein. First, these dependencies are generally seen as drawbacks.
but can be convenient in some cases, providing immediacy and a clearer understanding of
the physical meaning behind their numerical value. Moreover, relative metrics aim at being
general but still depend on the reference value used to normalize them, which might be
an arbitrary value, the minimum, mean, or maximum measured value, or a characteristic
of the robot (e.g., size). Thus, while reckoning the value of advocating for dimensionless
indices within a predetermined range, it would be detrimental for them to totally replace
familiar metrics, such as speed, joint range, and payload.

In the author’s opinion, the following points are critical for the development of the
field in the next decade:

• Standardization. With the field becoming wider and more scattered, researchers
and engineers should start addressing performance metrics with a more structured,
systematic approach and focus. Roboticists should be encouraged to adopt a unified
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set of performance metrics, rather than look for new indices, as the literature on the
topic is getting increasingly difficult to navigate with the proliferation of similar, but
distinct, metrics based on the same principles.

• Benchmarking. The definition of standard metrics should not be limited to their
mathematical formulation but also address the need for a set of procedures to measure
robot performance and for a database of relative benchmarks. Such a framework would
enable a straightforward evaluation, comparison, and optimization of robotic systems,
promoting best practices for an overall increase in safety, quality, and reliability in the
entire field.

• Communication with stakeholders and policy makers. Existing national standards
(e.g., [31]) are outpaced by the rapidly developing technologies. This two-speed issue
between policy and research is exacerbated by the limited communication between
scientists, stakeholders, and policy makers. Encouraging discussion between these
three groups is fundamental in creating, and defining, a framework of general interest.

• Evaluating innovative designs. Many novel robot designs and architectures elude
conventional definitions and models on which many performance metrics are defined.
For example, continuum and soft manipulators cannot be described with rigid-body
models, and their behavior radically differs from traditional robotic arms. Before
evaluating these robots with conventional metrics, or trying to define new indicators,
we must ask ourselves how their performance differs and which facet of it we are
interested in capturing. For example, soft and compliant design cannot compete in
precision or stiffness with rigid mechanisms, but easily succeeds in unstructured tasks
where rigid manipulators fail. Once these robots reach technological maturity, new
metrics will be needed to measure their new capabilities.
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Appendix A

Search Methodology

The generation of the bibliography for this paper started with a keyword search on
three databases: SCOPUS, Web of Science, and IEEE Xplore. In each database, articles
containing at least a keyword from a first set {robot; manipulator; robotics} and a keyword
from a second set {performance; optimization; metrics; index; indicator} were selected. Re-
sults were further refined by subject area {Engineering; Computer Science} in SCOPUS, by
subject {Robotics; Automation Control Systems; Engineering, Mechanical} within the Science
Citation Index Expanded (SCI-E) in Web of Science; and by subject {Manipulators; Kinematics;
Optimization} in IEEE Xplore, with the results shown in Table A1 and Figure A1.

After removing duplicate studies, the resulting bibliography was sorted by number of
references, and year of publication, and filtered to identify literature surveys. One step of
backward and forward citation tracking (i.e., checking articles cited by, or that cited, a paper
under study, performed through the above-mentioned databases and Google Scholar) was
performed on seminal papers (top 50 most cited, weighted by the number of citations by
years since publication not to penalize recent publications) to find references that might
have been missed during the database search. Finally, a last set of publications was added
from the author’s knowledge.

The reference list for this manuscript was refined from this bibliographical search to
highlight the papers that introduced or described key indices, surveys on the topic, and
selected publications chosen by number of citations and relevance to this review, with a
priority on recently published works.
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Table A1. Results of database searches.

Database SCOPUS Web of Science IEEE Xplore

Total articles 1 150582 22479 32621

Total journal 95456 12404 5443

Total conference 13892 10298 27178

Refined articles 1 6462 9644 7032

Refined journal 3231 9102 1247

Refined conference 2918 403 5785
1 Including indexed journal articles, conference papers, book chapters, and books.

Figure A1. Results of refined literature search. The number of papers by year shows how interest in
the topic has grown over time, but this growth is not mirrored by an increasing number of surveys
on the topic (see Table 1).
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