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Abstract: The spread of cobotsin common industrial practice has led constructors to prefer the
development of collaborative features that are necessary to prevent injuries to operators over the
realization of simple kinematic structures for which the joints-to-workspace mapping is well known.
An example is given by the replacement in serial robots of spherical wrists with safer solutions, where
the danger of crushing and shearing is intrinsically avoided. Despite this tendency, the kinematic map
between actuated joints and the Cartesian workspace remains of paramount importance for robot
analysis and programming, deserving the attention of the research community. This paper proposes
a closed-form solution for the inverse kinematics of a class of 6R robotic arms with six degrees of
freedom and non-spherical wrists. The solutions are worked out by a single polynomial, of minimum
degree, in terms of one of the positioning parameters chosen for the description of the robot posture.
The roots of such a polynomial are then back-substituted to determine all the remaining unknowns.
A numerical example is finally shown to verify the validity of the proposed implementation for a
commercial collaborative robot.

Keywords: inverse kinematics; collaborative robot; non-spherical wrist

1. Introduction

The last decade has witnessed the spread of collaborative robotics in many aspects of
everyday life, from common industrial practice [1] to home assistance and healthcare [2,3],
and service robotics in general [4]. The main reason for such an impact lies in the flexible
use of cobots (collaborative robots). Their success in industry, in fact, is mostly attributed
to the possibility to implement workflows where humans and robots safely cooperate in a
shared environment [5–7]. This feature has recently being exploited in fields of applications
different from bare production, where the use of classical industrial robots would be
impossible for obvious safety reasons.

From the point of view of robot producers, such an unprecedented diffusion has
required the development of innovative safety features, aimed at making the use of cobots
increasingly secure and accessible to the wider public. Therefore, on the one hand, pro-
ducers have been required to implement expensive sensors and use appropriate materials
to assess the risk of injury in using cobots, and, on the other, they have been forced to
maintain competitive production costs to make their machines accessible. The first conse-
quence, as visible in many well-known commercial cobots, has been the adoption of serial
kinematic structures that are simple and inexpensive to realize, such as those characterized
by non-serial wrists.

The class of collaborative robots produced by FANUC, among others, belongs to such
a category. Their kinematic structure, described in the following in detail, is characterized
by a non-spherical roll–pitch–roll wrist that makes inverse kinematics mapping quite
challenging. Recent literature shows different approaches to the issue. Trinh et al. [8]
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proposed a geometrical approach consisting of the solution of four separate univariate
polynomials. In [9], the authors proposed a solution via numerical optimization of a
problem formulated by means of polynomials for a similar robot (namely the Kinova
Gen-3 Lite). In [10], a solution for a different non-spherical collaborative robot is tackled as
well, although the wrist topology in this case allows a far simpler approach based on the
computation of the first joint rotation at the very first step of the algorithm.

In less recent years, the problem has been approached in more general ways. Among
others, Raghavan and Roth approached the problem of general linkages [11,12], demon-
strating the existence of a maximum number of 16 solutions for the inverse kinematics
of 6R (i.e., mechanisms owning a kinematic chain of six revolute joints) linkages. Their
work, based on the solution via dialytic elimination of joints variables, inspired many other
polynomial approaches, such as the Groebner basis work proposed by Wang et al. [13],
or the eigenvalue approaches of Fu et al. [14] and Ghazvini [15].

Aside from such general solutions, the research community has provided many
others for manipulators with spherical wrists. Among them, the method proposed by
Xiao et al. [16] proposed to reach a solution by applying two cutting points within the
kinematic chain and comparing the equations coming from their re-connection. Li et al. [17]
considered the effect of compensation of the link lengths, so that their approach became
effective after kinematic calibration.

Of course, the literature also offers plenty of numerical approaches to the prob-
lem, commonly used to find a solution by letting a starting configuration converge to-
wards an end pose. Such methods are often based on the robot Jacobian matrix [18],
differing one from the other for the management of singularities within the solution
path. Among them, the Damped Least-Squares is the iterative approach most widely
used [19–22], although convergence is strictly dependent on the used damping factor.
Other more recent approaches have also been experimented with, such as the training
of specific artificial intelligence as done in [23]. In any case, all of these approaches only
allow the discovery of one solution to the problem (the closest to a first guess, usually),
disregarding the large number of postures a 6R kinematic chain can exhibit to reach a
given pose.

To overcome the limits of numerical approaches, a specific closed-form solution to
the inverse kinematics of the FANUC CRX family of collaborative robots is proposed in
this manuscript. As discussed in the following, the solution is worked out in the form
of a univariate polynomial in one of the orientation parameters of the first body of the
wrist. Such an approach allows the obtaining of the solving polynomial (of degree 16) with
relative ease, starting from a system of six constraint equations. The backwards substitution
needed for the computation of the remainder of the unknowns is then described in detail.
Finally, a numerical example to verify the correctness of the solution is also proposed.

2. Robot Description

A robot of great interest in the collaborative robotics scene is the FANUC CRX-10iA/L
(see Figure 1a), which meets industrial reliability requirements and provides all the nec-
essary functionality for human–robot collaboration. In this paper, it is taken as a refer-
ence from the family of serial robots with non-spherical wrists, without loss of generality.
The kinematic chain of the FANUC CRX-10iA/L is made of six revolute joints (6R) arranged
in serial configuration. The first three joints (J1, J2 and J3 in Figure 1b) are arranged in
a classic kinematic sequence typical of robotic arms while the roll–pitch–roll wrist has a
non-spherical configuration. The last three joints (J4, J5 and J6), in fact, have axes that are
two-by-two perpendicular and incident. Moreover, the lack of a common intersection point
obviously makes the wrist non-spherical, making it impossible to approach the inverse
kinematic problem with the usual methods for serial anthropomorphic manipulators, such
as the solution proposed by Pieper [24].



Robotics 2023, 12, 36 3 of 18

J1

J2

J3

J4J5

J6

Figure 1. (a) Collaborative Robot FANUC CRX-10iA/L and (b) its kinematic architecture.

The position and orientation of robot bodies in space are described here with the usual
Denavit–Hartenberg notation. It is worth remembering that the mutual position between
two frames can be represented by a homogeneous transformation, whose expression is
given by:

iTj =


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di
0 0 0 1




1 0 0 ai
0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1

 (1)

where θi, di, αi, ai are the well-known Denavit–Hartenberg parameters. In the present case,
the actuated joint variables qi are the rotations θi around the local z-axes.

The FANUC CRX-10iA/L frames are arranged as shown in Figure 2a, while the
parameters collected in Table 1 complete their description. The configuration in space of
the tool frame {6} with respect to the global reference frame {0} is obtained by composing
the local transformations iTj according to the convention of successive transformation on
mobile axes:

0T6 =
6

∏
i=1

i−1Ti =
0T1

1T2
2T3

3T4
4T5

5T6 (2)

Table 1. Denavit–Hartenberg parameters of the FANUC CRX-10iA/L.

i αi (rad) ai (mm) di (mm) θi (rad) Motion
Range (rad)

1 π/2 0 250.3 q1 ±π
2 −π 710.0 260.4 q2 ±π
3 −π/2 0 260.4 q3 ±1.5π
4 −π/2 0 540.0 q4 ±1.06π
5 π/2 0 150.0 q5 ±π
6 0 0 160.0 q6 ±1.25π
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Figure 2. (a) Frames attached to the robot bodies and (b) details of their lengths.

3. Inverse Kinematics Problem

As is well known, the inverse kinematics mapping of a serial chain consists of deter-
mining the joint parameters (qi in the previous notation) able to provide a given pose for
the terminal body of the chain (i.e., body 6 in this manuscript, described by frame {6}). It
is also well known that such a problem has many real solutions corresponding to the many
postures that the robot can exhibit while reaching a given position and orientation of the
terminal body.

A usual approach to this problem consists of simply comparing the elements of the final
transformation 0T6 with a symbolic expression of the same matrix obtained considering
unknown the six joint parameters qi:

0T6
inverse−−−−−→

kinematics
q =

[
q1 q2 q3 q4 q5 q6

]
(3)

This allows the obtaining of a set of 12 equations that can be reduced to six considering
that only three elements of the rotational part of the homogeneous transformation matrix are
actually independent. Additionally, a common issue in approaching this kind of equation is
given by the presence of sines and cosines, which add complexity to the problem. The usual
solution is to apply the Weierstrass substitution to have a common parameterization
without trigonometric functions, or to treat them (in this case, 12 expressions of cos qi and
sin qi for i = 1, . . . , 6 ) as distinct unknowns related by six further homogeneous equations
(cos2 qi + sin2 qi − 1 = 0). Both strategies lead to a set of polynomial equations of degree 2,
whose solution yields to a univariate polynomial: nonetheless, the reduction of such a
system is often computationally burdening and the possibility of obtaining a final degree
higher than the number of expected results is also significant.

The approach proposed in this manuscript takes into account a different set of un-
known variables, hereby collected in a vector called p, which locates the reference frame of
one of the robot bodies (frame {4} in particular) and, as a result, allows the computation of
the coordinates in space of the robot nodal points Pi (shown in Figure 2). From such points,
then, the computation of the joint variables becomes a trivial issue.
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In more detail, the parameterization chosen to express the rotation matrix 0R4 between
frame {4} and the fixed frame {0} avoiding trigonometric functions is the Cayley transform,
which maps the skew–symmetric matrix C given by:

C =

 0 −c3 c2
c3 0 −c1
−c2 c1 0

 (4)

into a rotation matrix:
0R4 = (I + C)(I−C)−1 (5)

Therefore, the shape assumed by the resulting rotation matrix 0R4 in terms of the three
parameters ci (with i = 1, 2, 3) is:

0R4 =
1

c2
1 + c2

2 + c2
3 + 1

c2
1 − c2

2 − c2
3 + 1 2c1c2 − 2c3 2c2 + 2c1c3

2c3 + 2c1c2 −c2
1 + c2

2 − c2
3 + 1 2c2c3 − 2c1

2c1c3 − 2c2 2c1 + 2c2c3 −c2
1 − c2

2 + c2
3 + 1

 (6)

Based on such a choice, the Inverse Kinematics Problem actually consists of finding
the parameters that allow the determination of the pose of {4} (expressed by means of c1,
c2, c3 and coordinates of P4) starting from {6}, and it can be stated as:

0T6
inverse−−−−−→

kinematics
p =

[
c1 c2 c3 P4,x P4,y P4,z

]
(7)

where the variables ci can be used to describe the orientation of frame {4}, as mentioned
above, and P4,x, P4,y, P4,z are the coordinates of its origin, gathered in the column vector P4.
The 6 parameters are then used to build up the needed transformation matrix:

0T4 =

[ 0R4 P4
01×3 1

]
(8)

with obvious meaning of the terms involved. In the following, the system of equations
used to work out the solution of the kinematic problem is shown in detail together with its
solution path.

3.1. System of Equations

To find the configuration of frame {4} once given a value for 0R6, a set of six equations
must be provided. To achieve such an aim, it is possible to exploit both the loop-closure of
the kinematic chain and the mobility provided by the joint topology. The former can be
obtained by considering as known the position in space of points P5 and P6, while the latter
is achieved through the mobility of the non-spherical wrist and the anthropomorphic arm.

Starting from the kinematic closure, the coordinates of P5 are easily obtained via:

[
P5
1

]
= 0T6


0
0
−d6

1

 =


P5,x
P5,y
P5,z
1

 (9)

The same point can be written starting from {4} in terms of the problem unknowns, namely:

[
P5
1

]
= 0T4


0
0
d5
1

 (10)
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By comparing (9) and (10), the first three equations are obtained. After simplifica-
tion and elimination of the non-vanishing terms, the three equations obtained are three
polynomials in terms of the six unknowns collected in p:

Φ1 : (P4,x − P5,x)(c2
1 + c2

2 + c2
3 + 1) + 2d5(c1c3 + c2) = 0

Φ2 : (P4,y − P5,y)(c2
1 + c2

2 + c2
3 + 1) + 2d5(c2c3 − c1) = 0

Φ3 : (P4,z − P5,z)(c2
1 + c2

2 + c2
3 + 1)− d5(c2

1 + c2
2 − c2

3 − 1) = 0

(11)

Three additional equations can be worked out from the mobility of frame {4}. First,
it can be noticed that the y4-axis of the frame is constrained to intersect the z0-axis of
the global coordinate system (since d2 = d3), except for the case where the two axes are
parallel and not coincident, i.e., when the y4-axis is directed along vertical and does not
pass through the origin of the fixed frame. The latter condition, by the way, is far from the
operating conditions of the robot. A more general condition can be stated as the coplanarity
of the four points P0, P1, P3 and P4 or better as the linear dependency among the three
vectors z0, y4 and (P4 − P0). Such a condition is fulfilled when:

det
[
z0 y4 (P4 − P0)

]
= 0 (12)

where z0 =
[
0 0 1

]T , y4 = 0R4
[
0 1 0

]T and (P4 − P0) =
[
P4,x P4,y P4,z

]T . Af-
ter some manipulation and elimination of non-vanishing components, the determinant in
(12) can be expanded to obtain the fourth equation of the system:

Φ4 : (c2
1 − c2

2 + c2
3 − 1)P4,x + (2c1c2 − 2c3)P4,y = 0 (13)

The mobility of the kinematic chain, of the wrist in particular, also constrains frame
{4} to maintain an axis perpendicular to the assigned coordinate system {6}, i.e., the axes
identified by vectors z4 and z6. The perpendicularity is fulfilled when:

zT
4 z6 = 0 (14)

where z4 = 0R4
[
0 0 1

]T and z6 is the unit vector of (P5−P6) (for the constraint purpose,
they can be used interchangeably). After substitution and simplification, the following
polynomial is obtained:

Φ5 : 2(c1c3 + c2)(P5,x − P6,x) + 2(c2c3 − c1)(P5,y − P6,y)+
−(c2

1 + c2
2 − c2

3 − 1)(P5,z − P6,z) = 0
(15)

Finally, it must be noted that point P3 maintains a constant distance with respect to
the center of the robot shoulder, i.e., to the point P1. Thus, it is:

(P3 − P1)
T(P3 − P1)− a2

2 = 0 (16)

where P3 = P4 +
0R4

[
0 d4 0

]T and P1 =
[
0 0 d1

]T , yielding the simplified form:

Φ6 :
(

P4,x
(
c2

1 + c2
2 + c2

3 + 1
)
+ 2d4(c1c2 − c3)

)2
+

+
(

P4,y
(
c2

1 + c2
2 + c2

3 + 1
)
+ d4

(
c2

1 − c2
2 + c2

3 − 1
))2

+

+
(
(P4,z − d1)

(
c2

1 + c2
2 + c2

3 + 1
)
+ 2d4(c2c3 + c1)

)2 − a2
2 = 0

(17)

The six polynomial equations Φi must now be solved in the unknown variables of
p to obtain a single polynomial in terms of c1 only. The solution path is detailed in the
following section.
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3.2. System Solution

At first, it is possible to remove the three Cartesian variables P4,x, P4,y and P4,z exploit-
ing the three equations Φ1, Φ2 and Φ3 in which they only appear in linear form. Thus,
the following expressions can be found in terms of c1, c2 and c3:

P4,x(c1, c2, c3) = P5,x − d5
2(c1c3 + c2)

c2
1 + c2

2 + c2
3 + 1

P4,y(c1, c2, c3) = P5,y − d5
2(c2c3 − c1)

c2
1 + c2

2 + c2
3 + 1

P4,z(c1, c2, c3) = P5,z + d5
c2

1 + c2
2 − c2

3 − 1
c2

1 + c2
2 + c2

3 + 1

(18)

Substitution of (18) into Φ4, Φ5 and Φ6 yields to a formulation of the robot kinematics
in terms of only c1, c2 and c3. The resulting polynomials own a maximum degree of 2 and
can be expressed as:

Φh :
i+j+k≤2

∑
i,j,k=0

ϕh,ijkci
1cj

2ck
3 = 0 (19)

where the coefficients ϕh,ijk are function of the robot geometric parameters and h = 4, 5, 6.
Appendix A shows in detail the value of such coefficients.

To reduce the system of equations and obtain a polynomial in terms of just one of the
three unknowns (namely c1), the Equation (19) can be rewritten consequently. To remove
c3 at first, the following shape can be worked out:

Xh :
2

∑
k=0

χh,kck
3 = 0 (20)

where the coefficients χh,k (detailed in Appendix B) are functions of c1 and c2. It is worth
remarking that the formulations (19) and (20) coincide, thus Φh = Xh. However, polynomi-
als (20) can be used to remove c3 by means of two Sylvester matrices, whose determinants
provide two further reduced equations:

Ψ1 : det


χ4,2 χ4,1 χ4,0 0

0 χ4,2 χ4,1 χ4,0
χ6,2 χ6,1 χ6,0 0

0 χ6,2 χ6,1 χ6,0

 = 0

Ψ2 : det


χ5,2 χ5,1 χ5,0 0

0 χ5,2 χ5,1 χ5,0
χ6,2 χ6,1 χ6,0 0

0 χ6,2 χ6,1 χ6,0

 = 0

(21)

The vanishing set of the determinants Ψ1 and Ψ2 (which are polynomials of c1 and
c2) represent the solution to the inverse kinematics problem. The maximum degree of the
polynomials is 4 and in compact form they can be formulated as:

Ψh :
i+j≤4

∑
i,j=0

ψh,ijci
1cj

2 = 0 (22)

The elimination via Sylvester matrix can be adopted also to remove the unknown c2
by rewriting (22) as:

Ωh :
4

∑
j=0

ωh,jc
j
2 = 0 (23)
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Again, it is remarked that (23) is a different formulation of (22), nevertheless Ψh = Ωh.
A complete formulation of coefficients ωh,j is provided in Appendix C, where they are
presented already as polynomials of the only unknown c1.

The last step of the solution is made using again the Sylvester method for reduction of
variable c2 by means of (23). A further matrix is built, whose determinant is a polynomial
of degree 16 in terms of the only unknown c1:

Λ : det



ω1,4 ω1,3 ω1,2 ω1,1 ω1,0 0 0 0
0 ω1,4 ω1,3 ω1,2 ω1,1 ω1,0 0 0
0 0 ω1,4 ω1,3 ω1,2 ω1,1 ω1,0 0
0 0 0 ω1,4 ω1,3 ω1,2 ω1,1 ω1,0

ω2,4 ω2,3 ω2,2 ω2,1 ω2,0 0 0 0
0 ω2,4 ω2,3 ω2,2 ω2,1 ω2,0 0 0
0 0 ω2,4 ω2,3 ω2,2 ω2,1 ω2,0 0
0 0 0 ω2,4 ω2,3 ω2,2 ω2,1 ω2,0


= 0 (24)

In more compact form, the solving equation Λ is:

Λ :
16

∑
i=0

λici
1 = 0 (25)

where the coefficients λi for i = 1, . . . , 16 are finally functions of only geometric parameters.
Unfortunately, explicit expressions for the coefficients are too large to be shown in this
document. Nonetheless, Appendix D shows (25) in terms of the polynomials ωh,i appearing
in matrix (24). The polynomial provides up to 16 real solutions to the problem, corre-
sponding to its roots. The number of solutions does not change depending on proximity
to singular poses or joint limits. However, it obviously becomes equal to 0 for singular
configurations (such as any point out of the robot workspace) for which only complex
roots can be found (25). In the remainder of the manuscript, details are provided about the
back-substitution of such values and the numeric implementation for the computation of
the other variables of the problem.

4. Implementation and Verification

As aforementioned, the vanishing set of the polynomial (25) allows the discovery
of up to 16 real solutions for the inverse kinematics problem, corresponding to the roots
of Λ. The expanded equations shown in the appendices provide an impression of the
coefficient dimensions that cannot be further reduced. For this reason, the products of
polynomials ωh,i have not been made explicit during the implementation of the inverse
kinematics algorithm. On the contrary, the coefficients of Λ have been obtained as a sum of
the coefficients of each addendum appearing in Appendix D, and each of them was worked
out via the convolution of the corresponding discrete sequence of coefficients.

As is known, in fact, given two polynomials f (x) and g(x)of degree m and n, respectively:

f (x) = ∑m
i=0 fixi g(x) = ∑n

i=0gixi (26)

the product f (x)g(x) is a m + n degree polynomial given by:

h(x) = f (x)g(x) = ∑m+n
i=0 hixi with hi = ∑i

k=0 fkgi−k (27)

The definition of hi can be easily extended to a −∞,+∞ sum, and then to a defini-
tion of the convolution of a discrete series. Therefore, the coefficients hi of polynomial
h(x) = f (x)g(x) are computable as the convolution fi ~ gi. Let us take, for example, the
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multiplication ω1,3ω2,2. The coefficients of the resulting polynomial will be provided by
the convolution of the coefficients of the factors, thus:

ω1,3ω2,2 =

([
B1, C1

][c1
1

])[D2, E2, F2
]c2

1
c1
1

 =
([

B1, C1
]
~
[
D2, E2, F2

])
c3

1
c2

1
c1
1

 (28)

where expressions in terms of the robot geometric parameters are provided in the appen-
dices for Ai, Bi, Ci, etc.

Using convolution rather than multiplication allows computation with relative ease
of the coefficients of Λ and therefore its 16 roots. Then, the remaining unknowns can be
computed following the solution path backwards and substituting the values obtained
time by time. Starting from (24), a linear system of equation can be built as:

ω1,4 ω1,3 ω1,2 ω1,1 ω1,0 0
0 ω1,4 ω1,3 ω1,2 ω1,1 ω1,0
0 0 ω1,4 ω1,3 ω1,2 ω1,1

ω2,4 ω2,3 ω2,2 ω2,1 ω2,0 0
0 ω2,4 ω2,3 ω2,2 ω2,1 ω2,0
0 0 ω2,4 ω2,3 ω2,2 ω2,1





c6
2

c5
2

c4
2

c3
2

c2
2

c2

 =



0
0
−ω1,0

0
0
−ω2,0

 (29)

Substituting one at a time the 16 values of c1 (corresponding to the roots of Λ) to
evaluate the polynomials ωh,i, the respective values of c2 can be found from a solution
of (29). As c1 and c2 are now known, the coefficients χh,k of (20) can be computed and
used to obtain c3 picking two equations from the three Xh. For example, it is possible to
formulate the linear system: [

χ4,2 χ4,1
χ5,2 χ5,1

][
c2

3
c3

]
=

[
−χ4,0
−χ5,0

]
(30)

Lastly, the three orientation parameters c1, c2 and c3 can be substituted into (18) to
obtain the coordinates P4,x, P4,y, P4,z of the origin of the reference frame {4}. This passage
almost closes the inverse kinematics problem, although the last few steps of joint variables
computation are still at stake. To provide a complete mapping 0T6 −→ q, the coordinates
of the points P4 and P3 = P4 +

0R4
[
0 d4 0

]T can be exploited. The passages to obtain
the values of the joint variables, which are quite trivial, are not shown here for the sake
of conciseness, although their full formulation is shown in Appendix E. However, it is
worth remarking that their values are calculated in cascade, following the order q2, q1, q3,
q4, q5, q6.

It is also worth noting that the very first computation, i.e., q2 = arcsin (P3,x − P1,x)/a2,
doubles the number of available solutions (being acceptable both q2 and π − q2). Actually,
the solutions obtained considering the full domain of the function arcsin are already present
within the set of points coordinates previously found. In practice, applying in sequence the
mapping 0T6 −→ p and p −→ q duplicated solutions are added to the available ones (that
can be easily eliminated).

Numerical Example

Finally, to verify the effectiveness of the proposed solution, a numerical example is
shown. A random set of joint angles is picked to compute the robot forward kinematics
by (2). In particular, in degrees:

q =
[
78◦ 131◦ 24◦ 42◦ −60◦ −10◦

]T (31)
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which provide the transformation matrix:

0T6 =


0.3363 0.8387 −0.4283 0.0571
0.6182 0.1464 0.7722 0.1786
0.7104 −0.5245 −0.4693 0.7677

0 0 0 1

 (32)

The resulting known points useful for inverse kinematics computations and for results
check are (in mm):

P0 =

0.0
0.0
0.0

 P1 =

 0.0
0.0

250.3

 P3 =

125.7
55.0

842.7


P4 =

 0.0
0.0

250.3

 P5 =

125.7
55.0
842.7

 P6 =

 57.1
178.6
767.7

 (33)

Such coordinates, together with the geometrical parameters already introduced in
Table 1, can be substituted into the explicit expressions of the coefficients of polynomials
ωh,i. Such polynomials allow computing, via convolution, the coefficients of Λ, whose
roots represent the values of c1 which are the solution of the inverse kinematics problem.
Substituting in cascade into (29), (30) and (18), it is possible to obtain the values of the
remaining unknowns, which are shown in Table 2. As is shown, the polynomial Λ provides
in this case only eight real solutions, for which it is possible to evaluate eight poses for the
reference frame {4}.

Table 2. Solutions of the inverse kinematics for the given joint variables (31): eight real solutions for
c1 out of 16 roots of Λ.

c1 c2 c3 P4,x P4,y P4,z

−13.105 −0.262 −22.831 −3.5 46.7 766.9
−9.673 1.672 −4.490 10.5 49.4 938.7
−7.730 −18.981 8.395 176.8 147.5 949.1
−7.603 0.844 −3.933 2.6 37.9 926.8
−6.135 0.372 −3.417 −1.2 26.1 917.3
−3.738 −0.223 −2.270 2.7 −8.0 901.1
−3.230 −0.296 −4.901 −5.4 15.5 781.5

−0.667 + 0.50i – – – – –
−0.667 − 0.50i – – – – –
−0.480 1.417 −0.041 −7.3 16.0 900.0

−0.233 + 0.01i – – – – –
−0.233 − 0.01i – – – – –
−0.088 + 0.04i – – – – –
−0.088 − 0.04i – – – – –
−0.041 + 0.02i – – – – –
−0.041 − 0.02i – – – – –

The results offered by the algorithm in terms of pose of {4} can be then mapped into
sets of joint variables by means of the equations presented in Appendix D. As aforemen-
tioned, the eight real solutions of c1 are doubled by the angle computations (see Table 3),
although four of the resulting configurations (shown in Figure 3) are repeated.
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Table 3. Computedjoints variables corresponding to the eight real roots of Λ: total of 16 configurations,
four of which repeated.

# c1 q1 q2 q3 q4 q5 q6

1 −13.105 −30.30 33.99 136.01 143.27 −48.79 77.61
2 149.69 146.00 43.98 −36.72 −48.79 77.61
3 −9.673 −101.99 48.99 155.99 −138.00 −59.99 −9.99
4 78.00 131.00 24.00 42.00 −60.00 −10.00
5 −7.730 39.90 28.21 161.19 −75.16 116.22 −90.34
6 −140.09 151.78 18.80 104.83 116.22 −90.34
7 −7.603 −93.98 47.62 154.56 −144.11 −55.12 −2.97
8 86.01 132.37 25.43 35.88 −55.12 −2.97
9 −6.135 −93.98 47.62 154.56 −144.11 −55.12 −2.97

10 86.01 132.37 25.43 35.88 −55.12 −2.97
11 −3.738 −93.98 47.62 154.56 −144.11 −55.12 −2.97
12 86.01 132.37 25.43 35.88 −55.12 −2.97
13 −3.230 −29.41 33.90 135.67 142.25 −49.24 78.79
14 150.58 146.09 44.32 −37.74 −49.24 78.79
15 −0.480 114.69 42.07 151.46 −23.88 170.53 10.81
16 −65.30 137.92 28.53 156.11 170.53 10.81

Figure 3. Representation of the 16 configurations resulting from the inverse kinematics problem solution.

5. Conclusions

This manuscript proposes a closed-form solution for the inverse kinematics mapping
of a class of 6R robotic manipulators, characterized by a non-spherical wrist. On the
one hand, such a feature improves the robot mechanical simplicity and provides some
advantage in terms of dexterity; on the other, it prevents the use of common methods
developed for anthropomorphic arms. For this reason, a specific approach has been worked
out based on the constraint equations that characterize the mobility of an inner body of
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the kinematic chain (i.e., the first body of the non-spherical wrist). The solution path
eliminates one at a time five out of the six unknowns of the problem and provides a
univariate polynomial of degree 16, whose roots represent the problem solution. Backward
substitution and computation of the actuated joint angles are shown to close the solution
path and provide a full map of the end-effector configurations space and the motors space.
In conclusion, the manuscript provides a complete walk-through to compute all the possible
postures that the FANUC CRX family of cobots can exhibit to reach a given pose. Obviously,
the proposed method is effective also for all the manipulators sharing their joint topology
with the FANUC CRX family, i.e., for those manipulators for which the written equations
are valid. Future developments will involve the analysis of the robot workspace to also
provide a complete map of robot workspace boundaries and inner singularities, the analysis
of representation singularities, and the impact of the problem of numerical conditioning on
the accuracy of the kinematics solution.
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Appendix A. Coefficients of Polynomials Φh

ϕ4,002 = P5,x
ϕ4,011 = 0
ϕ4,101 = −2d5
ϕ4,001 = −2P5,y
ϕ4,020 = −P5,x
ϕ4,110 = 2P5,y
ϕ4,010 = 2d5
ϕ4,200 = P5,x
ϕ4,100 = 0
ϕ4,000 = −P5,x

ϕ5,002 = P5,z − P6,z
ϕ5,011 = 2P5,y − 2P6,y
ϕ5,101 = 2P5,x − 2P6,x
ϕ5,001 = 0
ϕ5,020 = P6,z − P5,z
ϕ5,110 = 0
ϕ5,010 = 2P5,x − 2P6,x
ϕ5,200 = P6,z − P5,z
ϕ5,100 = 2P6,y − 2P5,y
ϕ5,000 = P5,z − P6,z

ϕ6,002 = P2
5,x + P2

5,y + P2
5,z − 2P5,yd4 − 2P5,z(d1 + d5)− d2

2 + d2
1 + 2d1d5 + d2

4 + d2
5

ϕ6,011 = 4P5,zd4 − 4P5,yd5 − 4d1d4
ϕ6,101 = −4P5,xd5
ϕ6,001 = −4P5,xd4
ϕ6,020 = P2

5,x + P2
5,y + P2

5,z + 2P5,yd4 − 2P5,z(d1 − d5)− d2
2 + d2

1 − 2d1d5 + d2
4 + d2

5
ϕ6,110 = 4P5,xd4
ϕ6,010 = −4P5,xd5
ϕ6,200 = P2

5,x + P2
5,y + P2

5,z − 2P5,yd4 − 2P5,z(d1 + d5)− d2
2 + d2

1 − 2d1d5 + d2
4 + d2

5
ϕ6,100 = 4P5,yd5 + 4P5,zd4 − 4d1d4
ϕ6,000 = P2

5,x + P2
5,y + P2

5,z + 2P5,yd4 − 2P5,z(d1 + d5)− d2
2 + d2

1 + 2d1d5 + d2
4 + d2

5
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Appendix B. Coefficients of Polynomials Xh

χh,2 = ϕh,002
χh,1 = ϕh,001 + ϕh,101c1 + ϕh,011c2
χh,0 = ϕh,200c2

1 + ϕh,110c1c2 + ϕh,100c1 + ϕh,020c2
2 + ϕh,010c2 + ϕh,000

Appendix C. Coefficients of Polynomials Ωh

ωh,4 = Ah
ωh,3 = Bhc1 + Ch
ωh,2 = Dhc2

1 + Ehc1 + Fh
ωh,1 = Ghc3

1 + Hhc2
1 + Ihc1 + Jh

ωh,0 = Khc4
1 + Lhc3

1 + Mhc2
1 + Nhc1 + Oh

In the following, h∗ = 4 for h = 1 and h∗ = 5 for h = 2.

Ah = ϕ2
h∗ ,002 ϕ2

6,020 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,011 ϕ6,020 − 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,002 ϕ6,020

+ϕh∗ ,002 ϕh∗ ,020 ϕ2
6,011 + ϕ2

h∗ ,011 ϕ6,002 ϕ6,020 − ϕh∗ ,011 ϕh∗ ,020 ϕ6,002 ϕ6,011 + ϕ2
h∗ ,020 ϕ2

6,002
Bh = ϕh∗ ,002 ϕh∗ ,110 ϕ2

6,011 + 2ϕh∗ ,020 ϕh∗ ,110 ϕ2
6,002 + ϕ2

h∗ ,011 ϕ6,002 ϕ6,110 + 2ϕ2
h∗ ,002 ϕ6,020 ϕ6,110

−ϕh∗ ,002 ϕh∗ ,011 ϕ6,011 ϕ6,110 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,020 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,002 ϕ6,110
+2ϕh∗ ,002 ϕh∗ ,020 ϕ6,011 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,011 ϕ6,020 − 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,002 ϕ6,020
−ϕh∗ ,011 ϕh∗ ,020 ϕ6,002 ϕ6,101 + 2ϕh∗ ,011 ϕh∗ ,101 ϕ6,002 ϕ6,020 − ϕh∗ ,011 ϕh∗ ,110 ϕ6,002 ϕ6,011
−ϕh∗ ,020 ϕh∗ ,101 ϕ6,002 ϕ6,011

Ch = ϕh∗ ,002 ϕh∗ ,010 ϕ2
6,011 + 2ϕh∗ ,010 ϕh∗ ,020 ϕ2

6,002 + ϕ2
h∗ ,011 ϕ6,002 ϕ6,010 + 2ϕ2

h∗ ,002 ϕ6,010 ϕ6,020

−ϕh∗ ,001 ϕh∗ ,002 ϕ6,011 ϕ6,020 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,002 ϕ6,020 − ϕh∗ ,001 ϕh∗ ,020 ϕ6,002 ϕ6,011
−2ϕh∗ ,002 ϕh∗ ,010 ϕ6,002 ϕ6,020 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,001 ϕ6,020 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,010 ϕ6,011
+2ϕh∗ ,002 ϕh∗ ,020 ϕ6,001 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,002 ϕ6,010 − ϕh∗ ,010 ϕh∗ ,011 ϕ6,002 ϕ6,011
−ϕh∗ ,011 ϕh∗ ,020 ϕ6,001 ϕ6,002

Dh = ϕ2
h∗ ,002 ϕ2

6,110 + ϕ2
h∗ ,110 ϕ2

6,002 + ϕh∗ ,002 ϕh∗ ,020 ϕ2
6,101 + ϕh∗ ,002 ϕh∗ ,200 ϕ2

6,011
+2ϕh∗ ,020 ϕh∗ ,200 ϕ2

6,002 + ϕ2
h∗ ,101 ϕ6,002 ϕ6,020 + ϕ2

h∗ ,011 ϕ6,002 ϕ6,200 + 2ϕ2
h∗ ,002 ϕ6,020 ϕ6,200

−ϕh∗ ,002 ϕh∗ ,011 ϕ6,011 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,101 ϕ6,110 − 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,002 ϕ6,200
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,011 ϕ6,110 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,020 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,002 ϕ6,110
+2ϕh∗ ,002 ϕh∗ ,110 ϕ6,011 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,002 ϕ6,020 + 2ϕh∗ ,011 ϕh∗ ,101 ϕ6,002 ϕ6,110
−ϕh∗ ,011 ϕh∗ ,110 ϕ6,002 ϕ6,101 − ϕh∗ ,011 ϕh∗ ,200 ϕ6,002 ϕ6,011 − ϕh∗ ,020 ϕh∗ ,101 ϕ6,002 ϕ6,101
−ϕh∗ ,101 ϕh∗ ,110 ϕ6,002 ϕ6,011

Eh = ϕh∗ ,002 ϕh∗ ,100 ϕ2
6,011 + 2ϕh∗ ,010 ϕh∗ ,110 ϕ2

6,002 + 2ϕh∗ ,020 ϕh∗ ,100 ϕ2
6,002

+ϕ2
h∗ ,011 ϕ6,002 ϕ6,100 + 2ϕ2

h∗ ,002 ϕ6,010 ϕ6,110 + 2ϕ2
h∗ ,002 ϕ6,020 ϕ6,100

−ϕh∗ ,001 ϕh∗ ,002 ϕ6,011 ϕ6,110 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,020 ϕ6,101 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,002 ϕ6,110
−ϕh∗ ,001 ϕh∗ ,020 ϕ6,002 ϕ6,101 + 2ϕh∗ ,001 ϕh∗ ,101 ϕ6,002 ϕ6,020 − ϕh∗ ,001 ϕh∗ ,110 ϕ6,002 ϕ6,011
−2ϕh∗ ,002 ϕh∗ ,010 ϕ6,002 ϕ6,110 + 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,011 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,001 ϕ6,110
−ϕh∗ ,002 ϕh∗ ,011 ϕ6,010 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,011 ϕ6,100 + 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,001 ϕ6,101
−2ϕh∗ ,002 ϕh∗ ,020 ϕ6,002 ϕ6,100 − 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,002 ϕ6,020 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,001 ϕ6,020
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,010 ϕ6,011 + 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,001 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,002 ϕ6,010
−ϕh∗ ,010 ϕh∗ ,011 ϕ6,002 ϕ6,101 − ϕh∗ ,010 ϕh∗ ,101 ϕ6,002 ϕ6,011 − ϕh∗ ,011 ϕh∗ ,100 ϕ6,002 ϕ6,011
+2ϕh∗ ,011 ϕh∗ ,101 ϕ6,002 ϕ6,010 − ϕh∗ ,011 ϕh∗ ,110 ϕ6,001 ϕ6,002 − ϕh∗ ,020 ϕh∗ ,101 ϕ6,001 ϕ6,002

Fh = ϕ2
h∗ ,002 ϕ2

6,010 + ϕ2
h∗ ,010 ϕ2

6,002 + ϕh∗ ,000 ϕh∗ ,002 ϕ2
6,011 + 2ϕh∗ ,000 ϕh∗ ,020 ϕ2

6,002
+ϕh∗ ,002 ϕh∗ ,020 ϕ2

6,001 + ϕ2
h∗ ,011 ϕ6,000 ϕ6,002 + 2ϕ2

h∗ ,002 ϕ6,000 ϕ6,020 + ϕ2
h∗ ,001 ϕ6,002 ϕ6,020

−2ϕh∗ ,000 ϕh∗ ,002 ϕ6,002 ϕ6,020 − ϕh∗ ,000 ϕh∗ ,011 ϕ6,002 ϕ6,011 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,001 ϕ6,020
−ϕh∗ ,001 ϕh∗ ,002 ϕ6,010 ϕ6,011 − ϕh∗ ,001 ϕh∗ ,010 ϕ6,002 ϕ6,011 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,002 ϕ6,010
−ϕh∗ ,001 ϕh∗ ,020 ϕ6,001 ϕ6,002 + 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,001 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,002 ϕ6,010
−ϕh∗ ,002 ϕh∗ ,011 ϕ6,000 ϕ6,011 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,001 ϕ6,010 − 2ϕh∗ ,002 ϕh∗ ,020 ϕ6,000 ϕ6,002
−ϕh∗ ,010 ϕh∗ ,011 ϕ6,001 ϕ6,002
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Gh = ϕh∗ ,002 ϕh∗ ,110 ϕ2
6,101 + 2ϕh∗ ,110 ϕh∗ ,200 ϕ2

6,002 + ϕ2
h∗ ,101 ϕ6,002 ϕ6,110 + 2ϕ2

h∗ ,002 ϕ6,110 ϕ6,200

−ϕh∗ ,002 ϕh∗ ,011 ϕ6,101 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,011 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,101 ϕ6,110
−2ϕh∗ ,002 ϕh∗ ,110 ϕ6,002 ϕ6,200 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,002 ϕ6,110 + 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,011 ϕ6,101
+2ϕh∗ ,011 ϕh∗ ,101 ϕ6,002 ϕ6,200 − ϕh∗ ,011 ϕh∗ ,200 ϕ6,002 ϕ6,101 − ϕh∗ ,101 ϕh∗ ,110 ϕ6,002 ϕ6,101
−ϕh∗ ,101 ϕh∗ ,200 ϕ6,002 ϕ6,011

Hh = ϕh∗ ,002 ϕh∗ ,010 ϕ2
6,101 + 2ϕh∗ ,010 ϕh∗ ,200 ϕ2

6,002 + 2ϕh∗ ,100 ϕh∗ ,110 ϕ2
6,002 + ϕ2

h∗ ,101 ϕ6,002 ϕ6,010

+2ϕ2
h∗ ,002 ϕ6,010 ϕ6,200 + 2ϕ2

h∗ ,002 ϕ6,100 ϕ6,110 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,011 ϕ6,200

−ϕh∗ ,001 ϕh∗ ,002 ϕ6,101 ϕ6,110 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,002 ϕ6,200 + 2ϕh∗ ,001 ϕh∗ ,101 ϕ6,002 ϕ6,110
−ϕh∗ ,001 ϕh∗ ,110 ϕ6,002 ϕ6,101 − ϕh∗ ,001 ϕh∗ ,200 ϕ6,002 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,002 ϕ6,200
−ϕh∗ ,002 ϕh∗ ,011 ϕ6,001 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,100 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,002 ϕ6,110
+2ϕh∗ ,002 ϕh∗ ,100 ϕ6,011 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,001 ϕ6,110 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,010 ϕ6,101
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,011 ϕ6,100 + 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,001 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,002 ϕ6,100
+2ϕh∗ ,002 ϕh∗ ,200 ϕ6,001 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,002 ϕ6,010 − ϕh∗ ,010 ϕh∗ ,101 ϕ6,002 ϕ6,101
−ϕh∗ ,011 ϕh∗ ,100 ϕ6,002 ϕ6,101 + 2ϕh∗ ,011 ϕh∗ ,101 ϕ6,002 ϕ6,100 − ϕh∗ ,011 ϕh∗ ,200 ϕ6,001 ϕ6,002
−ϕh∗ ,100 ϕh∗ ,101 ϕ6,002 ϕ6,011 − ϕh∗ ,101 ϕh∗ ,110 ϕ6,001 ϕ6,002

Ih = 2ϕh∗ ,000 ϕh∗ ,110 ϕ2
6,002 + 2ϕh∗ ,010 ϕh∗ ,100 ϕ2

6,002 + ϕh∗ ,002 ϕh∗ ,110 ϕ2
6,001 + 2ϕ2

h∗ ,002 ϕ6,000 ϕ6,110

+2ϕ2
h∗ ,002 ϕ6,010 ϕ6,100 + ϕ2

h∗ ,001 ϕ6,002 ϕ6,110 − 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,002 ϕ6,110

+2ϕh∗ ,000 ϕh∗ ,002 ϕ6,011 ϕ6,101 − ϕh∗ ,000 ϕh∗ ,011 ϕ6,002 ϕ6,101 − ϕh∗ ,000 ϕh∗ ,101 ϕ6,002 ϕ6,011
−ϕh∗ ,001 ϕh∗ ,002 ϕ6,001 ϕ6,110 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,010 ϕ6,101 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,011 ϕ6,100
−ϕh∗ ,001 ϕh∗ ,010 ϕ6,002 ϕ6,101 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,002 ϕ6,100 − ϕh∗ ,001 ϕh∗ ,100 ϕ6,002 ϕ6,011
+2ϕh∗ ,001 ϕh∗ ,101 ϕ6,002 ϕ6,010 − ϕh∗ ,001 ϕh∗ ,110 ϕ6,001 ϕ6,002 + 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,001 ϕ6,101
−2ϕh∗ ,002 ϕh∗ ,010 ϕ6,002 ϕ6,100 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,000 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,011 ϕ6,001 ϕ6,100
+2ϕh∗ ,002 ϕh∗ ,100 ϕ6,001 ϕ6,011 − 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,002 ϕ6,010 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,000 ϕ6,011
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,001 ϕ6,010 − 2ϕh∗ ,002 ϕh∗ ,110 ϕ6,000 ϕ6,002 − ϕh∗ ,010 ϕh∗ ,101 ϕ6,001 ϕ6,002
−ϕh∗ ,011 ϕh∗ ,100 ϕ6,001 ϕ6,002 + 2ϕh∗ ,011 ϕh∗ ,101 ϕ6,000 ϕ6,002

Jh = 2ϕh∗ ,000 ϕh∗ ,010 ϕ2
6,002 + ϕh∗ ,002 ϕh∗ ,010 ϕ2

6,001 + 2ϕ2
h∗ ,002 ϕ6,000 ϕ6,010 + ϕ2

h∗ ,001 ϕ6,002 ϕ6,010

−ϕh∗ ,000 ϕh∗ ,001 ϕ6,002 ϕ6,011 + 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,001 ϕ6,011 − 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,002 ϕ6,010
−ϕh∗ ,000 ϕh∗ ,011 ϕ6,001 ϕ6,002 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,000 ϕ6,011 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,001 ϕ6,010
−ϕh∗ ,001 ϕh∗ ,010 ϕ6,001 ϕ6,002 + 2ϕh∗ ,001 ϕh∗ ,011 ϕ6,000 ϕ6,002 − 2ϕh∗ ,002 ϕh∗ ,010 ϕ6,000 ϕ6,002
−ϕh∗ ,002 ϕh∗ ,011 ϕ6,000 ϕ6,001

Kh = ϕ2
h∗ ,002 ϕ2

6,200 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,101 ϕ6,200 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,002 ϕ6,200

+ϕh∗ ,002 ϕh∗ ,200 ϕ2
6,101 + ϕ2

h∗ ,101 ϕ6,002 ϕ6,200 − ϕh∗ ,101 ϕh∗ ,200 ϕ6,002 ϕ6,101

+ϕ2
h∗ ,200 ϕ2

6,002
Lh = ϕh∗ ,002 ϕh∗ ,100 ϕ2

6,101 + 2ϕh∗ ,100 ϕh∗ ,200 ϕ2
6,002 + ϕ2

h∗ ,101 ϕ6,002 ϕ6,100 + 2ϕ2
h∗ ,002 ϕ6,100 ϕ6,200

−ϕh∗ ,001 ϕh∗ ,002 ϕ6,101 ϕ6,200 + 2ϕh∗ ,001 ϕh∗ ,101 ϕ6,002 ϕ6,200 − ϕh∗ ,001 ϕh∗ ,200 ϕ6,002 ϕ6,101
−2ϕh∗ ,002 ϕh∗ ,100 ϕ6,002 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,001 ϕ6,200 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,100 ϕ6,101
+2ϕh∗ ,002 ϕh∗ ,200 ϕ6,001 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,002 ϕ6,100 − ϕh∗ ,100 ϕh∗ ,101 ϕ6,002 ϕ6,101
−ϕh∗ ,101 ϕh∗ ,200 ϕ6,001 ϕ6,002

Mh = ϕ2
h∗ ,002 ϕ2

6,100 + ϕ2
h∗ ,100 ϕ2

6,002 + ϕh∗ ,000 ϕh∗ ,002 ϕ2
6,101 + 2ϕh∗ ,000 ϕh∗ ,200 ϕ2

6,002
+ϕh∗ ,002 ϕh∗ ,200 ϕ2

6,001 + ϕ2
h∗ ,101 ϕ6,000 ϕ6,002 + 2ϕ2

h∗ ,002 ϕ6,000 ϕ6,200 + ϕ2
h∗ ,001 ϕ6,002 ϕ6,200

−2ϕh∗ ,000 ϕh∗ ,002 ϕ6,002 ϕ6,200 − ϕh∗ ,000 ϕh∗ ,101 ϕ6,002 ϕ6,101 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,001 ϕ6,200
−ϕh∗ ,001 ϕh∗ ,002 ϕ6,100 ϕ6,101 − ϕh∗ ,001 ϕh∗ ,100 ϕ6,002 ϕ6,101 + 2ϕh∗ ,001 ϕh∗ ,101 ϕ6,002 ϕ6,100
−ϕh∗ ,001 ϕh∗ ,200 ϕ6,001 ϕ6,002 + 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,001 ϕ6,101 − 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,002 ϕ6,100
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,000 ϕ6,101 − ϕh∗ ,002 ϕh∗ ,101 ϕ6,001 ϕ6,100 − 2ϕh∗ ,002 ϕh∗ ,200 ϕ6,000 ϕ6,002
−ϕh∗ ,100 ϕh∗ ,101 ϕ6,001 ϕ6,002

Nh = 2ϕh∗ ,000 ϕh∗ ,100 ϕ2
6,002 + ϕh∗ ,002 ϕh∗ ,100 ϕ2

6,001 + 2ϕ2
h∗ ,002 ϕ6,000 ϕ6,100 + ϕ2

h∗ ,001 ϕ6,002 ϕ6,100

−ϕh∗ ,000 ϕh∗ ,001 ϕ6,002 ϕ6,101 + 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,001 ϕ6,101 − 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,002 ϕ6,100
−ϕh∗ ,000 ϕh∗ ,101 ϕ6,001 ϕ6,002 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,000 ϕ6,101 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,001 ϕ6,100
−ϕh∗ ,001 ϕh∗ ,100 ϕ6,001 ϕ6,002 + 2ϕh∗ ,001 ϕh∗ ,101 ϕ6,000 ϕ6,002 − 2ϕh∗ ,002 ϕh∗ ,100 ϕ6,000 ϕ6,002
−ϕh∗ ,002 ϕh∗ ,101 ϕ6,000 ϕ6,001

Oh = ϕ2
h∗ ,000 ϕ2

6,002 − ϕh∗ ,000 ϕh∗ ,001 ϕ6,001 ϕ6,002 − 2ϕh∗ ,000 ϕh∗ ,002 ϕ6,000 ϕ6,002

+ϕh∗ ,000 ϕh∗ ,002 ϕ2
6,001 + ϕ2

h∗ ,001 ϕ6,000 ϕ6,002 − ϕh∗ ,001 ϕh∗ ,002 ϕ6,000 ϕ6,001 + ϕ2
h∗ ,002 ϕ2

6,000
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Appendix D. Univariate Polynomial

Λ :
ω4

1,4ω4
2,0 + ω4

1,0ω4
2,4 + ω2

1,4ω2
1,0ω4

2,2 + ω4
1,2ω2

2,4ω2
2,0 + ω1,4ω3

1,0ω4
2,3 + ω3

1,4ω1,0ω4
2,1

+ω4
1,3ω2,4ω3

2,0 + ω4
1,1ω3

2,4ω2,0 −ω1,4ω3
1,3ω2,3ω3

2,0 −ω1,3ω3
1,0ω2,4ω3

2,3 −ω1,4ω3
1,1ω3

2,3ω2,0
−4ω1,4ω3

1,0ω3
2,4ω2,0 − 3ω1,3ω3

1,0ω3
2,4ω2,1 − 2ω1,2ω3

1,0ω3
2,4ω2,2 −ω1,1ω3

1,0ω3
2,4ω2,3

−ω3
1,4ω1,3ω2,1ω3

2,0 − 2ω3
1,4ω1,2ω2,2ω3

2,0 − 3ω3
1,4ω1,1ω2,3ω3

2,0 − 4ω3
1,4ω1,0ω2,4ω3

2,0
−ω3

1,3ω1,0ω2,4ω3
2,1 −ω3

1,4ω1,1ω3
2,1ω2,0 −ω3

1,1ω1,0ω3
2,4ω2,1 + 2ω1,4ω3

1,0ω2
2,4ω2

2,2
+2ω2

1,4ω2
1,2ω2,4ω3

2,0 + ω1,4ω3
1,2ω2

2,3ω2
2,0 + ω1,2ω3

1,0ω2
2,4ω2

2,3 + ω2
1,4ω2

1,3ω2,2ω3
2,0

+ω2
1,3ω2

1,0ω2,4ω3
2,2 + ω2

1,4ω2
1,1ω3

2,2ω2,0 + ω3
1,4ω1,2ω2

2,1ω2
2,0 + ω3

1,2ω1,0ω2
2,4ω2

2,1
+ω2

1,1ω2
1,0ω3

2,4ω2,2 + 2ω3
1,4ω1,0ω2

2,2ω2
2,0 + 2ω2

1,2ω2
1,0ω3

2,4ω2,0 + ω2
1,4ω2

1,2ω2
2,2ω2

2,0
+3ω2

1,4ω2
1,1ω2

2,3ω2
2,0 + 6ω2

1,4ω2
1,0ω2

2,4ω2
2,0 + 2ω2

1,4ω2
1,0ω2

2,3ω2
2,1 + 2ω2

1,3ω2
1,1ω2

2,4ω2
2,0

+3ω2
1,3ω2

1,0ω2
2,4ω2

2,1 + ω2
1,2ω2

1,0ω2
2,4ω2

2,2 − 4ω1,4ω2
1,3ω1,2ω2,4ω3

2,0
−ω1,4ω1,3ω2

1,0ω2,3ω3
2,2 − 2ω1,4ω1,2ω2

1,0ω2,4ω3
2,2 + 3ω2

1,4ω1,3ω1,2ω2,3ω3
2,0

+4ω2
1,4ω1,3ω1,1ω2,4ω3

2,0 + ω1,4ω2
1,3ω1,0ω2,3ω3

2,1 − 3ω1,4ω1,3ω2
1,0ω3

2,3ω2,0
−2ω1,4ω1,2ω2

1,0ω3
2,3ω2,1 −ω1,4ω1,1ω2

1,0ω3
2,3ω2,2 −ω2

1,4ω1,3ω1,0ω2,2ω3
2,1

−2ω2
1,4ω1,2ω1,0ω2,3ω3

2,1 − 3ω2
1,4ω1,1ω1,0ω2,4ω3

2,1 + ω1,4ω2
1,1ω1,0ω3

2,3ω2,1
+4ω1,3ω1,1ω2

1,0ω3
2,4ω2,0 + 3ω1,2ω1,1ω2

1,0ω3
2,4ω2,1 − 2ω2

1,4ω1,2ω1,0ω3
2,2ω2,0

−ω2
1,4ω1,1ω1,0ω3

2,2ω2,1 − 4ω1,2ω2
1,1ω1,0ω3

2,4ω2,0 − 4ω1,4ω3
1,0ω2,4ω2

2,3ω2,2
−2ω1,4ω3

1,2ω2,4ω2,2ω2
2,0 + 4ω1,4ω3

1,0ω2
2,4ω2,3ω2,1 −ω1,3ω3

1,2ω2,4ω2,3ω2
2,0

+3ω1,3ω3
1,0ω2

2,4ω2,3ω2,2 + ω1,3ω3
1,1ω2,4ω2

2,3ω2,0 − 3ω1,4ω3
1,1ω2

2,4ω2,1ω2,0
−2ω1,3ω3

1,1ω2
2,4ω2,2ω2,0 −ω1,2ω3

1,1ω2
2,4ω2,3ω2,0 −ω3

1,3ω1,2ω2,4ω2,1ω2
2,0

−2ω3
1,3ω1,1ω2,4ω2,2ω2

2,0 − 3ω3
1,3ω1,0ω2,4ω2,3ω2

2,0 + ω3
1,3ω1,1ω2,4ω2

2,1ω2,0
+3ω3

1,4ω1,1ω2,2ω2,1ω2
2,0 + 4ω3

1,4ω1,0ω2,3ω2,1ω2
2,0 −ω3

1,2ω1,1ω2
2,4ω2,1ω2,0

−2ω3
1,2ω1,0ω2

2,4ω2,2ω2,0 − 4ω3
1,4ω1,0ω2,2ω2

2,1ω2,0 + 4ω1,4ω1,2ω2
1,1ω2

2,4ω2
2,0

−3ω1,4ω1,2ω2
1,0ω2

2,4ω2
2,1 + ω1,4ω1,2ω2

1,0ω2
2,3ω2

2,2 + 3ω1,4ω2
1,3ω1,0ω2

2,3ω2
2,0

−4ω1,4ω2
1,2ω1,0ω2

2,4ω2
2,0 + ω1,4ω2

1,2ω1,0ω2
2,3ω2

2,1 + 3ω1,4ω2
1,1ω1,0ω2

2,4ω2
2,1

−2ω1,3ω1,1ω2
1,0ω2

2,4ω2
2,2 − 4ω1,3ω2

1,2ω1,1ω2
2,4ω2

2,0 − 2ω2
1,4ω1,3ω1,1ω2

2,2ω2
2,0

−3ω2
1,4ω1,2ω1,0ω2

2,3ω2
2,0 + ω2

1,4ω1,2ω1,0ω2
2,2ω2

2,1 + 4ω2
1,3ω1,2ω1,0ω2

2,4ω2
2,0

−3ω2
1,4ω2

1,1ω2,4ω2,2ω2
2,0 + 4ω2

1,4ω2
1,0ω2,4ω2,2ω2

2,1 + ω2
1,3ω2

1,2ω2,4ω2,2ω2
2,0

−2ω2
1,4ω2

1,2ω2,3ω2,1ω2
2,0 + 3ω2

1,4ω2
1,1ω2,4ω2

2,1ω2,0 − 4ω2
1,4ω2

1,0ω2,4ω2
2,2ω2,0

−4ω2
1,4ω2

1,0ω2,3ω2
2,2ω2,1 + ω2

1,3ω2
1,1ω2,4ω2

2,2ω2,0 + 3ω2
1,3ω2

1,0ω2,4ω2
2,3ω2,0

−2ω2
1,2ω2

1,0ω2
2,4ω2,3ω2,1 + 4ω2

1,4ω2
1,0ω2

2,3ω2,2ω2,0 − 3ω2
1,3ω2

1,0ω2
2,4ω2,2ω2,0

+ω2
1,2ω2

1,1ω2
2,4ω2,2ω2,0 + 3ω1,4ω1,3ω1,2ω1,0ω2,4ω3

2,1 + 3ω1,4ω1,2ω1,1ω1,0ω3
2,3ω2,0

+3ω1,4ω3
1,1ω2,4ω2,3ω2,2ω2,0 + 3ω3

1,3ω1,0ω2,4ω2,2ω2,1ω2,0 − 3ω1,4ω1,3ω1,2ω1,1ω2
2,3ω2

2,0
−8ω1,4ω1,3ω1,1ω1,0ω2

2,4ω2
2,0 − 2ω1,4ω1,3ω1,1ω1,0ω2

2,3ω2
2,1 − 3ω1,3ω1,2ω1,1ω1,0ω2

2,4ω2
2,1

−5ω1,4ω1,3ω2
1,1ω2,4ω2,3ω2

2,0 − 5ω1,4ω1,3ω2
1,0ω2,4ω2,3ω2

2,1 + 3ω1,4ω1,3ω2
1,2ω2,4ω2,1ω2

2,0
−ω1,4ω1,3ω2

1,2ω2,3ω2,2ω2
2,0 + ω1,4ω1,3ω2

1,0ω2,4ω2
2,2ω2,1 + 3ω1,4ω1,1ω2

1,0ω2,4ω2,3ω2
2,2

+ω1,4ω2
1,2ω1,1ω2,4ω2,3ω2

2,0 −ω1,3ω1,2ω2
1,0ω2,4ω2,3ω2

2,2 −ω1,4ω1,3ω2
1,1ω2,3ω2

2,2ω2,0
+3ω1,4ω1,3ω2

1,0ω2
2,3ω2,2ω2,1 − 2ω1,4ω1,2ω2

1,1ω2,4ω2
2,2ω2,0 + 2ω1,4ω1,2ω2

1,0ω2,4ω2
2,3ω2,0

+ω1,4ω1,1ω2
1,0ω2,4ω2

2,3ω2,1 + ω1,4ω2
1,3ω1,2ω2,3ω2,1ω2

2,0 + ω1,4ω2
1,3ω1,1ω2,4ω2,1ω2

2,0
+2ω1,4ω2

1,3ω1,1ω2,3ω2,2ω2
2,0 + 2ω1,4ω2

1,3ω1,0ω2,4ω2,2ω2
2,0 − 2ω1,4ω2

1,2ω1,0ω2,4ω2,2ω2
2,1

+2ω1,3ω1,2ω2
1,0ω2,4ω2

2,3ω2,1 + ω1,3ω1,1ω2
1,0ω2,4ω2

2,3ω2,2 −ω1,3ω2
1,2ω1,0ω2,4ω2,3ω2

2,1
+3ω2

1,3ω1,2ω1,1ω2,4ω2,3ω2
2,0 + 2ω1,4ω1,3ω2

1,1ω2
2,3ω2,1ω2,0 + 5ω1,4ω1,3ω2

1,0ω2
2,4ω2,1ω2,0

+ω1,4ω1,2ω2
1,1ω2

2,3ω2,2ω2,0 + 2ω1,4ω1,2ω2
1,0ω2

2,4ω2,2ω2,0 −ω1,4ω1,1ω2
1,0ω2

2,4ω2,3ω2,0
−5ω1,4ω1,1ω2

1,0ω2
2,4ω2,2ω2,1 −ω1,4ω2

1,3ω1,1ω2,3ω2
2,1ω2,0 −ω1,4ω2

1,3ω1,0ω2,4ω2
2,1ω2,0

+4ω1,4ω2
1,2ω1,0ω2,4ω2

2,2ω2,0 −ω1,4ω2
1,1ω1,0ω2,4ω2

2,3ω2,0 − 5ω1,3ω1,2ω2
1,0ω2

2,4ω2,3ω2,0
+ω1,3ω1,2ω2

1,0ω2
2,4ω2,2ω2,1 −ω1,3ω1,1ω2

1,0ω2
2,4ω2,3ω2,1 −ω1,3ω2

1,1ω1,0ω2,4ω2
2,3ω2,1

−ω1,2ω1,1ω2
1,0ω2

2,4ω2,3ω2,2 −ω2
1,4ω1,3ω1,2ω2,2ω2,1ω2

2,0 −ω2
1,4ω1,3ω1,1ω2,3ω2,1ω2

2,0
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−ω2
1,4ω1,3ω1,0ω2,4ω2,1ω2

2,0 − 5ω2
1,4ω1,3ω1,0ω2,3ω2,2ω2

2,0 − 5ω2
1,4ω1,2ω1,1ω2,4ω2,1ω2

2,0
+ω2

1,4ω1,2ω1,1ω2,3ω2,2ω2
2,0 + 2ω2

1,4ω1,2ω1,0ω2,4ω2,2ω2
2,0 + 5ω2

1,4ω1,1ω1,0ω2,4ω2,3ω2
2,0

+ω2
1,3ω1,2ω1,0ω2,4ω2,2ω2

2,1 + 2ω2
1,3ω1,1ω1,0ω2,4ω2,3ω2

2,1 −ω1,4ω2
1,2ω1,1ω2

2,3ω2,1ω2,0
−2ω1,4ω2

1,2ω1,0ω2
2,3ω2,2ω2,0 + 2ω1,4ω2

1,1ω1,0ω2
2,4ω2,2ω2,0 + 3ω1,3ω1,2ω2

1,1ω2
2,4ω2,1ω2,0

+ω1,3ω2
1,1ω1,0ω2

2,4ω2,3ω2,0 + 2ω1,3ω2
1,1ω1,0ω2

2,4ω2,2ω2,1 + ω1,2ω2
1,1ω1,0ω2

2,4ω2,3ω2,1
+ω2

1,4ω1,3ω1,1ω2,2ω2
2,1ω2,0 + ω2

1,4ω1,3ω1,0ω2,3ω2
2,1ω2,0 + 2ω2

1,4ω1,2ω1,1ω2,3ω2
2,1ω2,0

+2ω2
1,4ω1,2ω1,0ω2,4ω2

2,1ω2,0 + 3ω2
1,4ω1,1ω1,0ω2,3ω2,2ω2

2,1 − 2ω2
1,3ω1,2ω1,0ω2,4ω2

2,2ω2,0
−ω2

1,3ω1,1ω1,0ω2,4ω2
2,2ω2,1 + ω1,3ω2

1,2ω1,0ω2
2,4ω2,1ω2,0 + 3ω2

1,4ω1,3ω1,0ω2
2,2ω2,1ω2,0

−ω2
1,4ω1,2ω1,1ω2

2,2ω2,1ω2,0 + ω2
1,4ω1,1ω1,0ω2,3ω2

2,2ω2,0 + 3ω2
1,2ω1,1ω1,0ω2

2,4ω2,3ω2,0
−ω2

1,2ω1,1ω1,0ω2
2,4ω2,2ω2,1 − 5ω2

1,4ω1,1ω1,0ω2
2,3ω2,1ω2,0 − 5ω2

1,3ω1,1ω1,0ω2
2,4ω2,1ω2,0

−3ω2
1,3ω2

1,0ω2,4ω2,3ω2,2ω2,1 − 8ω2
1,4ω2

1,0ω2,4ω2,3ω2,1ω2,0 − 2ω2
1,3ω2

1,1ω2,4ω2,3ω2,1ω2,0
−3ω2

1,4ω2
1,1ω2,3ω2,2ω2,1ω2,0 + 4ω1,4ω1,3ω1,2ω1,1ω2,4ω2,2ω2

2,0
+2ω1,4ω1,3ω1,2ω1,0ω2,4ω2,3ω2

2,0 − 3ω1,4ω1,3ω1,2ω1,1ω2,4ω2
2,1ω2,0

−ω1,4ω1,3ω1,2ω1,0ω2,3ω2,2ω2
2,1 −ω1,4ω1,3ω1,1ω1,0ω2,4ω2,2ω2

2,1
+ω1,4ω1,2ω1,1ω1,0ω2,4ω2,3ω2

2,1 + 2ω1,4ω1,3ω1,2ω1,0ω2,3ω2
2,2ω2,0

+ω1,4ω1,3ω1,1ω1,0ω2,3ω2
2,2ω2,1 + 2ω1,4ω1,2ω1,1ω1,0ω2,4ω2

2,2ω2,1
+ω1,4ω1,3ω1,2ω1,0ω2

2,3ω2,1ω2,0 −ω1,4ω1,3ω1,1ω1,0ω2
2,3ω2,2ω2,0

−ω1,4ω1,2ω1,1ω1,0ω2
2,3ω2,2ω2,1 − 3ω1,3ω1,2ω1,1ω1,0ω2,4ω2

2,3ω2,0
+2ω1,4ω1,2ω1,1ω1,0ω2

2,4ω2,1ω2,0 + 4ω1,3ω1,2ω1,1ω1,0ω2
2,4ω2,2ω2,0

+2ω1,4ω1,3ω2
1,0ω2,4ω2,3ω2,2ω2,0 + 4ω1,4ω1,2ω2

1,0ω2,4ω2,3ω2,2ω2,1
+ω1,4ω1,3ω2

1,1ω2,4ω2,2ω2,1ω2,0 −ω1,4ω1,2ω2
1,1ω2,4ω2,3ω2,1ω2,0

−3ω1,4ω2
1,1ω1,0ω2,4ω2,3ω2,2ω2,1 −ω1,3ω1,2ω2

1,1ω2,4ω2,3ω2,2ω2,0
+2ω1,4ω2

1,2ω1,1ω2,4ω2,2ω2,1ω2,0 + ω1,3ω2
1,2ω1,1ω2,4ω2,3ω2,1ω2,0

+2ω1,3ω2
1,2ω1,0ω2,4ω2,3ω2,2ω2,0 − 3ω1,4ω2

1,3ω1,0ω2,3ω2,2ω2,1ω2,0
−ω2

1,3ω1,2ω1,1ω2,4ω2,2ω2,1ω2,0 −ω2
1,3ω1,2ω1,0ω2,4ω2,3ω2,1ω2,0

+ω2
1,3ω1,1ω1,0ω2,4ω2,3ω2,2ω2,0 + 4ω2

1,4ω1,2ω1,0ω2,3ω2,2ω2,1ω2,0
+2ω2

1,4ω1,1ω1,0ω2,4ω2,2ω2,1ω2,0 + ω1,4ω1,3ω1,2ω1,1ω2,3ω2,2ω2,1ω2,0
−8ω1,4ω1,3ω1,2ω1,0ω2,4ω2,2ω2,1ω2,0 + 10ω1,4ω1,3ω1,1ω1,0ω2,4ω2,3ω2,1ω2,0
−8ω1,4ω1,2ω1,1ω1,0ω2,4ω2,3ω2,2ω2,0 + ω1,3ω1,2ω1,1ω1,0ω2,4ω2,3ω2,2ω2,1 = 0

Appendix E. Joint Variables

For the sake of conciseness, in the following the notation cos qi = Ci and sin qi = Si
has been used.

q2 = arcsin P3,x−P1,x
a2

q1 = atan2
(

P3,y
a2C2

, P3,x
a2C2

)
q3 = atan2(S3, C3)

where

S3 =
P3,yC2−P4,yC2+P3,zS1S2−P4,zS1S2

d4S1

C3 = − P3,yS2−P4,yS2−P3,zC2S1+P4,zC2S1
d4S1

q4 = atan2(S4, C4)

where
S4 =

P4,z−P5,z
d5S2−3

C4 = − P4,zC1+2−3+P4,zC1−2+3−P5,zC1+2−3−P5,zC1−2+3−2P4,xS2−3+2P5,xS2−3
2d5S2−3S1
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q5 = atan2(S5, C5)

where
S5 = 1

d6
(P65,x + d2S4 − d3S4 + a2C3C4 − d1C2C4S3 + d1C3C4S2)

C5 = − 1
d6

(
P65,y − d4 + a2S3 + d1C2−3

)
and[4P65

1

]
=


P65,x
P65,y
P65,z

1

 = 0T−1
4

[
P6 − P5

1

]
q6 = atan2(S6, C6)

where
S6 =

[
0 1 0 0

]5T6
[
1 0 0 0

]T

C6 =
[
1 0 0 0

]5T6
[
1 0 0 0

]T

and
5T6 = 0T5

−1(q1, q2, q3, q4, q5)
0T6
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