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Abstract: This paper presents the development of a type-2 evolving fuzzy control system (T2-EFCS)
to facilitate self-learning (either from scratch or from a certain predefined rule). Our system has two
major learning stages, namely, structure learning and parameters learning. The structure phase does
not require previous information about the fuzzy structure, and it can start the construction of its
rules from scratch with only one initial fuzzy rule. The rules are then continuously updated and
pruned in an online fashion to achieve the desired set point. For the phase of learning parameters,
all adjustable parameters of the fuzzy system are tuned by using a sliding surface method, which is
based on the gradient descent algorithm. This method is used to minimize the difference between
the expected and actual signals. Our proposed control method is model-free and does not require
prior knowledge of the plant’s dynamics or constraints. Instead, data-driven control utilizes artificial
intelligence-based techniques, such as fuzzy logic systems, to learn the dynamics of the system and
adapt to changes in the system, and account for complex interactions between different components.
A robustness term is incorporated into the control effort to deal with external disturbances in the
system. The proposed technique is applied to regulate the dynamics of a mobile robot in the presence
of multiple external disturbances, demonstrating the robustness of the proposed control systems.
A rigorous comparative study with respect to three different controllers is performed, where the
outcomes illustrate the superiority of the proposed learning method as evidenced by lower RMSE
values and fewer fuzzy parameters. Lastly, stability analysis of the proposed control method is
conducted using the Lyapunov stability theory.

Keywords: evolving type-2 fuzzy systems; robotic control; uncertainties; Lyapunov stability

1. Introduction

The development of nonlinear control systems for mobile robots has been an important
research area in recent years. For example, numerical approaches have been developed
for trajectory tracking [1], navigation [2], parking [3], and obstacle avoidance [4]. Tradi-
tional control methods have been proposed for tracking control of mobile robots [5] and
feedback linearization [6]. Nevertheless, these algorithms can provide satisfactory tracking
performance only if the plant’s mathematical model is properly known, which is very
difficult in some cases due to various uncertainties (e.g., unmodeled dynamics, and noisy
and corrupted measurements) [7].

On the other hand, computational intelligence control approaches, such as fuzzy logic
systems (FLSs) and artificial neural networks (ANNs), have lately been applied successfully
in trajectory tracking control problems. Intelligent controllers can learn the dynamics of
robots in an online manner for both structured and unstructured uncertainties, and also
adapt the controller’s parameters and structure based on the operating conditions without
the need to obtain a full mathematical model of the plant [7,8].

The flow of work in FLSs is divided into three major steps, namely, fuzzification, the
fuzzy inference system (FIS) and defuzzification, respectively. In the first stage, classical or
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crisp data are transformed into fuzzy data using membership functions, and a degree of
confidence is obtained. The degree of confidence in the fuzzy domain is then combined
with one of the input features to determine the rule-firing strength. The fuzzy rules follow
an if–then structure, with the antecedent being the “if” part and the consequent being the
“then” part. Finally, the rule-firing strength is combined with the defuzzification interface
to generate the final output [9].

The application of type-1 fuzzy logic control systems (T1-FLCs) has been explored in
the context of programming mobile robots to learn and exhibit specific behaviors [10]. How-
ever, T1-FLCs have limited ability to handle uncertainties in nonlinear systems, especially
in a new operating condition, where the performance degrades significantly [11]. Accord-
ingly, type-2 fuzzy logic control systems (T2-FLCs) and interval type-2 fuzzy logic control
systems (IT2-FLCs) can be considered an alternative to solve the limitation of T1-FLCs [12].

IT2-FLCs have been proposed for mobile robot control problems [7,13–15], where
better tracking performance compared to T1-FLCs were reported. In [4], an interval type-
2 fuzzy neural network controller (IT2FNN) was developed for wheeled mobile robot
obstacle avoidance. The IT2FNN was compared with its type-1 fuzzy counterpart, where
their proposed controller was found to be robust against uncertainties and in the presence
of obstacles.

Nevertheless, these conventional IT2-FLCs have a static structure and lack the ability
to evolve their structure in an online manner. Generating type-2 fuzzy rules and their
associated membership functions is a potential challenge, especially for systems with many
variables [16]. Employing evolutionary algorithms to find optimal fuzzy parameters is not
desirable due to the large population space which results in slow performance. Hence, the
development of an automatic type-2 evolving fuzzy control system (T2-EFCS) is essential
to facilitate self-learning (either from scratch or from a certain predefined rule).

Evolving intelligent systems (EISs) are used to describe intelligent systems that can
adapt and evolve over time. EISs is a general term that refers to any intelligent system that
is capable of evolving over time to improve its performance. EISs can be implemented
using various techniques, such as ANNs, and FLSs. The main concept behind EISs is to
provide the ability for the system to learn and adapt based on its experiences so that it
can improve its performance and become more efficient and effective [17]. On the other
hand, evolving fuzzy systems (EFSs) are a specific type of EISs that use FLSs to represent
uncertainty and imprecision in the system. EFSs are based on the idea of using fuzzy sets
and rules to model the behavior of the system [18].

In [19], EFSs were referred to as Smart Adaptive Systems , where they differ from adap-
tive systems and have the following features: (1) autonomous systems, where they are able
to evolve on their own; (2) flexible to change, where they are able to simultaneously evolve
both their structure and parameters; (3) able to respond to a surprise (e.g., unexpected
inputs); (4) able to accumulate experience (e.g., able to build-up their architecture during
the routine process); and (5) smart (able to make decisions).

There is a strong correlation between EISs and EFSs, as both concepts are focused on
developing intelligent systems that can adapt and evolve over time. However, EFSs are
more specific in that they use FLSs to represent uncertainty and imprecision in nonlinear
systems, while EISs, on the other hand, is a more general term that can refer to any type of
intelligent system that can evolve over time. Recently, evolving fuzzy systems have become
popular in various engineering applications. They are used for system identification,
regression, classification, and control [20,21].

EISs was first conceptualized in [22] for single-pass incremental learning, with self-
constructing neural fuzzy inference network (SONFIN) capabilities. SONFIN can learn both
structure and parameters in an online manner. Nevertheless, it cannot remove ineffective
rules. Kasabov and Song [23] proposed a new technique named a dynamic evolving neural
fuzzy inference system (DENFIS) based on the evolving clustering method (ECM), where
ECM requires a threshold value for defining the maximum distance between each data
sampleand cluster centers. Angelov and Filev [24] developed an evolving Takagi–Sugeno
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(eTS) fuzzy system that can evolve its structure from scratch without any prior knowledge
of the system. However, their proposed algorithm is not capable of eliminating redundant
fuzzy rules. In [25], a sequential adaptive fuzzy inference system (SAFIS) was proposed,
where the Kalman filter is utilized for updating the parameters. Angelov [26] developed a
new version of eTS called eTS+, where the online dimensionality was reduced compared
to the original eTS. In [27], a parsimonious network based on a fuzzy inference system
(PANFIS) was developed as an improved version of SAFIS, where the extended recursive
least square method was utilized to guarantee the stability of the learning algorithms.

In the control systems domain, EFSs have been used to control nonlinear systems.
In [28], a generic self-evolving neuro-fuzzy controller was designed for trajectory tracking
of bio-inspired unmanned aerial vehicles and also to achieve a robust control performance
of a voice coil motor in [29]. These recent controllers learned their structure from scratch and
utilized the sliding mode theory for adapting fuzzy parameters. In another study in [30], a
self-evolving fuzzy controller was designed for a hypersonic vehicle with online structure
and parameter learning. Their simulation results demonstrated superior performance
over a fixed-structure fuzzy system. However, their proposed controller was model based,
requiring an accurate mathematical model of the system. Furthermore, most of the real-
world applications are nonlinear, making it difficult to establish an accurate mathematical
model, especially in the presence of external disturbances and other types of uncertainties;
hence, it is important to design a model-free controller, which does not require knowledge
of the plant dynamics.

The integration of EFSs and type-2 fuzzy logic systems was first introduced by Juang
and Tsao [31], with an improvement over their proposed SONFIN using the evolving
structure. In [31], a self-evolving fuzzy logic system was developed to generate fuzzy
rules from scratch for modeling nonlinear systems. Their proposed algorithm utilized the
Kalman filter for parameter learning of the consequent part, while the antecedent part was
learned by the gradient descent method. The same algorithm was implemented in [32] for
the system identification of nonlinear systems. In [33,34], fuzzy rules were generated from
input–output data, and the entropy criterion was used to determine when to extract and
generate a new fuzzy rule. However, one drawback of this framework is that once the rule
is created, it cannot be pruned. Hence, several pruning techniques were proposed in the
literature to reduce the complexity of rule base design and improve the readability and
interpretability of rule semantics [35].

Evolving type-2 fuzzy logic systems were utilized to control nonlinear systems. In [36],
a function-link self-evolving type-2 fuzzy system was proposed for nonlinear system
identification and control, where good results were obtained using their proposed method.
Another self-adaptive type-2 fuzzy controller [37] was proposed to control permanent
magnet linear synchronous motor (PMLSM) drivers. Nevertheless, the actual system is still
assisted by a proportional-derivative (PD) controller.

A particle swarm optimization technique was used to find the optimal learning rates
in [38] to construct their proposed interval type-2 fuzzy brain emotional learning con-
trol system. However, the efficacy of their proposed approaches in the face of various
uncertainties has not been investigated adequately.

To accommodate more uncertainties in capturing the dynamics of nonlinear systems
and to design a self-sufficient controller, the contributions of this paper can be summarized
as follows:

• A novel type-2 evolving fuzzy control system (T2-EFCS) supported by efficient prun-
ing rules is introduced. The adaptive law is derived using the sliding mode control
(SMC) theory to guarantee the systems’ robustness against uncertainties.

• The proposed closed-loop control system is employed to control a simulated mobile
robot, where the robustness is investigated in the presence of external disturbance
(e.g., noisy sensor measurements). For disturbance rejection, a new robustness term is
added to obtain robust control performance against uncertainties.
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• A rigorous comparative study with respect to three different controllers, such as T1-
FLC, T2-FLC, and T1-EFCS, is performed, where the outcomes of this study illustrate
the superiority of the proposed method with lower RMSE values.

• The stability analysis of the proposed method is implemented using the Lyapunov
stability theory.

The remainder of this paper is structured as follows. The problem formulation is
discussed in Section 2. The T2-EFCS control system design is presented in Section 3,
including the adding mechanism, the pruning mechanism, and the parameter adaptation
of type-2 fuzzy rules. Section 4 describes the stability proof of our proposed T2-EFCS. The
system description of a mobile robot is provided in Section 5. The simulation results are
discussed in Section 6. Finally, Section 7 provides a concluding remark of this paper.

2. Problem Formulation

A class of a n-th order nonlinear dynamic system can be described as follows:{
x(n) = f (x) + b(x)u + d(x)
y = x,

(1)

where the state vector x ∈ <m can be defined as x =
[

x ẋ . . . x(n−1)
]T
∈ <m;

x ∈ <mrepresents the state; f (x) ∈ <m and b(x) ∈ <m×m are the system nonlinear
functions; u depicts the control input; y is the system output; and d(x) ∈ <m expresses
unknown uncertainties. For the theoretical study, it is assumed that the nonlinear terms
in (1) are known and bounded, and b−1(x) exists for all x.

Assumption 1. If there existinevitable modeling uncertainties between the real system and the
simulated systems, they can be absorbed in the uncertainty function.

The purpose of the closed-loop control system is that the system output y has the
ability to track a desired signal yd. Consider the tracking error as

e = yd − y, (2)

and the system tracking vector can be written as

e =
[

e(t) ė(t) . . . e(t)(n−1)
]T
∈ <nm. (3)

Define an integrated sliding surface as

SEFC ≡ en−1 + κ1en−2 + . . . + κn

∫ t

0
e(τ)dτ, (4)

where κi ∈ <m×m is a strictly positive constant matrix, where i = 1, 2, 3 . . . , n; and κ =

[κ1, . . . , κn]
T ∈ <nm×m. If the nonlinear terms f (x) and b(x) and also the d(x) are known,

an ideal control law u f in(t) can be designed as follows [36,38,39]:

u f in = b(x)−1
[
y(n)d − f (x)− d(x) + κTe

]
. (5)

Using (5) and (1), we can derive the following error dynamic equation as:

ṠEFC = e(n) + κTe = 0 (6)

From (6), it is clear that if κ is chosen to correspond to the Hurwitz polynomial
coefficients, it leads to a convergence of the tracking error to zero when the time approaches
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infinity [39]. Nevertheless, in real-time applications, the uncertainty term d(x) cannot be
precisely known. Therefore, the ideal control law in (5) is not available.

For this study, we assume there is an optimal T2-EFCS controller u∗T2−EFCS to ap-
proximate the ideal controller u f in in (5), where u∗T2−EFCS is function of (m∗, m∗, σ∗, W∗, t)
so that u f in = u∗T2−EFCS(m

∗, m∗, σ∗, W∗, t) + ε(t), where m∗, m∗, σ∗, W∗, t are the optimal
parameters for m, m, σ, W and ε(t)is the approximation error. As we cannot obtain the
optimal parameters accurately, the estimation control system is utilized as follows [40]:

û f in = ûT2−EFCS
(
m̂, m̂, σ̂, Ŵ, t

)
(7)

where m̂, m̂, σ̂, Ŵ are the estimation of the optimal parameters. The robustness term is
discussed in Section 3.4.

3. T2-EFCS Control System Design
3.1. T2-EFCS Architecture

The structure of the proposed evolving interval type-2 fuzzy control system is dis-
cussed in this section. It consists of five layers, namely, the input layer, the fuzzification
layer, the firing strength layer, the consequent layer, and the output layer. Each rule has the
following form:

RULEm : I f (x1 is X̃m
1 , x2 is X̃m

2 , . . . , xn is X̃m
n ),

THEN ỹm =
M

∑
n=1

Wn
m(t)xn(t),

where x = x1, . . . , xn denotes the inputs variables to T2-EFCS, m = 1, 2, . . . , M, where M
represents the number of fuzzy rules, Wn

m ∈ <M denotes the weight vector of the fuzzy
logic consequent part, and X̃m

n and ỹ are the interval type-2 fuzzy membership functions
for the input and output, respectively. Each layer can be described as follows:

• Layer 1 (Input layer): This layer is the input signals with (n× 1) vector. In this study,
the error and its derivative are the two inputs to the system.

• Layer 2 (Fuzzification layer): This layer is the first hidden layer, which can be expressed
by IT2 membership functions. In this study, a Gaussian membership function with
fixed width σm

n and uncertain means [mmn, mmn] is deployed as shown in Figure 1,
which can be given as follows [41]:

µmn = exp

{
−1

2

(
xn −mmn

σmn

)2
}

, (8)

µ
mn

= exp

{
−1

2

(
xn −mmn

σmn

)2
}

. (9)
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Figure 1. Interval type-2 Gaussian membership function.

• Layer 3 (Firing layer): The firing strength Fm is computed in this layer to perform the
aggregation operation:

Fm = [ f
m

, f m], (10)

where {
f

m
= ∏

p
n=1 µ

mn
f m = ∏

p
n=1 µmn.

• Layer 4 (Consequent layer): the output of this layer has two consequent values as
follows: 

y(t) =
∑M

m=1 f
m
(t)ym(t)

∑M
n=1 f

m
(t)

y(t) =
∑M

m=1 f m(t)ym(t)

∑M
m=1 f m(t)

,

(11)

where y(t) and y(t) are the upper and lower outputs of the consequent part, respec-
tively. In this layer, the center-of-sets and the ‘Enhanced Iterative Algorithm with Stop
Condition’ type-reducer were utilized to calculate the interval outputs [y(t), y(t)].

• Layer 5 (Output layer): The computation of the output value of the last layer is given
as follows:

y = $y(t) + (1− $)y(t), (12)

where $ ∈ [0, 0.5] represents a weighting parameter.

3.2. T2-EFCS Structure Learning

• Rule-Adding Mechanism: The rule generation of T2-EFCS is based on the distance
between the incoming data and the upper and lower means of the type-2 Gaussian
function so that when max DT2 > Tadd, a new rule is generated. The Euclidean
distance of the upper and lower means can be computed using the following equation:

D(xn, mM) = ‖ xn −mM ‖2 , (13)

where xn represents the incoming data of e and ė; mM = ((mM + mM)/2) is the mean.
If we define a MAX-MIN approach to identify when to add a new type-2 fuzzy rule
as, M̂ = arg min

1≤M≤nM
D(xn, mM), the T2-EFCS finds

If (max DT2 > Tadd) THEN

Generate new type-2 fuzzy rule

where Tadd denotes a prior threshold value for rule generation.
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The initial type-2 fuzzy MF parameters are set as{[
m1

1n, m2
1n
]

= [xn − ∆x, xn + ∆x]
σ = σf ixed

(14)

where σf ixed denotes a predefined value (in this work, σf ixed = 0.5), which determines
the width of the membership functions associated with a newly generated rule, m1

1n
and m2

1n are the uncertain center of the membership function associated with a newly
generated rule, and ∆x is the width of uncertain region.
Once a new type-2 fuzzy rule is generated, the same procedure implemented for the
first rule is utilized to assign the uncertain mean and the width as follows:

[
mM(t)+1

1n , mM(t)+2
1n

]
= [xn − ∆x, xn + ∆x]

σM(t)+1 = ξ.
∣∣∣∣xn −

(
mI

12+mI
12

2

)∣∣∣∣ (15)

where ξ represents an overlapping parameter (ξ is set to 0.5 in this work), and M(t)
represents the total number of type-2 fuzzy rules at the tth step.

Remark 1. If the uncertainty associated with the mean ∆x is very small, the type-2 GF
becomes similar to the type-1 GF. Nevertheless, if the uncertain region of type-2 GF with is
extremely large, it covers all input domains, where a lower number of rules is generated [36,42].

• Rule Pruning Mechanism: In this proposed technique, deleting unnecessary rules
is considered. The process of pruning existing rules is based on the contribution of
membership grade, so when it is smaller than the prior threshold value, the rule is
deleted. This approach can be expressed as follows:

If (Fm < Tdel) THEN delete type-2 ith fuzzy rule

where Tdel denotes a prior threshold value for rule deletion, and FT2 = Fm, which
denotes the firing strength in (10) for each incoming data.
Automatic rules generation and pruning are efficient, which determine the optimal
number of fuzzy rules. Figure 2 illustrates the flowchart of the proposed method. The
online update of type-2 fuzzy parameters is presented in the following section.

Remark 2. The selection of the adding/pruning threshold parameters Tadd and Tdel is based on the
maximum number of fuzzy rules (MNFR), where MNFR is a design parameter that determines the
maximum number of fuzzy rules when a fuzzy structure evolves. These threshold values are confined
in (0,1). The empirical relationship between the adding/pruning thresholds values (Tadd, Tdel) and
MNFR is described as [Tadd ≥ (1/MNFR)] and [Tdel ≥ (1/MNFR)]. This way, the parameters
of the T2-EFCS are meaningful to the user. For instance, if MNFR is selected to be 7, then Tadd and
Tdel should be selected ≥0.143. If MNFR is selected to be 15, then Tadd and Tdel should be ≥0.067.
Higher MNFR values result in higher accuracy, but also higher processing time. The selection of
MNFR is a trade-off between the processing unit capabilities and controllers’ accuracy [43].
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Figure 2. Flowchart of our proposed T2-EFCS.

3.3. T2-EFCS Parameters Learning

The gradient descent method is applied to minimize the error function between the
desired and the actual output. Sliding mode control is utilized to optimize the upper
and lower parameters of our proposed T2-EFCS system using a self-tuning technique,
making the system robust to variations in system parameters and external disturbance [14].
The online adaptation law of the proposed T2-EFCS is given in the following equations
as [36,38]:

m̂mn(t + 1) = m̂mn(t)− η̂m
∂sEFC(t)ṡEFC(t)

∂m̂mn
(16)

m̂mn(t + 1) = m̂mn(t)− η̂m
∂sEFC(t)ṡEFC(t)

∂m̂mn
(17)

σ̂mn(t + 1) = σ̂mn(t)− η̂σ
∂sEFC(t)ṡEFC(t)

∂σ̂mn
(18)

Ŵnk(t + 1) = Ŵnk(t)− η̂W
∂sEFC(t)ṡEFC(t)

∂Ŵnk
(19)

where η̂m, η̂σ, and η̂W are the learning rates to update T2-EFCS parameters.
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By applying the chain rule, the following equations can be derived:

∂sEFC(t)ṡEFC(t)
∂m̂mn

= 1
2

∂sEFC(t)ṡEFC(t)
∂ûT2−EFCS

(
∂y

∂ f
m

∂ f
m

∂m̂mn
+ ∂y

∂ f m

∂ f m
∂m̂mn

)
= 1

2 sEFC(t)
(
(wm−y)
∑M

m=1 f
m

∂ f
m

∂m̂mn
+ (wm−y)

∑M
m=1 f m

∂ f m
∂m̂mn

) (20)

∂sEFC(t)ṡEFC(t)
∂m̂mn

= 1
2

∂sEFC(t)ṡEFC(t)
∂ûT2−EFCS

(
∂y

∂ f
m

∂ f
m

∂m̂mn
+ ∂y

∂ f m

∂ f m
∂m̂mn

)
= 1

2 sEFC(t)
(
(wm−y)
∑M

m=1 f
m

∂ f
m

∂m̂mn
+ (wm−y)

∑M
m=1 f m

∂ f m
∂m̂mn

) (21)

∂sEFC(t)ṡEFC(t)
∂σ̂mn

= 1
2

∂sEFC(t)ṡEFC(t)
∂ûT2−EFCS

(
∂y

∂ f
m

∂ f
m

∂σ̂ + ∂y
∂ f m

∂ f m
∂σ̂

)
= 1

2 sEFC(t)
(
(wm−y)
∑M

m=1 f
m

∂ f
m

∂σ̂ + (wm−y)
∑M

m=1 f m

∂ f m
∂σ̂

) (22)

∂sEFC(t)ṡEFC(t)
∂Ŵnk

= 1
2

∂sEFC(t)ṡEFC(t)
∂ûT2−EFCS

∂ûT2−EFCS
∂y

∂y
∂W

= 1
2 sEFC(t)

(
f

m
∑M

m=1 f
m
+

f m
∑M

m=1 f m

) (23)

From (10), the following can be derived:

∂ f
m

∂m̂mn
=

∂ f
m

∂µ
mn

∂µ
mn

∂m̂mn
= f

m
(xn−m̂mn)

2

(σ̂mn)
3

∂ f m
∂m̂mn

=
∂ f m
µmn

µmn
∂m̂mn

= f m
(xn−m̂mn)

2

(σ̂mn)
3

∂ f
m

∂m̂mn
=

∂ f
m

∂µ
mn

∂µ
mn

∂m̂mn
= f

m
(xn−m̂mn)

2

(σ̂mn)
3

∂ f m
∂m̂mn

=
∂ f m
µmn

µmn
∂m̂mn

= f m
(xn−m̂mn)

2

(σ̂mn)
3

∂ f
m

∂ ˆσmn
=

∂ f
m

∂µ
mn

∂µ
mn

∂σ̂ = f
m

(xn−m̂mn)
2

(σ̂mn)
3

∂ f m
∂σ̂mn

=
∂ f m
∂µmn

µmn
∂σ̂ = f m

(xn−m̂mn)
2

(σ̂mn)
3

(24)

3.4. T2-EFCS Robustness Term

For obtaining a robust control performance in the face of uncertainties, a disturbance
elimination term, urobust, is added to the final control input. Therefore, the final control
input can be expressed as

û f in = ûT2−EFCS
(
m̂, m̂, σ̂, Ŵ, t

)
+ ûrobust (25)

where ûrobust is a robustifying term [43,44], which can be represented as follows:

ûrobust = β sat(SEFC(t)), (26)

where β denotes a design parameter, and sat can be defined as follows:

sat
(

SEFC
ι

)
=

{
SEFC

ι , i f |SEFC| ≤ |ι|
sgn(SEFC), otherwise

(27)

where ι is a design factor representing the thickness of the boundary layer. The sgn
represents the signum function, which can be defined as follows:

sgn(SEFC(t)) =


1, i f SEFC(t) > 0
0, i f SEFC(t) = 0
−1, i f SEFC(t) < 0

(28)
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4. T2-EFCS Stability Proof

The Lyapunov function is defined as [36,38]:

V(sEFC(t)) =
1
2

s2
EFC(t) (29)

V̇(sEFC(t)) = sEFC(t)ṡEFC(t) (30)

Following the derivation on [36], one can introduce a matrix such that QO(t) =
∂ûT2−EFCS

∂O , for O = m̂, m̂, σ̂, Ŵ where

Qm̂(t) =
∂ûT2−EFCS

∂m̂
=

[
∂ûT2−EFCS

∂m̂11
, . . . ,

∂ûT2−EFCS
∂m̂1nj

, . . . ,
∂ûT2−EFCS

∂m̂21

. . . ,
∂ûT2−EFCS

∂m̂2nj

, . . . ,
∂ûT2−EFCS

∂m̂ninj

, . . . ,
∂ûT2−EFCS

∂m̂ninj

]

Qm̂(t) =
∂ûT2−EFCS

∂m̂
=

[
∂ûT2−EFCS

∂m̂11
, . . . ,

∂ûT2−EFCS

∂m̂1nj

, . . . ,
∂ûT2−EFCS

∂m̂21

. . . ,
∂ûT2−EFCS

∂m̂2nj

, . . . ,
∂ûT2−EFCS

∂m̂ninj

, . . . ,
∂ûT2−EFCS

∂m̂ninj

]

Qσ̂(t) =
∂ûT2−EFCS

∂σ̂
=

[
∂ûT2−EFCS

∂σ̂11
, . . . ,

∂ûT2−EFCS
∂σ̂1nj

, . . . ,
∂ûT2−EFCS

∂σ̂21

. . . ,
∂ûT2−EFCS

∂σ̂2nj

, . . . ,
∂ûT2−EFCS

∂σ̂ninj

, . . . ,
∂ûT2−EFCS

∂σ̂ninj

]

QŴ(t) =
∂ûT2−EFCS

∂Ŵ
=

[
∂ûT2−EFCS

∂Ŵ11
, . . . ,

∂ûT2−EFCS

∂Ŵ1nj

, . . . ,
∂ûT2−EFCS

∂Ŵ21

. . . ,
∂ûT2−EFCS

∂Ŵ2nj

, . . . ,
∂ûT2−EFCS

∂Ŵninj

, . . . ,
∂ûT2−EFCS

∂Ŵninj

]

By applying the gradient descent technique, (30) can be represented as

V̇(sEFC(t + 1)) = V̇(sEFC(t)) + ∆V̇(sEFC(t))
∼= V̇(sEFC(t)) +

[
V̇(sEFC(t))

∂O

]T
∆O

(31)

where ∆V̇(sEFC(t)) represents the change in V̇(sEFC(t)); ∆O is the change in O.
By utilizing the chain rule, the following equation can be derived as

∂V̇(sEFC(t))
∂O = ∂V̇(sEFC(t))

∂ûT2−EFCS

∂ûT2−EFCS
∂O

= ∂sEFC(t)ṡEFC(t)
∂ûT2−EFCS

∂ûT2−EFCS
∂O

(32)

and by utilizing (20)–(23) and (31), it yields

∂V̇(sEFC(t))
∂O

= −sEFC(t)
∂ûT2−EFCS

∂O
= −sEFC(t)QO(t) (33)
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where

∆O = −η̂O
∂sEFC(t)ṡEFC(t)

∂O
= η̂OsEFC(t)QO(t) (34)

By substituting (33) and (34) into (31),

∆V̇(sEFC(t)) =
[

V̇(sEFC(t))
∂O

]T
∆O

= [−sEFC(t)QO(t) ∗ η̂OsEFC(t)QO(t)]
= −η̂Os2

EFC(t)QO(t)

(35)

From (35), if η̂O is selected as η̂O >0, it yields to ∆V̇(sEFC(t)) < 0. Hence, the
convergence of the proposed fuzzy parameters is guaranteed by the Lyapunov stability
theory [36].

5. System Description for a Mobile Robot

The absolute position of the robot can be represented in the Cartesian plane, with
respect to the global frame, by the following three variables as

p = [x, y, θ]T , (36)

where x and y denote the coordinates of the robot center of the mass, while θ represents the
robot orientation, as illustrated in Figure 3. The robot can be controlled by

q = [υ, w]T , (37)

where [υ, w] are the linear and angular velocities, respectively. Therefore, the mobile robot
kinematic model can be described by the following equation: ẋ

ẏ
θ̇

 =

 cosθ 0
−sinθ 0

0 1

[ υ
w

]
. (38)

Y

X

YB

YG

d/2

XBXG

r

Xr

B

G a

Θ 

Yr

Figure 3. Kinematic model of the differential-drive mobile robot.

Our mobile robot belongs to the class of differential-drive ground robots. Hence, the
linear and angular velocities can be described using the left Vl and right Vr wheels as
follows [4,45]:

υ = Vl+Vr
2 , (39)
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w = Vr−Vl
d , (40)

where d is the distance between wheels. The robot rotation radius, r, can be computed as

r = d(Vl+Vr)
2(Vr−Vl)

= υ
w . (41)

Lastly, the full kinematic model of a mobile robot can be represented as follows: ẋ
ẏ
θ̇

 =

 r(dcosθ−asinθ)
2d

r(dcosθ+asinθ)
2d

r(dsinθ−acosθ)
2d

r(dsinθ−acosθ)
2d

r
2d

−r
2d

[ wr
wl

]
, (42)

where[wr, wl ] are the right- and left-wheel angular speeds, respectively. The dynamic
model of the mobile robot can be represented using the Euler–Lagrangian method in the
following form [46]:

M(q)(q̈) + C(q, q̇)(q̇) + F(q̇) = B(q)u− A(Q)∇, (43)

where M(q) is the inertia matrix; q̇ represents the velocity vector of both position and
orientation; q̈ denotes the acceleration vector of position and direction; C(q, q̇) denotes the
Centripetal/Coriolis matrix; F(q̇) represents a friction vector; A(q) is a constraint matrix;
B(q) is the input transformation matrix; u is the control input vector; and ∇ denotes a
Lagrange multiplier vector.

6. Results and Discussion

In the following section, the effectiveness of the proposed control system is investi-
gated under three different scenarios. First, the proposed method is utilized to regulate the
dynamics of a differential-drive mobile robot to follow the desired trajectory in nominal
conditions. Second, band-limited white noise was injected into the feedback loop using
a MATLAB/SIMULINK block. Third, an external disturbance was added to the system’s
dynamics as dx = 2 cos(t) for the x-axis and dy = 2 sin(t) for the y-axis. T2-EFCS initial
parameters are given as follows: m̂mn = 0.8, m̂mn = 0.5, σ̂mn = 0.55, Ŵnk = 0, η̂m = 0.5,
η̂σ = 0.01, and η̂W = 0.3. In addition, the efficacy of the proposed method is compared
with three other controllers, namely, type-1 fuzzy logic control (T1-FLC), type-2 fuzzy
logic control (T2-FLC), and a type-1 evolving fuzzy control system (T1-EFCS). The root
mean square error (RMSE) criterion is utilized to evaluate the performance of the proposed
control system. The prior threshold values are chosen as Tadd = 0.11 and Tdel = 0.07. The
desired/reference trajectory of the mobile robot can be represented as pr = [xr, yr, θr]T ,
where we use the velocity reference model to obtain the expected velocity as qr(t) = [vr, wr].
Therefore, the velocity error can be defined by

edesired = qr − q = [ev, ew]
T . (44)

In the simulation model, the following parameters are set as: m = 10 kg; r = 0.05 m;
d = 0.4 m; and F(q̇) = 0. The desired trajectory is set to follow a sine wave reference for
the x-axis, and a cosine wave reference for the y-axis.

6.1. Performance in Nominal Condition

As depicted in Figure 4a, the simulation results for different controllers for position
control in the xy-axes are presented, where the proposed T2-EFCS achieved a favorable
tracking performance compared to other benchmark controllers demonstrated by their
RMSE values in Table 1. Moreover, the distance error between the desired and the actual
trajectory for the four controllers is illustrated in Figure 4b, where the error decreased
from around 0.19 m to almost zero value in a very short time using our proposed method.
Since the proposed T2-EFCS evolves with time, it is important to report the evolving
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rules with respect to the simulation time. It can be seen in Figure 4c that few rules were
required to track the desired trajectory using T2-EFCS. This clearly indicates the simplicity
of the proposed control algorithm, making it suitable for small systems with limited
computational payloads.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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-0.8

-0.6

-0.4

-0.2

0

(a)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

(b)

0 10 20 30 40 50
3

4

5

6

0 10 20 30 40 50
3

4

5

6

(c)

Figure 4. Performance of the proposed control system in nominal condition. (a) Desired vs. actual
positions of the robot path in nominal condition. (b) Distance error evolution for different controllers.
(c) Evolution of the fuzzy rules for the proposed T2-EFCS.

Table 1. Summary of the experimental comparison of the performance of different controllers.

RMSE Values (Nominal Condition)

Metrics Errorx[m] Errory[m] Errordis[m]

T1−FLC 0.025 0.006 0.026

T2−FLC 0.021 0.005 0.022

T1−EFCS 0.018 0.004 0.019

T2−EFCS 0.017 0.005 0.018
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6.2. Performance in the Face of Measurement Noise

In this section, the robustness analysis is presented by injecting a band-limited white
noise into the feedback loop using a MATLAB/SIMULINK block. The position tracking
in the xy-axes is shown in Figure 5a. The simulation results illustrate that the proposed
evolving method can handle the disturbance within a reasonable period of time. Addition-
ally, the distance error between the desired and the actual trajectory for the four controllers
is plotted in Figure 5b. Lower RMSE values were obtained using the proposed method
compared to other benchmark control systems as tabulated in Table 2. Lastly, the fuzzy
rules were pruned according to the plant’s dynamics to accommodate measurement noise
as shown in Figure 5c.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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-0.8

-0.6

-0.4

-0.2

0

(a)

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

(b)
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2

3

4

0 10 20 30 40 50
2

3

4

5

(c)

Figure 5. Performance of the proposed system in the face of measurement noise. (a) Desired vs.
actual positions of the robot path in the face of sensor noise. (b) Distance error evolution for different
controllers in the face of measurement noise. (c) Evolution of the fuzzy rules for T2-EFCS in the face
of measurement noise.
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Table 2. Summary of the experimental comparison of the performance of different controllers in the
face of measurement noise.

RMSE Values (Uncertain Condition-Noisy Sensor Data)

Metrics Errorx[m] Errory[m] Errordis[m]

T1−FLC 0.0391 0.012 0.041

T2−FLC 0.0269 0.008 0.028

T1−EFCS 0.019 0.010 0.021

T2−EFCS 0.020 0.006 0.021

6.3. Performance under Unknown Disturbance

Additionally, the controller’s performance was assessed by observing the tracking
performance in the face of external disturbance. The position tracking in the xy-axes under
external disturbance is shown in Figure 6a, where the simulation results illustrated the
efficacy of the proposed method to handle the external disturbances. Similarly, the RMSE
criterion was used for comparing the tracking performance with benchmark controllers
as presented in Table 3. The distance error between the desired and the actual trajectory
for the four controllers is plotted in Figure 6b. Lastly, more fuzzy rules evolved to face
uncertainties as shown in Figure 6c.
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Figure 6. Cont.
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Figure 6. Performance of the proposed system in the face of external disturbance. (a) Desired vs.
actual positions of the robot path in the face of external disturbance. (b) Distance error evolution
for different controllers in the face of external disturbance. (c) Evolution of the fuzzy rules for the
proposed T2-EFCS in the face of external disturbance.

Table 3. Summary of the experimental comparison of the performance of different controllers in the
face of external disturbance.

RMSE Values (Uncertain Condition-External Disturbance)

Metrics Errorx[m] Errory[m] Errordis[m]

T1−FLC 0.0307 0.0140 0.0337

T2−FLC 0.0232 0.0112 0.0258

T1−EFCS 0.0306 0.0164 0.0347

T2−EFCS 0.0224 0.0049 0.0229

7. Conclusions

This paper proposed a novel type-2 evolving fuzzy controller, named the T2-EFLCS,
for uncertain dynamic systems. The proposed method was implemented to regulate the
dynamics of a mobile robot system. The proposed technique has the ability to perform
self-learning and prune its fuzzy rules efficiently. Our approach is useful for reducing the
computational complexity and memory requirements of the system, and improving its
interpretability and generalization ability, which leads to an optimized fuzzy control system.

To investigate the robustness of T2-EFLCS, an external disturbance was added to the
nonlinear model, where simulation results depicted that T2-EFLCS can handle uncertainties
in the system. Moreover, lower RMSE values were reported from the proposed T2-EFLCS
compared to other controllers. The integration of self-evolving approaches with the SMC-
based adaptive law resulted in a fast learning and compact structure. The proposed
T2-EFCS was computationally efficient while maintaining superior control performance.
The newly developed method leverages the advantages of evolving fuzzy systems for
controlling uncertain nonlinear systems.

For future work, this approach can be extended by applying it to a physical robotic
system to validate the theoretical results obtained from simulation and to provide insights
into practical implementation issues.

Author Contributions: Conceptualization, A.A.-M.; formal analysis, A.A.-M.; investigation, A.A.-M.;
methodology, A.A.-M.; validation, A.A.-M.; writing—original draft preparation, A.A.-M.; supervision,
F.S., M.A.G. and S.G.A.; writing—review, and editing, A.A.-M., F.S., M.A.G. and S.G.A.; project
administration, F.S., M.A.G. and S.G.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Robotics 2023, 12, 40 17 of 18

Acknowledgments: The research is supported by the Australian Government Training Program
Scholarship. Our heartfelt thanks to The University of New South Wales, Canberra, Australia for
supporting this research work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chwa, D. Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances.

IEEE Trans. Fuzzy Syst. 2011, 20, 587–593. [CrossRef]
2. Al-Mayyahi, A.; Wang, W.; Birch, P. Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation. Robotics

2014, 3, 349–370. [CrossRef]
3. Baturone, I.; Moreno-Velo, F.J.; Blanco, V.; Ferruz, J. Design of embedded DSP-based fuzzy controllers for autonomous mobile

robots. IEEE Trans. Ind. Electron. 2008, 55, 928–936. [CrossRef]
4. Kim, C.J.; Chwa, D. Obstacle Avoidance Method for Wheeled Mobile Robots Using Interval Type-2 Fuzzy Neural Network. IEEE

Trans. Fuzzy Syst. 2015, 23, 677–687. [CrossRef]
5. Chwa, D. Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization. IEEE

Trans. Syst. Man Cybern. Part A Syst. Hum. 2010, 40, 1285–1295. [CrossRef]
6. Zou, J.; Schueller, J.K. Adaptive backstepping control for parallel robot with uncertainties in dynamics and kinematics. Robotica

2014, 32, 2. [CrossRef]
7. Lu, X.; Zhao, Y.; Liu, M. Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel

robot. Neurocomputing 2018, 283, 107–119. [CrossRef]
8. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. A Robust Adaptive Interval Type-2 Fuzzy Control for Autonomous

Underwater Vehicles. In Proceedings of the 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and
Communications Technology (IAICT), Bali, Indonesia, 1–3 July 2019; pp. 19–24. [CrossRef]

9. Al-Mahturi, A. Development of Self-Learning Type-2 Fuzzy Systems for System Identification and Control of Autonomous
Systems. Ph.D. Thesis, UNSW Canberra, Canberra, Australia, 2021. [CrossRef]

10. Juang, C.F.; Chang, Y.C. Evolutionary-group-based particle-swarm-optimized fuzzy controller with application to mobile-robot
navigation in unknown environments. IEEE Trans. Fuzzy Syst. 2011, 19, 379–392. [CrossRef]

11. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. A Robust Self-Adaptive Interval Type-2 TS Fuzzy Logic for Controlling
Multi-Input–Multi-Output Nonlinear Uncertain Dynamical Systems. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 655–666.
[CrossRef]

12. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. Online System Identification for Nonlinear Uncertain Dynamical
Systems Using Recursive Interval Type-2 TS Fuzzy C-means Clustering. In Proceedings of the 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 1695–1701. [CrossRef]

13. Huang, J.; Ri, M.; Wu, D.; Ri, S. Interval Type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum.
IEEE Trans. Fuzzy Syst. 2017, 26, 2030–2038. [CrossRef]

14. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. Self-Learning in Aerial Robotics Using Type-2 Fuzzy Systems: Case
Study in Hovering Quadrotor Flight Control. IEEE Access 2021, 9, 119520–119532. [CrossRef]

15. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. An Intelligent Control of an Inverted Pendulum Based on an Adaptive
Interval Type-2 Fuzzy Inference System. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
New Orleans, LA, USA, 23–26 June 2019; pp. 1–6. [CrossRef]

16. Shi, Y.; Eberhart, R.; Chen, Y. Implementation of evolutionary fuzzy systems. IEEE Trans. Fuzzy Syst. 1999, 7, 109–119. [CrossRef]
17. Kasabov, N.K. Evolving Connectionist Systems: The Knowledge Engineering Approach; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2007.
18. Škrjanc, I.; Iglesias, J.A.; Sanchis, A.; Leite, D.; Lughofer, E.; Gomide, F. Evolving fuzzy and neuro-fuzzy approaches in clustering,

regression, identification, and classification: A survey. Inf. Sci. 2019, 490, 344–368. [CrossRef]
19. Angelov, P.P. Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems; Physica; Springer: Berlin/Heidelberg,

Germany, 2013; Volume 92.
20. Lughofer, E.; Pratama, M. Online active learning in data stream regression using uncertainty sampling based on evolving

generalized fuzzy models. IEEE Trans. Fuzzy Syst. 2017, 26, 292–309. [CrossRef]
21. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. A Simplified Model-Free Self-Evolving TS Fuzzy Controller for

Nonlinear Systems with Uncertainties. In Proceedings of the 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems
(EAIS), Bari, Italy, 27–29 May 2020; pp. 1–6. [CrossRef]

22. Juang, C.F.; Lin, C.T. An online self-constructing neural fuzzy inference network and its applications. IEEE Trans. Fuzzy Syst.
1998, 6, 12–32. [CrossRef]

23. Kasabov, N.K.; Song, Q. DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction.
IEEE Trans. Fuzzy Syst. 2002, 10, 144–154. [CrossRef]

24. Angelov, P.; Filev, D. Simpl_eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models. In Proceedings of the
The 14th IEEE International Conference on Fuzzy Systems, Changsha, China, 27–29 August 2005; pp. 1068–1073. [CrossRef]

http://doi.org/10.1109/TFUZZ.2011.2176738
http://dx.doi.org/10.3390/robotics3040349
http://dx.doi.org/10.1109/TIE.2007.896547
http://dx.doi.org/10.1109/TFUZZ.2014.2321771
http://dx.doi.org/10.1109/TSMCA.2010.2052605
http://dx.doi.org/10.1017/S0263574714002410
http://dx.doi.org/10.1016/j.neucom.2017.12.043
http://dx.doi.org/10.1109/ICIAICT.2019.8784855
http://dx.doi.org/10.26190/unsworks/1966
http://dx.doi.org/10.1109/TFUZZ.2011.2104364
http://dx.doi.org/10.1109/TSMC.2020.3030078
http://dx.doi.org/10.1109/SSCI47803.2020.9308202
http://dx.doi.org/10.1109/TFUZZ.2017.2760283
http://dx.doi.org/10.1109/ACCESS.2021.3107906
http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8858948
http://dx.doi.org/10.1109/91.755393
http://dx.doi.org/10.1016/j.ins.2019.03.060
http://dx.doi.org/10.1109/TFUZZ.2017.2654504
http://dx.doi.org/10.1109/EAIS48028.2020.9122771
http://dx.doi.org/10.1109/91.660805
http://dx.doi.org/10.1109/91.995117
http://dx.doi.org/10.1109/FUZZY.2005.1452543


Robotics 2023, 12, 40 18 of 18

25. Rong, H.J.; Sundararajan, N.; Huang, G.B.; Saratchandran, P. Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear
system identification and prediction. Fuzzy Sets Syst. 2006, 157, 1260–1275. [CrossRef]

26. Angelov, P. Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+). In Evolving Intelligent Systems: Methodology and
Applications; Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 12, p. 21.

27. Pratama, M.; Anavatti, S.G.; Angelov, P.P.; Lughofer, E. PANFIS: A Novel Incremental Learning Machine. IEEE Trans. Neural
Netw. Learn. Syst. 2014, 25, 55–68. [CrossRef]

28. Ferdaus, M.M.; Pratama, M.; Anavatti, S.; Garratt, M.A.; Pan, Y. Generic evolving self-organizing neuro-fuzzy control of
bio-inspired unmanned aerial vehicles. IEEE Trans. Fuzzy Syst. 2019. [CrossRef]

29. Hsu, C.F.; Wong, K.Y. On-line constructive fuzzy sliding-mode control for voice coil motors. Appl. Soft Comput. 2016, 47, 415–423.
[CrossRef]

30. Rong, H.J.; Yang, Z.X.; Wong, P.K.; Vong, C.M.; Zhao, G.S. Self-evolving fuzzy model-based controller with online structure and
parameter learning for hypersonic vehicle. Aerosp. Sci. Technol. 2017, 64, 1–15. [CrossRef]

31. Juang, C.F.; Lu, C.F.; Tsao, Y.W. A Self-Evolving Interval Type-2 Fuzzy Neural Network for Nonlinear Systems Identification.
IFAC Proc. Vol. 2008, 41, 7588–7593. [CrossRef]

32. Juang, C.F.; Tsao, Y.W. A Type-2 Self-Organizing Neural Fuzzy System and Its FPGA Implementation. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2008, 38, 1537–1548. [CrossRef]

33. Hassanein, O.; Anavatti, S.G.; Shim, H.; Salman, S.A. Auto-generating fuzzy system modelling of physical systems. In Proceedings
of the 2015 IEEE Conference on Control Applications (CCA), Sydney, Australia, 21–23 September 2015; pp. 1142–1147.

34. Chen, C.H.; Lin, C.J.; Lin, C.T. A functional-link-based neurofuzzy network for nonlinear system control. IEEE Trans. Fuzzy Syst.
2008, 16, 1362–1378. [CrossRef]

35. Pratama, M.; Lu, J.; Zhang, G. Evolving type-2 fuzzy classifier. IEEE Trans. Fuzzy Syst. 2016, 24, 574–589. [CrossRef]
36. Lin, C.M.; Le, T.L.; Huynh, T.T. Self-evolving function-link interval Type-2 fuzzy neural network for nonlinear system identifica-

tion and control. Neurocomputing 2018, 275, 2239–2250. [CrossRef]
37. Chen, C.S.; Lin, W.C. Self-adaptive interval Type-2 neural fuzzy network control for PMLSM drives. Expert Syst. Appl. 2011,

38, 14679–14689. [CrossRef]
38. Le, T.L.; Lin, C.M.; Huynh, T.T. Self-evolving type-2 fuzzy brain emotional learning control design for chaotic systems using PSO.

Appl. Soft Comput. 2018, 73, 418–433. [CrossRef]
39. Lin, C.M.; Chen, T.Y. Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems. IEEE Trans. Neural Netw.

2009, 20, 1377–1384. [CrossRef] [PubMed]
40. Le, T.L.; Huynh, T.T.; Lin, C.M. Self-Evolving Interval Type-2 Wavelet Cerebellar Model Articulation Control Design for Uncertain

Nonlinear Systems Using PSO. Int. J. Fuzzy Syst. 2019, 21, 2524–2541. [CrossRef]
41. Al-Mahturi, A.; Santoso, F.; Garratt, M.A.; Anavatti, S.G. Modeling and Control of a Quadrotor Unmanned Aerial Vehicle

Using Type-2 Fuzzy Systems. In Unmanned Aerial Systems: Theoretical Foundation and Applications; Elsevier: Amsterdam,
The Netherlands, 2020.

42. Lin, Y.Y.; Liao, S.H.; Chang, J.Y.; Lin, C.T. Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learning
Syst. 2014, 25, 959–969. [CrossRef] [PubMed]

43. Al-Mahasneh, A.J.; Anavatti, S.; Garratt, M. Self-Evolving Neural Control for a Class of Nonlinear Discrete-Time Dynamic
Systems with Unknown Dynamics and Unknown Disturbances. IEEE Trans. Ind. Inform. 2019, 16, 6518–6529. [CrossRef]

44. Saghafinia, A.; Ping, H.W.; Uddin, M.N.; Gaeid, K.S. Adaptive fuzzy sliding-mode control into chattering-free IM drive. IEEE
Trans. Ind. Appl. 2014, 51, 692–701. [CrossRef]

45. Martins, F.N.; Celeste, W.C.; Carelli, R.; Sarcinelli-Filho, M.; Bastos-Filho, T.F. An adaptive dynamic controller for autonomous
mobile robot trajectory tracking. Control. Eng. Pract. 2008, 16, 1354–1363. [CrossRef]

46. Zhang, J.; Li, Q.; Chang, X.; Chao, F.; Lin, C.M.; Yang, L.; Huynh, T.T.; Zheng, L.; Zhou, C.; Shang, C. A Novel Self-Organizing
Emotional CMAC Network for Robotic Control. In Proceedings of the 2020 International Joint Conference on Neural Networks
(IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.fss.2005.12.011
http://dx.doi.org/10.1109/TNNLS.2013.2271933
http://dx.doi.org/10.1109/TFUZZ.2019.2917808
http://dx.doi.org/10.1016/j.asoc.2016.05.050
http://dx.doi.org/10.1016/j.ast.2017.01.008
http://dx.doi.org/10.3182/20080706-5-KR-1001.01283
http://dx.doi.org/10.1109/TSMCB.2008.927713
http://dx.doi.org/10.1109/TFUZZ.2008.924334
http://dx.doi.org/10.1109/TFUZZ.2015.2463732
http://dx.doi.org/10.1016/j.neucom.2017.11.009
http://dx.doi.org/10.1016/j.eswa.2011.05.014
http://dx.doi.org/10.1016/j.asoc.2018.08.022
http://dx.doi.org/10.1109/TNN.2009.2013852
http://www.ncbi.nlm.nih.gov/pubmed/19398404
http://dx.doi.org/10.1007/s40815-019-00735-6
http://dx.doi.org/10.1109/TNNLS.2013.2284603
http://www.ncbi.nlm.nih.gov/pubmed/24808041
http://dx.doi.org/10.1109/TII.2019.2958381
http://dx.doi.org/10.1109/TIA.2014.2328711
http://dx.doi.org/10.1016/j.conengprac.2008.03.004

	Introduction
	Problem Formulation
	T2-EFCS Control System Design
	T2-EFCS Architecture
	T2-EFCS Structure Learning
	T2-EFCS Parameters Learning
	T2-EFCS Robustness Term

	T2-EFCS Stability Proof
	System Description for a Mobile Robot
	Results and Discussion
	Performance in Nominal Condition
	Performance in the Face of Measurement Noise
	Performance under Unknown Disturbance

	Conclusions
	References

