
Citation: Smith, W.; Qin, Y.; Singh, S.;

Burke, H.; Furukawa, T.;

Dissanayake, G. A Multistage

Framework for Autonomous Robotic

Mapping with Targeted Metrics.

Robotics 2023, 12, 39. https://

doi.org/10.3390/robotics12020039

Academic Editor: David Portugal

Received: 15 February 2023

Revised: 4 March 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

A Multistage Framework for Autonomous Robotic Mapping
with Targeted Metrics †

William Smith 1,* , Yongming Qin 1 , Siddharth Singh 1 , Hudson Burke 1, Tomonari Furukawa 1

and Gamini Dissanayake 2

1 VICTOR Laboratory, University of Virginia, Charlottesville, VA 22903, USA
2 Center for Autonomous Systems, University of Technology, Sydney, NSW 2007, Australia
* Correspondence: wbs3ra@virginia.edu
† This paper is an extended version of our paper published in Smith, W.; Qin, Y.; Furukawa, T.; Dissanayake, G.

Autonomous Robotic Map Refinement for Targeted Resolution and Local Accuracy. In Proceedings of the
2022 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Sevilla, Spain,
8–10 November 2022; pp. 130–137. https://doi.org/10.1109/SSRR56537.2022.10018686.

Abstract: High-quality maps are pertinent to performing tasks requiring precision interaction with
the environment. Current challenges with creating a high-precision map come from the need for both
high pose accuracy and scan accuracy, and the goal of reliable autonomous performance of the task.
In this paper, we propose a multistage framework to create a high-precision map of an environment
which satisfies the targeted resolution and local accuracy by an autonomous mobile robot. The
proposed framework consists of three steps. Each step is intended to aid in resolving the challenges
faced by conventional approaches. In order to ensure the pose estimation is performed with high
accuracy, a globally accurate coarse map of the environment is created using a conventional technique
such as simultaneous localization and mapping or structure from motion with bundle adjustment.
The high scan accuracy is ensured by planning a path for the robot to revisit the environment while
maintaining a desired distance to all occupied regions. Since the map is to be created with targeted
metrics, an online path replanning and pose refinement technique is proposed to autonomously
achieve the metrics without compromising the pose and scan accuracy. The proposed framework
was first validated on the ability to address the current challenges associated with accuracy through
parametric studies of the proposed steps. The autonomous capability of the proposed framework
was been demonstrated successfully in its use for a practical mission.

Keywords: mapping; path planning; inspection; multistage; autonomous

1. Introduction

Mapping of unknown environments is a fundamental task of engineering, which sees
various valuable applications. They include the three-dimensional (3D) data storage [1],
the monitoring [2], and the inspection [3] of existing structures and terrains. Maps can even
be developed online for robots to navigate and complete their missions, such as search
and rescue (SAR), in unknown environments. Robotic mapping is becoming ever more
important due to the extensive potential that can be derived from high-precision results. If
the mobile robot can develop a 3D map, it would reduce both time and human workload [4].
When the map is of high enough quality, it can be further used for inspection by creating
a building information model (BIM) [5,6] or a digital twin [7] of the environment. Tasks
that typically require real time vision can take advantage of a high-quality map, such as
manipulation [8,9]. Since the uses of mapping are endless and evolving, the improvement in
mapping resolution and accuracy can enhance the quality of work making use of mapping.
The basis of this work was presented in part at International Workshop on Safety, Security,
and Rescue Robotics (SSRR), Seville, Spain, November 2022 [10].
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In order to create a map, the target qualities are first defined to optimize the pro-
cess. Typically, the accuracy, resolution, and size of the completed map are targeted to a
reasonable range of values. To significantly improve the mapping efforts, the resultant
map should aim to have high quality metrics at both global and local levels. A single
approach cannot target exceptional accuracy, resolution, and size at the same time, due to
the limitations of current sensor technology, which usually has a trade-off between these
metrics. Different mapping pipelines, as seen in Figure 1, may be used, but the conventional
approaches plan the path of the robot and map the environment at the same time. These
approaches are not able to leverage the strengths of different sensors and can only target
one metric within a reasonable range, typically global accuracy. The proposed framework
divides the problem into three distinct steps, allowing the strengths of different sensors to
be leveraged to target multiple metrics.

Figure 1. The different mapping pipelines used to create a map of an unknown environment.

Past work on robotic mapping can be broadly classified into two approaches. The
first is online robotic mapping techniques, such as simultaneous localization and mapping
(SLAM) and its variants, where a robot entering an unknown environment iteratively
builds up a map while also computing a continuous estimate of the robot’s location. The
primary target is the global accuracy of the map, since the purpose of the created map is for
successful robot navigation. This is a computationally costly process, since many SLAM
algorithms will take advantage of both visual and internal sensors by fusing the data [11–13].
Therefore, SLAM algorithms typically focus on representing the environment in the most
compact way in order to reduce the computational costs [14,15]. Maps are created primarily
for successful robot navigation, where global accuracy is the major focus not the local
resolution and accuracy. Improvements in map quality were made by fully representing
the surface of interest in approaches typically classified as dense SLAM [16,17]. These
methods produced high resolution and local accuracy, but the computational cost limits the
scalable algorithms to small sized environments. These techniques work well for exploring
unknown environments and creating a map to be used by a robot for future navigation.

While these approaches are well developed and are suitable for creating a map, there
remains a gap between the focus of SLAM and creating a high-precision map. Since the
objective of SLAM is to build a map of a completely unknown environment, the technique
requires no prior knowledge, but the resultant map is typically sparse or locally inaccurate.
In order to shift the quality of SLAM towards high-precision mapping, the environment
must be explored thoroughly while considering the optimal viewing points. This explo-
ration can be completed by using the next-best view approach for determining where
optimal sensor observations are located. The unknown environment can be explored by
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analyzing frontier regions and predicted occlusions to determine the most optimal viewing
location [18,19]. The results can be further improved by representing the scene as surfaces
and revisiting the incomplete areas [20]. New techniques have been developed that make
use of fixed manipulators and determining the best viewing positions inside the workspace
in order to observe the entire environment [21–23]. The main issue with these techniques is
that they rely on frontier identification and therefore do not know the whole environment
during planning. This leads to areas being observed with different observation qualities,
which is not sufficient to generate a consistent map of the scene. By coarsely exploring the
environment and then navigating, the environment is able to be explored completely and
uniformly with high accuracy.

The second class of mapping approaches is offline techniques, which use information
from a set of images to build up a representation of the environment. Structure from Motion
(SfM) can generate a 3D point cloud that corresponds to visually identified features from
occupied regions of the environment by projecting the points from the image frame into
Euclidean space [24]. In order to maximize the map accuracy, the SfM deploys bundle
adjustment (BA), which globally minimizes the reprojection error [25,26]. The offline
optimization allows larger environments to be accurately represented with 3D point clouds
by making use of aerial images [27] and videos [28]. Neural radiance fields (NeRF) is
an offline approach for generating high-resolution 3D viewpoints for an object, given a
set of images and camera poses [29,30]. The key focus of NeRF is to efficiently represent
the scene with implicit functions along viewing rays by outputting a density function
relating to the lengths of the rays with colors associated with the position along a given ray.
One of the practical issues with NeRF is the reliance on poses for each image which was
originally computed using SfM [31], but new methods can learn the camera extrinsics [32,33]
while creating the 3D model. Regardless of the methods for finding the camera extrinsics,
the performance is hindered when high resolution is the goal, and the images must be
captured near the surface of interest. If the room is able to be sampled with a hyper-
resolution that is not conventionally achieved with SfM, the 3D reconstruction results can
be greatly improved, as seen in Figure 2. Thus, the advantage of offline techniques is the
global accuracy of the environment representation is unaffected by the environment size,
as the 3D point cloud is computed offline through global optimization.

Figure 2. The images and poses are used as inputs for NeRF [30] to generate a 3D rendering of the
captured object. The standard set of images have a lower resolution in a unit area as compared to the
images taken closer to surface. The differences in results are not too noticeable from the far viewpoint,
but the differences can clearly be seen from the close viewpoint.

This paper presents a multistage framework to autonomously create a map of an
environment using a mobile robot. Given an unknown environment, the task is to construct
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a high-quality map of the entire space autonomously. The quality of the map is given by the
global accuracy and desired metrics—the aim being to maximize the quality. The proposed
framework is divided into steps to specifically target the requirements needed to construct
a high-quality map. The proposed framework consists of three steps that incrementally
achieve the task by leveraging the strengths of different sensors and approaches. The first
step (Step 1) constructs a coarse but globally accurate map by a conventional technique, such
as SLAM (or SfM), by exploring an unknown environment with minimum motion. This
provides a globally accurate skeleton of the environment to be used for path planning and
pose estimation in the following steps. The second step (Step 2) plans a robot path which
achieves the targeted distance. By having the resolution and local accuracy formulated in
association with distance to the nearest structure, any point on the path is planned to have
the targeted resolution and local accuracy. The targeted distance approximately guarantees
the targeted metrics to control the quality of the resulting map. In the third step (Step 3),
a path replanning technique directs the robot online to achieve the targeted resolution
and local accuracy precisely. By replanning the path during the final step, the robot is
able to autonomously record the data with the desired quality metrics. The strength of
the proposed framework is its ability to autonomously create a high quality map without
compromising the global and local quality of the map.

This paper is organized as follows. Section 2 describes the current mapping and explo-
ration efforts, and the need for a multistage approach. Section 3 presents the multistage
framework proposed in this paper for targeted sensor observations. Experimental valida-
tion, including parametric studies, is presented in Section 4, and Section 5 summarizes
conclusions and ongoing work.

2. Mapping and Exploration

In order to create a high-precision map using an autonomous robot, both the mapping
and exploration techniques must be state-of-the-art and reliable. The proposed framework
will build on the fundamentals of mapping, to be discussed in the next subsection, in order
to improve the map quality with predictability. For any mapping task, the resultant
map of the environment must be complete, meaning all desired surfaces are properly
observed. Therefore, complete coverage exploration, to be discussed in Section 2.2, is needed
to thoroughly visit the entirety of the environment. Then, the limitations of the current
approaches and how the proposed technique addresses those limitations will be discussed in
Section 2.3.

2.1. Mapping of an Unknown Environment

A robot maps an unknown environment using a sensor suite that contains numerous
sensors, including visual sensors, inertial sensors, encoders, etc. A typical configuration is
a visual sensor that observes a local depth field and inertial sensors that measure changes
in the robot pose. Given information on the initial pose of the robot and measurements from
the sensors along the robot trajectory, the pose of the robot can be estimated. Since the goal
of mapping is to output a two-dimensional (2D) or 3D map that represents the environment,
the map is updated based on the pose estimation and measurement inputs from the sensors.

At a conceptual level, the problem of mapping an environment purely from infor-
mation acquired by a set of sensors onboard a robot can be mathematically defined as
follows. Let knowledge on the initial pose of the robot be x̂0. Information acquired by the
depth sensor at time step k and the robot’s motion from k− 1 to k measured by the inertial
sensor are Ik and zk,k−1, respectively. Given the estimate of the robot pose at k− 1 by x̂k−1,
the principle of the online mapping problem can be defined as updating the pose x̂k with
the observations Ik and zk,k−1:

x̂k := x̂k + WI
k[Ik − hI(x̂k)] + Wm

k [zk,k−1 − hm(x̂k, x̂k−1)] (1)
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where hI(x̂k) and hm(x̂k, x̂k−1) are the sensor models associating the pose with the sensor
output. WI

k and Wm
k are the matrices that transform the sensor output into the pose, and :=

substitutes the right-hand terms into the left-hand variable.
Once the pose x̂k has been identified and finalized over the time steps, the registration

of the observations Ik completes the mapping process. Registration is typically performed
by either appending the incoming point cloud straight to the map or by a executing the
iterative closest point (ICP) algorithm [34,35], as defined by:

(R, t) = argmin
R,t

∑
(i,j)∈C

∥∥∥Ii −RIk,j − t
∥∥∥

2
(2)

where C is the set of corresponding points; R is the rotation matrix; and t is the translation
vector that transforms the incoming point cloud, Ik, to the map point cloud, I. BA through
global optimization is typically the last step to adjust x̂k and Ik to increase the global
accuracy by minimizing the reprojection error. The resulting point cloud which represents
the map of the environment is given by I = {Ik, ∀k}.

2.2. Exploration and Navigation

The exploration of a known and unknown environment has numerous similarities,
since the goal is the same, but the methods change to accommodate the differing amounts
of prior knowledge. In order to create a complete map of the environment, the exploration
must be performed using a variant of complete-coverage path planning [36]. Thus, the goal
of exploration is to observe all of the desired surfaces in the environment with adequate
certainty. Regardless of the method for exploration, the objective remains the same for
exploring known and unknown environments.

When exploring an unknown environment, a map must be maintained to track the
explored and unexplored regions of the environment. Typically, frontiers are then extracted
from the map, and the robot will navigate through the environment until no more frontiers
exist. This indicates the environment has been fully explored. When just considering the
frontiers, the execution can be suboptimal, so the next-best view is used to improve the
optimality of the path. By including information gain, the robot can observe the entire
environment with minimal motion [37], which is desired to maintain high accuracy.

If the environment is known, then standard coverage path planning is easier, since
the robot is just revisiting the environment. The planned path can be optimal, since the
entirety of the scene is known. This also allows for path constraints to be followed more
consistently than in frontier exploration. Common constraints for coverage path planning
with respect to visual inspection include distance and orientation to the wall. Once all the
viewing points which meet the specified criteria are selected, the points are connected by

Lpath = min ∑
i

∑
j

dijδij (3)

where Lpath is the total path length to be minimized, dij is the distance between points
pi and pj, and δij ∈ {0, 1} is 1 when the path connects pi and pj and 0 otherwise. The
optimization problem can be formulated and solved using numerous techniques, including
the genetic algorithm [38]. However, the dimensions of the basic formulation are too high
to be reasonably solved without employing heuristics.

2.3. Need for a Multistage Approach

While the environment can be explored and a map can be created, the quality of
the map is insufficient in two cases. The first case arises from the failure to cover all of
surfaces with the depth-sensor measurements, rIk∀k. In the second case, there may exist
a depth-sensor measurement, rIk, ∃k, which does not satisfy the targeted resolution. Both
cases can occur when the 3D environment is considerably complex due to the changing
geometry, even if a sophisticated Active SLAM technique is deployed. Since the low
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resolution is a result of measurement with distance, the local depth measurement may also
be inaccurate. The map quality is insufficient in both the cases because the map becomes
coarse. Even if a state-of-the-art exploration technique addresses these issues, standard
SLAM techniques cannot be used to successfully create a fine map. This is due to the small
number of geometric and visual features, which are used for pose estimation in many SLAM
algorithms, being in the field of view of the sensor. Therefore, the pose estimation will
likely be inaccurate even with the most robust SLAM techniques, and certainly unreliable.
If the map is to be used to precisely represent the environment, the map must be accurate
and have high spatial resolution to ensure all of the small details are recognizable.

The map created for global accuracy is generally poor in resolution and local accuracy,
since both cannot be achieved simultaneously. This is due to the focus being on collecting
scans with more information, such as geometric and visual features, which typically
requires the sensor to be farther from to the surface. However, when creating a high-
precision map, the sensor must observe the surfaces at a close distance to maintain high
resolution and local accuracy. This indicates that a multimodal approach should be pursued
when constructing a high-precision map to leverage the strengths of different sensors. All
high-precision mapping approaches must be built on a coarse map with an emphasis on
global accuracy. Only after a coarse map has been obtained can high-precision mapping be
reliably achieved for large scales. The next section presents the multistage approach for
autonomous robotic mapping proposed in this paper.

3. Autonomous Robotic Data Collection

Figure 3 shows the schematic diagram of the proposed multistage framework for
creating a high-precision map. The proposed framework starts by creating a coarse global
map developed by conventional mapping with minimum motion as a constraint and
focuses on collecting data to create a map to achieve the targeted resolution and local
accuracy with an autonomous robot. Minimum motion, such as a single loop around the
environment, is used during coarse mapping to maintain the global accuracy by reducing
the distance between pose estimations during SLAM or SfM. It is to be noted that the depth
sensors of the proposed framework are a LiDAR, due to its high depth accuracy, and an
RGB-D camera, due to its high aerial resolution. Consistent depth accuracy is needed in
coarse global mapping because the robot may be away from the surrounding structures.
This achieves global accuracy, though the robot must be close to its surrounding structures
in the proposed framework to achieve the targeted resolution and local accuracy.

The proposed framework consists of three steps. The first step, Step 1, autonomously
constructs a globally accurate coarse map of the environment to be used in the succeeding
steps. In order to create a globally accurate coarse map, a 3D LiDAR is used for its consistent
depth uncertainty and large range. The coarse map is created by using a conventional
mapping technique, such as SLAM, and having the robot navigate through the unexplored
environment with minimum motion. Since the proposed technique will later have the robot
revisit the entire environment for high-precision observations, the coarse map does not
have to be locally complete but should be globally complete.

The second step, Step 2, plans a 3D path of the robot offline, which maintains the
desired distance to the nearest structure of the environment and approximately guarantees
the minimum desired resolution and accuracy. Objects in an indoor environment can be
generically classified as horizontal or vertical surfaces. Major horizontal surfaces include the
floor and ceiling. Vertical surfaces mostly consist of the walls and other objects extending
upwards from the floor. Therefore, planning is done separately for the horizontal and
vertical surfaces. Since the indoor environment is most often designed with horizontally
stretched space, the coarse global map is first sliced into multiple horizontal 2D planes,
each with a different height, and an occupancy grid map (OGM) is created for each 2D
plane. Planes representing the floor and ceiling are then used for planning revisiting
major horizontal surfaces. This planning consists of basic-area-coverage path planning, so
that the robot can revisit the entirety of the floor and ceiling for complete coverage. The
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remaining planes are used for planning the path for the robot to revisit the vertical surfaces.
The proposed framework creates a unoccupancy distance map (UDM) for each OGM and
identifies pixels of the UDM image that have the desired distance to the nearest structure.
The pixels of each layer are connected using a reduced-order travelling salesman problem
(TSP) technique and results in the 2D path of the robot of the layer. In the final process of
Step 2, the 2D paths are connected so that the robot covers the 3D space in a single trip.

Figure 3. The proposed multistage approach for autonomous high-precision mapping consists of
three steps. Step 1 constructs a globally accurate coarse map to be used in the latter steps. Steps 1 and
2 use the coarse map to as prior information to focus on high precision. Step 2 plans a path for the
robot observations to achieve the desired metrics. Step 3 adjusts the path to assure the metrics are
met and the data are suitable for high precision mapping.

Step 3 replans a path and constructs a scan graph with RGB-D camera measurements
online. While the offline path is concerned only with the distance to the nearest structure,
the path replanned online navigates the robot such that the final data satisfies the targeted
resolution and local accuracy. The robot moves not only to collect the expected data but
also explores areas that were not identified in coarse global mapping. This online path
optimization is necessary to correct the predictions made in Step 2 approximating the
resolution and local accuracy. Step 3 not only ensures the targeted resolution and local
accuracy, but also the coverage completeness. Once the robot has moved, the RGB-D
camera measurements are aligned to finalize the pose estimations from coarse to fine. The
process continues until the robot completes all of the data collection.

3.1. Step 1: Globally Accurate Coarse Mapping

The first requirement, for creating a high-precision map, is to create a globally accurate
coarse map of the environment. If the map of the environment is known, from previous
exploration or a BIM [39], and the results are globally accurate, then Step 1 can be skipped.
In the cases where the environment is unknown, Step 1 is used to create a map of the
environment with a focus on global accuracy.

To construct a map with high global accuracy, a rotating 3D LiDAR is used for its
wide field of view, large range, and consistent error with respect to distance. Basic frontier
exploration [40,41] is used to navigate through the environment to create a globally com-
plete map. The exploration does not have to lead to a locally complete map, so the focus
can be on reliable exploration with minimum motion. Since the objective of Step 1 is to
maximize the global accuracy, there is a desire to minimize motion of the robot to reduce
errors associated with pose estimation by considering the information gain associated
with the next planned position. During exploration, a generic 3D SLAM algorithm [42,43],
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with support for a variety of sensors, is used to construct the globally accurate 3D map.
Since many SLAM techniques rely on feature matching, the angular velocity of the sensor
should be minimized to reduce the changes in position of tracked features. The resultant
map will be globally complete and accurate—a suitable map for planning and navigation.

3.2. Step 2: Offline 3D Path Planning for Complete Surface Coverage

Step 2 of the proposed framework aims for the targeted resolution and local accuracy
to be achieved by planning the path of the robot so that its corresponding targeted distance
to the nearest structure of the environment is maintained. For offline path planning,
the resolution and local accuracy at each point can only be predicted. The generic setup for
the offline prediction for path planning can be seen in Figure 4, which details the sensor
field of view projected onto a wall in the environment. The spatial resolution and accuracy
of a visual sensor are inversely proportional to measuring distance. Small distances imply
higher spatial resolution and accuracy. Spatial resolution of a theoretical scan near a planar
surface can be given by

D̂(d) =
mn

4d2 tan(H
2 ) tan(V

2 )
(4)

where m by n is the sensor resolution, H by V is the field of view, and d is the distance
to the center of the measurement. The accuracy is not easily defined, so conversely, the
error of the depth measurement can be used instead. The depth error is typically given as a
proportion of the sensor reading, so the predicted error is

Γ̂(d) = dσ (5)

where σ is the reported accuracy. The targeted distance, d∗, represents is the estimated
distance to achieve the targeted resolution and local accuracy. It can be estimated by

d∗ = argmin
d

{
λD̂
(

D̂(d)− D∗
)2

+ λΓ̂
(
Γ∗ − Γ̂(d)

)2
}

(6)

where D∗ is the targeted spatial resolution, Γ∗ is the targeted error, and λD̂ and λΓ̂ are the
scaling factors.

Figure 4. Diagram of an indoor environment with a depth sensor making an observation on a
planar wall.
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To ensure that autonomous path planning does not fail in a complex 3D environment
and being aware that the indoor space is stretched horizontally, the robot is planned to
revisit the entire 3D space by moving horizontally at different heights. The observation
height for the floor, hh0, and ceiling, hh1, are defined by

hh0 = h f loor + d∗, (7)

hh1 = hceiling − d∗ (8)

where h f loor is the height of the floor and hceiling is the height of the ceiling. Since the aim
of the proposed technique includes coverage completeness, a unit viewing area will be
defined for the sensor. This ensures that regardless of the orientation about the viewing
axis, everything in the unit viewing area is observed. The unit viewing dimension is
calculated by rotating the field of view about the center point and inscribing a circle, as
seen in Figure 5. A square was then inscribed in the circle to determine the unit viewing
area at the targeted distance, as given by

lview =
√

2d∗ tan
(

min{H, V}
2

)
(9)

where lview is the unit length of the unit viewing square.

Figure 5. Unit viewing area for a sensor at a given distance, given by rotating the field of view and
inscribing a square into the union of all of the fields of view.

The number of horizontal slices, nh, corresponding the major vertical surfaces depends
on the height of the environment and field of view of the sensor. It is given by

nh =

⌈
hceiling − h f loor

lview

⌉
(10)

where d·e is the ceiling operator. Since the number of layers must be an integer, the ceiling
operator is used instead of the rounding operator or the floor operator to ensure that the
entire vertical surface is observed. The different layer heights, vhi, are

vhi =
hceiling − h f loor

nh
(i− 1

2
) + h f loor, ∀i ∈ {1, . . . , nh} (11)
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where the heights are evenly distributed from the floor to the ceiling.

Let the ith grid pi =
[
xi, yi]> of the 2D OGM created by slicing the coarse global 3D

map of the conventional mapping at the defined heights be

mOGM

(
pi
)
=


0 occupied

1/2 unexplored
1 unoccupied

(12)

where mOGM(·) is a occupancy grid mapping operator. The OGM conventionally outputs
the values of 0, 1/2, and 1 for occupied, unexplored, and unoccupied grids, respectively.
The proposed framework re-expresses the OGM as the Euclidean UDM towards planning
a 3D path offline and returns an unoccupancy distance as:

mUDM

(
pi
)
=

{
0 occupied ∪ unexplored
di

u unoccupied
(13)

where mUDM(·) is a revised version of the OGM operator that outputs the distance of
the grid from the nearest occupied grid. The distance in the UDM is 0 when the grid is
“unexplored” in addition to “occupied”. The state of “unexplored” is treated equally to the
“occupied” because the path cannot be planned in unexplored areas. Figure 6 illustrates the
OGM and the UDM comparatively. It is seen that the primary aim of the UDM is to map
distance in unoccupied space.

(a) (b)

Figure 6. Resultant OGM (a) and UDM (b) created from the coarse map.

For map slices representing the major horizontal surface, which corresponds to the
floor or ceiling, the robot needs to revisit the entire available area. This is also known as
coverage path planning. Typically, the environment is discretized in a grid map, and each
grid cell is a point for the robot to visit. Since the aim of the proposed framework is to map
the entire surface at a specified distance, d∗, the grid cells can be resized to correspond
to the field of view of the sensor. Simply, the grid cells will be resized to match the unit
viewing length. By using the minimum dimension of the sensor field of view, it ensures
that regardless of the orientation the entire area of the grid cell will be observed.

After the OGM has been resized, with the grid cells being roughly the same size as
the sensor field of view, a simple coverage path planning algorithm can be used. A variety
of techniques can be used to visit each cell, each with different optimality criteria. This
approach uses the boustrophedon technique [44] to plan a path through each cell due to
its many straight paths, which will minimize unnecessary change in motion for most of
the environment. The path planning technique just connects all of the points together
into a single path; the sensor orientation is not considered until after the path is complete.
Since the motion and the surfaces of interest are in parallel planes, the sensor orientation is
constant for the entire path with the sensor facing the surface of interest.
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The remaining map slices will correspond with the major vertical surfaces, primarily
the walls, so the robot needs to follow the perimeter of the map. The proposed framework
then identifies the grids of the UDM or the pixels of its image that have the targeted distance
to the nearest structure. Let pi∗ be the pixel of the structure nearest to the pixel pi. The
condition of the pixel to be a waypoint of the path is

d∗ − 1
2
‖∆p‖2 ≤

∥∥∥pi − pi∗
∥∥∥

2
< d∗ +

1
2
‖∆p‖2, (14)

where ‖·‖2 indicates the L2 norm throughout the paper, and ‖∆p‖2 is the distance between
the two neighboring pixels or the pixel resolution. A pixel is chosen within the pixel
resolution to select the pixels that are necessary to pass through. Figure 7 shows the pixels
selected to compose an offline path.

Figure 7. Pixels (cyan color) selected to make up the offline path.

Since they are not connected, the pixels should form a path by connecting themselves
but with minimum overlaps. While problems for finding a path to visit all the waypoints
with minimum overlaps are known as TSP, the number of points is so large that this
problem cannot be solved by plain TSP solvers in a reasonable time. The problem of
concern has the following unique constraint: Pixels representing the boundary of each
structure are located near each other and sequentially expand along the contour. Thus,
pixels along the boundary can be connected as segments of the planned path.

The proposed framework first connects the points near each other as segments. In this
way, the dimension of path planning is significantly reduced, since the problem is now
defined as finding the order of start and end pixels of the segments to visit. Let the end
pixel of the ith segment and the start pixel of the jth segment be pi

e and pj
s, respectively. In

accordance with the TSP, the problem is formulated as

min
δij

∑
i

∑
j

dijδij (15)

where i, j ∈ {1, . . . , n} and j 6= i. dij(> 0) is the distance from the end pixel of the ith

segment pi
e to the start pixel of jth segment pj

s. δij ∈ {0, 1}, which takes one if pi
e and pj

s are
connected as a part of the path. The Dantzig–Fulkerson–Johnson formulation [45] adds the
following constraints to complete the problem, ensuring each and every point is visited
once with no subtours:

n

∑
i=1,i 6=j

δij = 1, ∀j ∈ {1, . . . , n}, (16)
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n

∑
j=1,j 6=i

δij = 1, ∀i ∈ {1, . . . , n}, (17)

∑
j∈Q

∑
j 6=i,i∈Q

δij ≤ |Q| − 1, ∀Q ( {1, . . . , n}, |Q| ≥ 2, (18)

where Q is a subset. Solving the problem is to decide the values of δij. The proposed frame-
work calculates dij based on Euclidean distance for fast computation. Since the number of
segments is not large, this TSP problem can be solved using either exact algorithms [46] or
heuristic algorithms [47]. After δij has been decided, the path from pi

e to pj
s in which δij = 1

is planned to avoid obstacles by common motion planning algorithms, such as A star and
D star [48]. The desired sensor orientation is added to each of the points along the path by
obtaining the normal of n nearest occupied pixels. The normal of the pixels is computed
by using random sample consensus (RANSAC) [49] to fit a line through the points and
finding an orthogonal direction vector by

θ = arctan
(

1
m

)
(19a)

v =

[
cos θ
sin θ

]
(19b)

where m is the slope computed from RANSAC, θ is the normal angle, and v is the direction
vector for the sensor.

Figure 8 shows the resulting 3D path created after the 3D expansion. Since a 2D path
is developed for each horizontal plane, the 3D expansion is completed by connecting a
path point of one horizontal plane to a path point of the next horizontal plane.

Figure 8. Resulting 3D offline path of a room with two horizontal layers (red paths) and three vertical
layers (green paths). The object located at x = 4, y = 9 does not reach the upper-most layer.

3.3. Step 3: Online Path Optimization for Targeted Metrics

The path planned in Step 2 only approximately guarantees the resolution and local
accuracy because the offline path is concerned only with the distance to the nearest structure.
Therefore, as the path is followed by the robot using localization from the rotating 3D
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LiDAR, the path is replanned and controlled online based on the measured resolution
and local accuracy. The online path optimization guarantees the map is finalized with the
targeted resolution and local accuracy. To evaluate the resolution at a macroscopic scale,
the proposed framework defines it in terms of pixel density. Suppose that the structure’s
surface of concern for the robot at time step k is Ωk. If the number of pixels from the data
to exhibit the surface is nΩ,k, the pixel density of the surface, DΩ,k, is given by

DΩ,k =
nΩ,k

Ωk
. (20)

The local accuracy, on the other hand, can be evaluated in terms of the characteristics
of indoor structures. Since the surface of the indoor structure is geometric, poor local
accuracy is often identified by the fluctuation of pixel locations. Let the mean deviation of
the ith pixel and the neighboring pixels from the fit plane be Γi. The mean deviation of the
surface of concern is given by

ΓΩ,k =
1

nΩ,k
∑

pi∈SΩ,k

Γi. (21)

The objective of the online path optimization in Step 3 is to find the incremental motion
∆xk that follows the path planned in the Step 2 offline planning and improves the resolution
and the local accuracy:

J(∆xk) =
∥∥x∗k+1 − x̂k − ∆xk

∥∥
2 → min

∆xk
(22)

where x∗k+1 is the next desired robot pose along the path, and x̂k is the currently estimated
robot pose. The control objective is subject to constraints so that the map meets the
minimum criteria at time step k + 1:

DΩ,k+1(∆xk) = D∗, (23)

ΓΩ,k+1(∆xk) = Γ∗. (24)

The resolution and the local accuracy that the robot achieves in the actual mission
would differ from the predicted values in Step 2. This necessitates the path replanning to
ensure the targeted resolution and local accuracy are maintained.

Various sophisticated solutions are available for constrained nonlinear optimization,
but the problem of concern with a linear objective function and light convex constraints can
be solved relatively straightforwardly. The proposed framework adopts a conventionally
accepted solution [50] and solves the problem by reformulating the objective function with
penalties as

J(∆xk) =
∥∥x∗k+1 − x̂k − ∆xk

∥∥
2 + λD(DΩ,k+1(∆xk)− D∗)2 + λΓ(ΓΩ,k+1(∆xk)− Γ∗)2 (25)

where λD and λΓ are the scaling factors.
Since the pose is initially estimated by the rotating 3D LiDAR, the measurements have

high uncertainty, which is not suitable for high-precision mapping. The pose refinement
is performed through the alignment of the RGB-D camera point cloud to the coarse map.
Since the coarse map is globally accurate and there is an initial estimate of the camera pose,
the alignment of the RGB-D camera point cloud is also straightforward.

The newly observed point cloud should be matched to the preceding map point cloud
through the ICP method to find the rigid transformation, δPk ∈ SE(3), between the coarse
map points, I0, and the new RGB-D points, Ik. The pose composed by the Step 2 planned
path and Step 3 replanning is measured by the rotating 3D LiDAR and converted to an
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SE(3) matrix, Pr
k , to be used as the initial conditions for registration. The registration is

performed as follows to find the pose of the new point cloud:

δPk = argmin
δPk

∑
j∈J

∥∥∥δPkPr
k Ik,j − I0,j

∥∥∥
2

(26)

The incoming RGB-D point cloud is successfully aligned to the preceding coarse map
by applying the SE(3) transformations. The resultant pose from the aligment is represent by:

P∗k = δPkPr
k (27)

where P∗k is the refined pose estimate from the ICP refinement. By matching the incoming
RGB-D point clouds to the prior LiDAR point cloud, the computation is reduced while
maintaining global accuracy, since the global structure is already present.

4. Numerical/Experimental Validation

The proposed framework of autonomous data collection was tested and validated
through parametric studies and a real-world application. Section 4.1 investigates the path
planning of Step 2 with synthetic maps which were generated by positioning different
kinds of objects on given grid maps. Section 4.2 studies the quality of collected data
parametrically after the Step 3 online map refinement. The autonomous mission of the
proposed technique in a practical environment is demonstrated in Section 4.3.

4.1. Planning Performance of Step 2

The performance of the reduced-order TSP planning technique, for vertical observa-
tions, was assessed for completion and time during validation. The other parts of Step 2
were not tested, as the TSP is newly proposed. Table 1 lists the parameters used for path
planning of Step 2. The synthetic maps were generated by positioning three kinds of objects
(square, circle, and triangle) on a given map of random size. The object may or may not
appear on each map, and the position and rotation of each object are also random.

Table 1. Parameters of the Step 2 validation.

Parameter Value

Map resolution (m/grid) 0.2
Map size (square, m) 6, 8, 10, 12, 14

Object type Square, circle, triangle
Object size (m) 0.5, 1, 1.5, 2, 2.5

Number of synthetic maps 200
TSP solver Greedy-based

Linking of unconnected points D-star motion planning
Distance to objects d∗ (m) 0.4

Figure 9 shows two examples of the synthetic map and the planned paths. The
dynamically sequential movement along the path is shown by the arrows indicated along
the path. In the test, paths were successfully planned for all of the generated environments.
Since the motion planning algorithm is needed to link the endpoints of two disconnected
segments, if many pairs of endpoints need to be connected, the planning would take a
considerable amount of time.

Figure 10 shows box plots of the computational time with respect to the map size and
the number of objects positioned in the environment. The computational time is defined
as the time taken for completion of the section of Step 2 for vertical observations, includ-
ing: preprocessing of distance transform, solving TSP, and D star motion planning. The
computational time of planning was recorded for all 200 maps. The mean computational
time increased as the map size and the number of objects became larger. This is because
the motion planning consumes more time when the map is bigger and the environment is
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more complex due to more positioned objects. The motion planning took the majority of
the time—89.66% of the entire time.

Figure 9. Two examples of synthetic maps used for the validation of Step 2. The planned paths are
indicated with the dotted lines around the objects, and the arrows show the sequential movement.

Figure 10. Box plots of the computationaltime with respect to the map size and the object number in
the environment.

4.2. Local Metric Evaluation of Structure from Step 3

In order to test the validity of Step 3, a known and controlled environment was
constructed for repeatable testing and comparisons. As per Step 1, a globally accurate coarse
map was constructed using a rotating LiDAR given its precise measurement, irrespective of
the distance. A path was not planned using Step 2, as the purposed of this experiment was
to test the performance of Step 3 to achieve the desired metrics. The robot was instructed
to move past the objects at an approximate distance with the online optimization to be
followed to guarantee the desired metrics. For Step 3, a depth camera was added, as its
measurement precision was ensured when the objects were near, which was ensured by
following the path of Step 2.

The main focus of the parametric study was to quantitatively determine the resolution
and local accuracy of the proposed framework. Since the resolution is a function of the 3D
reconstruction method, which can sometimes include interpolating functions, the resolution
was compared to the desired resolution used in Step 3. The local accuracy was compared to
conventional techniques to determine the effectiveness of the pose estimation. A standard
SLAM package, RTAB-Map [42], was used as the conventional mapping technique using
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the default recommended parameters for each respective sensor. Table 2 describes the
desired metrics, sensor distance, and other parameters used to during the experiment. An
approximate distance, similar to the value calculated in Step 2, was used to determine
whether the online optimization was necessary. The same path was followed at a distance
of 1.25 m for all sensors. The distance was chosen so both the LiDAR and the depth camera
could maintain global accuracy, as moving closer would disrupt the pose prediction and
registration of conventional techniques. The local accuracy and resolution were tested on
the same surfaces, as shown in Figure 11, located within a room, so all sensors could ensure
adequate evaluation. A ground truth model was created by measuring the environment
and drafting a CAD model for comparison.

Table 2. Parameters of the validation of Step 3.

Parameter Value

Γ∗ (mm) 1
D∗ (pixel/mm2) 1

λD, λΓ 1, 1
Coarse map SLAM package RTAB-Map [42]

3D LiDAR Ouster OS1-16
LiDAR SLAM package RTAB-Map [42]

Depth camera Intel L515
RGB SLAM package RTAB-Map [42]

(a) (b) (c)

Figure 11. Known structures for testing the resolution and local accuracy of the proposed method.
(a) Periodic surface, (b) non-periodic surface, (c) flat surface.

The results of the study fully validate Step 3 by showing consistently high resolution
and local accuracy on all of the test structures. Resolution was calculated by finding the
distance between every point and its nearest neighbor, with the goal being to have as small
a distance as possible. Figure 12 shows the higher resolution of the point cloud while using
the proposed framework, with all points being within 1 mm of their nearest neighbors.
The local accuracy was computed by comparing the resultant point cloud to the ground
truth 3D model of the structures of interest. The point clouds of the collected data were
assembled using basic registration of the point clouds from the computed poses. The
point cloud was sliced horizontally to generate more samples so the accuracy could be
individually compared among varying heights. As seen in Figure 13, the local accuracy of
the proposed framework is significantly better than that of the ICP odometry and at least
as good as that of the RGB odometry. These are optimal results as the local accuracy of the
proposed framework is similar to the reported values on the sensor data sheet.
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Figure 12. Histogram of local resolution for the controlled environments.

Figure 13. Histogram of local accuracy for the controlled environments.

4.3. Autonomous Map Creation of a Practical Environment

Figure 14 shows the robot and the indoor environment that were used for the real-
world experiment. The robot consisted of a wheeled platform and a manipulator on top of
it. Both the 3D LiDAR and the depth camera were attached to the end of the manipulator.
The manipulator allows the positioning of the sensors in 3D space, which allows for the
creation of a high-precision map. The indoor environment is a typical workplace office that
has various furniture facing the wall and an open area. Since the furniture does not go all
of the way to the ceiling, the sliced 2D maps differ depending on the height.

Table A1 lists the input parameters of the experiment. The SLAM package for coarse
mapping and sensors was not changed from the experiment in Section 4.2. Figure A1
shows the point cloud of the coarse map used in the pose refinement. The map shows
global accuracy as the boundary of the room is square, indicating it is well loop-closed. The
occupancy grid maps of different heights were generated, as seen in Figure A2, and used
as the inputs to the proposed framework. The OGMs are seen to differ from each other
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to some extent due to the presence of structures at different heights, confirming the need
for path planning at each height. The UDMs in Figure A3, selected pixels for the traversal
in Figure A4, the path planned for each layer in Figure A5, and the computed values in
Table A2, are shown for completeness.

(a) (b)

Figure 14. UGV used for map refinement and the environment of the real-world experiment. (a) UGV
with manipulator, (b) Test environment obstacles and furniture.

Figure 15 shows the final 3D offline path computed by Step 2. It is to be noted that
some of the z values are negative, since the origin of the map is located 1.68 m above the
ground, where the coarse mapping began. The heights of the floor and ceiling are indicated
in Table A2, which control the range of the heights used for the planned path. The path was
followed by the robot to traverse the environment and refine the coarse map. The ROS1
navigation stack with move_basewas used as the backbone for movement of the mobile
platform. The robot arm extended to reach the different layers and moved to perform fine
motion corrections. While the path planning for synthetic maps was always successful,
following the path depends on more factors. The performance of the path following is
restricted by the dynamic and kinematic constraints of the mobile robot. For instance,
the robot became stuck sometimes in positions when the distances to objects were set to be
too small due to the non-holonomic constraints provided by the mobile robot. If a robot
has holonomic constraints, such as a mobile robot with mecanum wheels or a hexacopter,
the ability to recover motion in tight spaces is improved.

Figure 16 shows a section of the map generated by NeRF [30] after using the proposed
framework. Different pose estimation techniques were used to compute the poses necessary
for NeRF. The proposed framework was tested alongside commonly used techniques, such
as COLMAP [31] and LiDAR localization. The practical test was repeated in other envi-
ronments with different layouts to determine the robustness of the proposed framework.
The test environments were a machine room, as seen in Figure A6, a robotics laboratory,
as seen in Figure A7, and a nuclear reactor’s silo, as seen in Figure A8. For these, the maps
are represented by the point clouds registered together at the respective refined poses
computed from Step 3. The machine room is small and unstructured environment, proving
the proposed approach can handle tight enclosed spaces. The robotics laboratory is large
and horizontally stretched, the horizontal mapping layers are well suited for environments
of this type. The nuclear reactor’s silo is vertically high, showing the capabilities even
when the structure is tall. It is to be noted that there is no ceiling for the high-precision
map due to the height of the structure, and the LiDAR point cloud remains to show the
skeleton structure of the space. The performances in many different environments show
the proposed framework can be used in many real-world settings and applications.
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Figure 15. Resulting 3D offline path created during Step 2.

(a)

(b)

Figure 16. Cont.
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(c)

Figure 16. Comparisons of the resulting NeRF [30] renderings using different techniques to estimate
the poses of the images. (a) Poses generated with COLMAP [31]. (b) Poses generated with ICP
localization using a rotating 3D LiDAR. (c) Poses generated using the proposed multistage framework.

As predicted, the pose estimation of the conventional techniques is not suitable for
collecting images with high spatial resolution. As shown similarly in the parametric study,
the low local accuracy and resolution of the conventional techniques can leave surfaces
blurry and unidentifiable. However, the proposed framework is able to create a map that is
clearly recognizable due to the verifiable high local accuracy and resolution.

5. Conclusions

This paper has presented a multistage framework for high-precision autonomous
robotic map creation. Each step focuses on alleviating a specific common challenge; thus,
the strengths of each step ensure the map quality meets the target specifications. The first
step creates a map with conventional mapping techniques to focus on global pose estimation
accuracy. Step 2 plans a desirable path for the robot to revisit the environment while
maintaining a desired distance to all objects of interest. Since the distance approximates the
predicted resolution and local accuracy that will be achieved by the sensor, following the
path ensures the scan accuracy is high. The framework is made autonomous by replanning
the path to achieve the targeted metrics while creating the high-precision map. The pose
estimates are also refined in Step 3 to maintain high precision for all of the mapping data.

In this paper, it was found that the steps of the multistage framework are able to
improve the results related to the challenges associated with the current mapping efforts.
The pose and scan accuracy were validated for the proposed framework with parametric
studies testing the planning and execution performance. The final practical experiment
validated the autonomous capabilities of the proposed framework through testing in
different types of environments. The performance of the framework was not hindered in
any off the environments, thereby confirming the practical usefulness of the framework.

We focused on the high-precision mapping capability as the first step, and much
work is left open for future research. Ongoing work includes the reduced-order map
representation and its application to inspection and maintenance. Work is also being done
on semantic segmentation of static and dynamic objects in the environment to aid robot
interactions. New results will be presented through the upcoming opportunities, including
conferences and journal papers.
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Appendix A. Step 2 Data for a Practical Office Environment

Appendix A.1. Globally Accurate Coarse Map

Figure A1. Coarse global map created using the conventional SLAM technique (RTAB-Map [42]).

Appendix A.2. Parameters and Calculated Values

Table A1. Input parameters of the real-world experiment.

Parameter Value

Γ∗ (mm) 1
D∗ (pixel/mm2) 1

Coarse map SLAM package RTAB-Map [42]
3D LiDAR Ouster OS1-16

Depth camera Intel L515
H (deg) 70
V (deg) 43

σ (%) 0.155
m by n (pixels) 1080 × 1920

λD̂, λΓ̂ 1, 1
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Table A2. Computed parameters of the real-world experiment.

Parameter Value

d∗ (m) 1.46
h f loor (m) −1.68
hceiling (m) 1.44

hh0, hh1 (m) −0.222, −0.0253
lview (m) 0.814

nh (layers) 4
vhi, ∀i ∈ {1, . . . , nh} (m) −1.29, −0.514, 0.266, 1.04

Appendix A.3. Occupancy Grid Maps (OGMs)

(a) (b)

(c) (d)

(e) (f)

Figure A2. OGMs of the test environment at different layers. (a) Floor layer (z = −0.222 m).
(b) Ceiling layer (z = −0.0253 m). (c) First layer (z = −1.29 m). (d) Second layer (z = −0.514 m).
(e) Third layer (z = 0.266 m). (f) Fourth layer (z = 1.04 m).
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Appendix A.4. Unoccupancy Distance Maps (UDMs)

(a) (b)

(c) (d)

Figure A3. UDMs of the test environment at different layers. (a) First layer (z = −1.29 m). (b) Second
layer (z = −0.514 m). (c) Third layer (z = 0.266 m). (d) Fourth layer (z = 1.04 m).

Appendix A.5. Pixels Selected for Path Planning

(a) (b)

(c) (d)

Figure A4. Pixels selected to compose the path for the test environment at different layers. (a) First
layer (z = −1.29 m). (b) Second layer (z = −0.514 m). (c) Third layer (z = 0.266 m). (d) Fourth layer
(z = 1.04 m).
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Appendix A.6. Connected Paths for Each Layer

(a) (b)

(c) (d)

(e) (f)

Figure A5. The paths planned for the test environment at different layers. (a) Floor layer
(z = −0.222 m). (b) Ceiling layer (z = −0.0253 m). (c) First layer (z = −1.29 m). (d) Second
layer (z = −0.514 m). (e) Third layer (z = 0.266 m). (f) Fourth layer (z = 1.04 m).
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Appendix B. Results from Other Practical Environments

Appendix B.1. Machine Room

(a)

(b)

Figure A6. Practical experiment in a machine room with narrow spaces. (a) Image of machine room.
(b) Map created using the proposed framework by registering the point clouds.
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Appendix B.2. Robotics Laboratory

(a)

(b)

Figure A7. Practical experiment in a robotics laboratory with long horizontal spaces. (a) Image of
robotics laboratory, (b) Map created using the proposed framework by registering the point clouds.
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Appendix B.3. Nuclear Reactor Silo

(a)

(b)

Figure A8. Practical experiment in a nuclear reactor’s silo with tall vertical spaces. (a) Image of the
nuclear reactor’s silo. (b) Map created using the proposed framework by registering the point clouds.
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