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Abstract: Automating a factory where robots are involved is neither trivial nor cheap. Engineering
the factory automation process in such a way that return of interest is maximized and risk for workers
and equipment is minimized is hence, of paramount importance. Simulation can be a game changer in
this scenario but requires advanced programming skills that domain experts and industrial designers
might not have. In this paper, we present the preliminary design and implementation of a general-
purpose framework for creating and exploiting Virtual Environments via Natural language Agents
(VEsNA). VEsNA takes advantage of agent-based technologies and natural language processing
to enhance the design of virtual environments. The natural language input provided to VEsNA is
understood by a chatbot and passed to an intelligent cognitive agent that implements the logic behind
displacing objects in the virtual environment. In the complete VEsNA vision, for which this paper
provides the building blocks, the intelligent agent will be able to reason on this displacement and
on its compliance with legal and normative constraints. It will also be able to implement what-if
analysis and case-based reasoning. Objects populating the virtual environment will include active
objects and will populate a dynamic simulation whose outcomes will be interpreted by the cognitive
agent; further autonomous agents, representing workers in the factory, will be added to make the
virtual environment even more realistic; explanations and suggestions will be passed back to the user
by the chatbot.

Keywords: virtual reality; chatbot; intelligent agents; factory automation

1. Introduction and Motivation

Factory automation is a safety-critical task that can significantly help in increasing pro-
duction, but that does not come free of charge. Robots may be very expensive, and their im-
pact on the production pipeline is not always predictable. For this reason, many factory au-
tomation commercial software applications exist, including Computer-Aided Design (CAD)
tools and simulators (See, for example, www.fastsuite.com/solutions-products/market-
specific/factory-automation, store.indusuite.com/products/software/, www.createasoft.
com/automation-simulation, https://new.siemens.com/global/en/products/automation/
topic-areas/simulation-for-automation.html, accessed on 19 January 2023). Those applica-
tions are highly customized for factory automation. They are complete and efficient in that
domain but require advanced programming skills to be used, which might prevent some
categories of users from taking advantage of them—for example, small factories where
industrial designers do not have sufficient computer science background or where the price
of those commercial software applications cannot be afforded. In those situations, a cheap
and “extremely-easy-to-setup” virtual twin of the factory, along with the robots and the
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workers therein, might bring many benefits, even if it is less effective and complete than
the simulations generated by ad-hoc toolkits.

Consider, for example, the following scenario. Alice runs a small factory where various
types of metallic components for industrial automation are assembled. She is a visionary
businesswoman and, in her vision, safety deserves first place. Alice received funding for
making her factory more efficient and productive by installing new robots. She wants to
identify the safest configuration of robots in the industrial building that she rented, but her
limited budget does not allow her to pay for the license of a commercial CAD or simulation
tool. Alice is aware of specific issues raised by the robots she is going to buy and install,
which may generate hard and soft constraints to meet and of general legal requirements
that may prevent her from making some choices. She also knows that robots may undergo
malfunctioning but that also human workers may not behave in the correct way. To ensure
safety, she would like to anticipate—or at least to understand—what might go wrong with
different configurations of the robots. For this reason, she needs a (possibly inexpensive
and open) tool that allows her to:

1 displace elements (different kinds of robots, furniture, ...) into a virtual environment
via a user-friendly interface based on natural language interaction in order to identify
the best configuration of the building;

2 check that displaced objects meet the hard and soft safety and legal constraints related
to their position and interactions;

3 provide a natural language explanation of why some constraints are not met by a
given configuration and suggest alternatives.

These three goals might be achieved by adding a natural language interface on top of
any existing Computer-Aided Design tool, but Alice needs something more sophisticated.
Indeed, she would like to insert dynamic elements into the virtual environment so that the
result is not just a static rendering but a running simulation. In particular, she wants to add
virtual humans, and she wants to anticipate what may happen in the case of unexpected or
wrong maneuvers made by the human workers. The tool that Alice is looking for should
also allow her to

4 run simulations in the virtual environment, get statistics about them and explain—
using a natural language interface—what may go wrong.

However, this is still not enough. Once the best configuration is devised, Alice wants
to train her employees to move and act in the factory before they start working in the real
environment. The last feature of the tool Alice needs is to

5 allow workers to enter the virtual and dynamic environment, interact with robots
therein, learn what is safe and what is not, and get the most effective and realistic
training with natural language explanations.

The tool Alice is looking for should

1 understand commands issued in natural language; those commands might range from
the simplest “Add a Yaskawa MA2010 in front on the right” to the more sophisticated
“Add workers with some profile (experienced, unexperienced, reliable, etc...)”; the tool
should provide a chatbot-like natural language interface;

2 be aware of rules (normative, physical, domain-dependent) and be able to verify
whether a given configuration—that may include robots and workers—meets them;
the tool should be able to reason on facts represented in a symbolic way (“a robot is
placed in this position and an unexperienced worker is placed in that position”), on
their logical consequences, and on the rules that may be broken by them;

3 be able to synthesize natural language explanations of its logical reasoning flow,
besides reasoning and understanding natural language;

4 ensure a one-to-one correspondence between facts representing symbolic knowledge
amenable for logical reasoning and objects placed in a virtual environment—equipped
with a realistic graphical interface—where dynamic behaviors may be added: the tool
should be suitable for running realistic simulations;
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5 allow the virtual environment to be made available as a virtual reality for training
purposes, with no extra effort.

To the best of our knowledge, no such a tool exists: this paper takes the initial steps
toward it by describing VEsNA, an implemented general-purpose framework for managing
Virtual Environments via Natural language Agents (VEsNA is freely available to the
community from https://github.com/driacats/VEsNA, accessed on 19 January 2023). At
its current stage of development, VEsNA is far from offering the services that Alice needs.
Nevertheless, the three technologies it builds upon have the potential to cope with all her
needs, and some promising results have already been achieved in the natural language
interaction, reasoning, explanation, simulation, and training in the virtual reality dimension,
although no integration among these capabilities has been provided yet. In fact, VEsNA
exploits

(i) Dialogflow (Thus far, Dialogflow is the only non-open-source technology in VEsNA;
we have already developed a new VEsNA release, still under testing and hence
not available to the community yet, where we substituted it with an open-source
equivalent application, Rasa (https://rasa.com/, accessed on 19 January 2023), to
make VEsNA completely open-source) for building a chatbot-like interface,

(ii) JaCaMo for integrating knowledge coming from the interaction with the user into
a cognitive, rule-driven agent able to reason about this knowledge and to provide
human-readable explanations;

(iii) Unity for building the dynamic virtual environment, and letting human users im-
merse in it.

The goal that VEsNA aims to achieve in the future is to provide Alice and many
other users with an integrated environment for managing virtual environments via natural
language and cognitive agents able to support decision-making thanks to their reasoning
and explanatory capabilities: an example of interaction between Alice and VEsNA is
depicted in Figure 1.

Figure 1. Example of visionary interaction between a user and VEsNA. On the right, the initial empty
scene tagged with number (0) and, below, the scenes resulting from actions operated by VEsNA,
according to the dialogue on the left. Numbers are also inserted in the dialogue to better clarify which
part of the conversation results into which action and hence into which scene.

https://github.com/driacats/VEsNA
https://rasa.com/
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The problem that VEsNA solves in its current state is to integrate Dialogflow, JaCaMo,
and Unity into a single framework and to provide the means to displace the elements relevant
for finding the best configuration of the industrial building into a simulated environment via a
user-friendly interface based on natural language interaction.

The paper is organized in the following way. Section 2 introduces the three technolo-
gies VEsNA builds upon and motivates our confidence that filling the gap between the
VEsNA-as-is and the VEsNA-to-be is technically feasible. Section 3 positions our contribu-
tion with regard to the state-of-the-art. Section 4 illustrates the VEsNA architecture and
workflow, along with some technical details that allow users to better understand VEsNA
and run experiments with it, and Section 5 presents an example in the factory automation
domain. Section 6 concludes the paper and discusses future developments.

2. Background

Dialogflow [1] is a lifelike conversational AI with state-of-the-art virtual agents developed
by Google. It allows users to create personal chatbots, namely conversational agents
equipped with intents, entities, and fulfillment.

The Dialogflow component that handles concurrent conversations with end-users
is named the Dialogflow agent. As reported in the Dialogflow documentation (https:
//cloud.google.com/dialogflow/es/docs/agents-overview, accessed on 19 January 2023),
“it is a natural language understanding module that understands the nuances of human language.
[...] A Dialogflow agent is similar to a human call center agent”: it is trained to handle expected
conversation scenarios, and the training does not need to be overly explicit.

During a conversation between humans, a human speaker can utter different types of
sentences, each one with a different intentional meaning. That meaning can be identified
as the intent of that sentence. For example, if someone says “Hello!”, the hearer can infer
that the (friendly, socially-oriented) intent is to greet them. If someone says “Go away!”,
the (unfriendly, command-like, action-oriented) intent is to have some concrete action
performed by the hearer—namely, moving away. The speech act theory [2,3] provides
a theoretical and philosophical basis for this intention-driven communication model. In
order to explain the map between sentences and intents to the chatbot agent, the agent’s
developer should provide examples of sentences that convey that intent for each intent that
is relevant to the application.

Real sentences are much more complex than “Hello!” and “Go away!”: they usually
add some contextual information to the main intent. For example, in the “My name is
Bob” sentence, the speaker’s (friendly, socially-oriented) intent is to introduce himself with
additional information about his name. The agent must be instructed that the name is
something it should remember about persons when they introduce themselves. This goal
can be achieved by creating an entity Person with a field name, which we refer to as a
“parameter”. In the set of sentences associated with the intent, the string that identifies the
name should be highlighted by the agent’s developer to let the agent learn how to retrieve
the person’s name inside sentences tagged with the “introduce himself” intent.

Once the sentence intent has been understood and the parameters have been retrieved,
the agent must provide a meaningful and appropriate answer. By default, the answer is
a fixed sentence whose only variable parts are those related to parameters identified in
the input sentence. For example, if the user types “Hello! My name is Bob”, the agent can
identify the name and answer something like “Hi Bob! Nice to meet you!”, but nothing more
advanced. This is where fulfillment comes into play. The fulfillment is a sort of help from
home: if the agent cannot answer messages for some specific intent, those messages are
forwarded to an external, specialized source that is waiting. Fulfillment provides a field
where the user can insert the URL address of the service to query. The service at that address
will be consulted only for those intents that require it; in that case, Dialogflow will wait for
the answer and will forward it to the user.

https://cloud.google.com/dialogflow/es/docs/agents-overview
https://cloud.google.com/dialogflow/es/docs/agents-overview
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JaCaMo [4,5] “is a framework for Multiagent Programming that combines three separate
technologies, each of them being well-known on its own and developed for a number of years, so they
are fairly robust and fully-fledged” [6].

The three technologies that JaCaMo integrates are:

(1) Jason [7], for programming autonomous agents characterized by mentalistic notions,
such as beliefs, goals, desires, intentions, and the ability to reason;

(2) CArtAgO [8,9], for programming environment artifacts;
(3) MOISE [10], for programming multiagent organizations.

In our work, we will use only Jason and (in an indirect way) CArtAgO. By using
JaCaMo, we can build a multiagent system along with its environment. JaCaMo agents
follow the Beliefs-Desires-Intentions (BDI) model [11,12] and are implemented in Jason,
which is a variant of the logic-based AgentSpeak(L) language [13]. The Jason elements that
are more relevant for programming one individual cognitive agent are:

• Beliefs: the set of facts the agent knows,
• Goals: the set of goals the agent wants to achieve,
• Plans: the set of pre-compiled, operational plans the agent can use to achieve its goals.

For example, a simple reactive agent that turns on the light either when someone
enters the room, when someone issues the “turn light on” voice command, or any other
command with the same semantics would need to know

(1) either when someone enters the room or when the “turn light on” command has been
issued, and

(2) how to turn on the light.

The first piece of knowledge is a belief (something the agent knows about the world
either because it is informed of that fact by some other agent via communication, because
that fact about the environment is sensed via sensors or provided by artifacts, or because
the agent itself generates that piece of knowledge) and the second one is a plan (a recipe to
achieve some goal via a sequence of operational steps). Considering the first way to turn
the light on, triggered by people entering the room, the scenario might involve a sensor that
checks the presence of people in the room and triggers the addition or removal of belief
from the agent’s belief base depending on its measurement. Last, the agent has two goals:

1. turn on the light when the right condition is met,
2. turn off the light when no one is there.

We assume that the agent’s plans offer instructions on how to turn on the light and
how to turn it off. Therefore, depending on its beliefs about the presence of people in the
room (that, in turn, depend on the sensor’s outcome or on a command being issued), the
agent decides to adopt one plan or the other in order to achieve its goal.

Each agent inside the multiagent system has its own source code file written in
AgentSpeak(L). If the agent described earlier is called the light-manager, there will be a
file light-manager.asl with the code necessary to describe the agent’s behavior. AgentS-
peak(L) has a syntax similar to Prolog’s one [14], as shown by this example:

1 +! turn_on_light(Sensor)
2 : (Sensor == ‘‘on ’’)
3 <- turn_on;
4 !say(‘‘Welcome!’’).

The triggering event of the plan is !turn_on_light as written in row 1, and it depends
on one argument, the actual value associated with the Sensor variable. In row 2 there is the
context of the plan after the colon: if the sensor’s value is “on” then the plan is applicable.
Rows 3 and 4 define the actions to be performed, separated by a semicolon.

Actions that are preceded by “!” are named achievement goals and trigger the execu-
tion of other plans, while those without represent functions offered by artifacts.

The agent needs a way to communicate with the environment. Usually, CArtAgO
artifacts are used for this purpose. In our example, we assume to have an artifact controlling
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the sensor and another one receiving information from a Dialogflow agent that listens
for the user’s commands (As anticipated in Section 2, the term ’Dialogflow agent’ comes
from the Dialogflow documentation. The overloading of the word ’agent’ may raise some
confusion in this paper, given that VEsNA also integrates JaCaMo agents, which we have
built on purpose for VEsNA. We will always use ’Dialogflow agent’ to mean the built-in
software module that comes with Dialogflow to make it work, and we emphasize here that
the agents that we have designed and built are the JaCaMo ones). The bridge between
Dialogflow and JaCaMo is built with Dial4Jaca [15,16], which provides a set of CArtAgO
artifacts that run throughout the execution of the JaCaMo agent. Dial4Jaca starts a listener
and has the knowledge to receive and interpret messages from Dialogflow. These messages
are not the ones the user writes on the chat but a standardized and structured format
that Dialogflow uses when it has to use fullfillments. Such messages contain the intent
name, and the entities’ parameters identified (e.g., the object the user is talking about
in the scene). When the messages are received by a JaCaMo agent, they are parsed and
then added to the agent’s beliefs using Jason’s syntax. Finally, the addition of such new
beliefs inside the JaCaMo agent’s belief base will cause a reaction driven by the most
suitable plan among those in the agent’s plan base. The use of Jason and JaCaMo paves the
way to supporting those advanced features mentioned in Section 1, namely sophisticated
reasoning capabilities and goal-driven planning [17–19], exploitation of formal and semi-
formal methods to implement monitoring and safety checks [20–23], explainability, also in
connection with Dialogflow thanks to Dial4JaCa [24,25].

Unity [26] is a cross-platform game engine that allows developers to create scenes
and add objects to such scenes by dragging and dropping them from a palette to the scene.
Objects inserted into a scene can be more or less realistic and may have physical properties
or not, depending on what is needed in the application domain of choice. When an object is
put inside a scene, a script written in C# can be attached to it. From that script, it is possible
to instantiate other objects inside the scene and modify (resp., destroy) those already placed
there. Unity may allow users to have a controllable running simulation where elements
have some degree of autonomy [27], and to turn that simulated environment into a virtual
reality [28]. Unity also supports virtual reality, and its use with headsets for training
purposes is well-known and documented [29].

3. Related Work

Virtual Reality and Multiagent Systems (MAS). We open this section with an analy-
sis of the connections between virtual reality and Multiagent Systems (MAS), starting from
the idea that existing game engines and simulation platforms are suited to act as platforms
for building MASs. This research field, especially when we restrict it to Unity and when
agents need learning capabilities, is—surprisingly—still poorly explored.

One of the first works dealing with agents and Unity dates back to 2014 [30] and
presents a multiagent system based on Unity 4 that allows simulating the three-dimensional
way-finding behavior of several hundreds of airport passengers on an average gaming
personal computer. Although very preliminary, that work inspired successive research
where—however—the focus was not on the use of a game engine as a general-purpose
MAS platform but rather on specific problems that a 3D realistic simulation raises, such as
signage visibility to improve pathfinding [31], and on ad-hoc simulations [32–34].

In [35], Juliani et al. move a step toward generalization and present a taxonomy of
existing simulation platforms that enable the development of learning environments that
are rich in visual, physical, task, and social complexity. In their paper, the authors argue that
modern game engines are uniquely suited to act as general platforms and examine Unity
and the open-source Unity ML-Agents Toolkit (https://github.com/Unity-Technologies/
ml-agents, accessed on 19 January 2023) as case studies.

Before these works were conceived, an interesting strand of papers dealing with
Virtual Institutions appeared [36–41]. In A. Bogdanovych et al.’s works, the 3D virtual
environment where actions take place in Second Life (https://secondlife.com/, accessed

https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://secondlife.com/
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on 19 January 2023) (Unity was just a newborn project at that time, while Second Life
was already gaining attention) and the agents’ behavior is coordinated and constrained
by electronic institutions. An electronic institution is a composition of roles, their prop-
erties and relationships, norms of behavior with respect to these roles, an ontology used
by virtual agents for communications with each other, acceptable interaction protocols
representing the activities in an institution along with their relationships, and a role flow
policy establishing how virtual agents can change their roles. Each virtual agent is char-
acterized by its appearance and its cultural knowledge, namely its beliefs. The Virtual
Institutions technology integrates the concepts of the electronic institution with 3D virtual
worlds and provides tools for formal specification of institutional rules, verification of their
correctness, mapping those to a given virtual world,and enforcing the institutional rules on
all participants at deployment.

Virtual Reality and Logic Programming. Given that BDI agents and the AgentS-
peak(L) language in particular, borrow many concepts from Logic Programming, in this
section, we also consider the relations between Logic Programming and virtual reality,
discovering that the literature exists, although it is not vast.

LogiMOO [42] dates back to the late nineties of the last millennium and exploits
Prolog for distributing group-work over the internet in user-crafted virtual places where
virtual objects and agents live. The virtual reality handled by LogiMOO was, of course,
very different from today’s one, with no graphical interface at all, but issues related to the
object’s manipulation and awareness of position were already present.

In SADE (Smart Architectural Design Environment [43]), users can design, configure
and visualize architectural spaces in Unity. SADE simplifies the design process by taking
into account formal design rules expressed in Prolog, which contain domain knowledge,
such as construction law, technical conditions, design patterns, as well as preferences of a
designer.

The ThinkEngine [44] is a plugin for Unity that allows developers to program “Brains”
using Answer Set Programming, ASP [45,46]. Brains can be attached to Unity non-player-
characters; they can drive the overall game logic and can be used, in general, for delivering
AI at the tactical or strategic level within the game at hand. One brain can be configured by
selecting those sensors that provide inputs to it; a given brain; identifying events that trigger
a brain reasoning task; crafting an ASP program that implements the desired decision-
making strategy; selecting the actuators and wiring them to the brain, if it is reactive;
selecting and programming the set of actions to be performed during the execution of plans
if the brain is a planning brain.

Moreover, also connected with our work, at least from the point of view of the logic
programming technologies exploited and the final goal to generate virtual environments is
the recent work by S. Costantini et al. [47]. In that work, the authors explore the possibility
of building a constraint-procedural logic generator for 2D environments and develop a deep
Q-learning model based neural network agent able to address the NP search problem in the
virtual space; the agent has the goal of exploring the generated virtual environment to seek
for a target, improving its performance through a reinforced learning process. Extending
that work to the generation of 3D environments seems feasible, and the capability of
exploring the generated environment would help us find the best way to position robots in
the factory, making sure that human workers can always find a safe path.

Natural Language Processing and MAS. One of the first works combining MAS and
natural language processing dates back almost thirty years ago: E. Csuhaj-Varjú described
a multiagent framework for generating natural languages motivated by grammar systems
from formal language theory [48].

Ten years later, a project about understanding a natural language input using multia-
gent system techniques was presented by M.M. Aref [49]. The system combined a lexical
structural approach and a cognitive structural approach consisting of six modules: speech-
to-text, text-to-speech, morphological, semantic, discourse, and query analyzers. These
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agents communicate with each other to construct agent subsocieties representing the user
input.

In 2004, V.Y. Yoon et al. proposed, in [50], a natural language interface for a multiagent
system. They presented the work on an agent-based system called MACS (Multiagent
Contracting System) designed to provide advice in the pre-award phase of a defense
contract. The analysis of the user input is delegated to a specialized agent that converts
natural language into Interagent Communication Language. Thanks to the Bayesian
Learning agent, the request is sent to the more appropriate specialty agent that has a set
of predefined answers. In that case, the natural language processing is inserted into the
multiagent system giving one agent the responsibility of it.

In [51], the authors propose a multiagent system involved in the understanding
process. With regard to [50], their design gives the system more freedom, allowing the
comprehension of sentences with complex constructions. In addition, the meaning of a
sentence is not chosen from a predefined finite set but is generated on the fly.

More recently, and more consistently with our own work, S. Trott et al. described
an implemented system that supports deep semantic natural language understanding
for controlling systems with multiple simulated robot agents [52]. The system supports
bidirectional human-agent and agent-agent interaction using shared protocols with content
expressing actions or intentions. Later extensions overcome some limitations due to robot’s
plans that may be disrupted because of the dynamically changing environment [53].

Virtual Reality and BDI agents. When moving to the integration of BDI-style agents
into game engines, we notice that, interestingly, Virtual Institutions share challenges and
techniques with both the ’agents and virtual reality’ fields and the ’Logic Programming
and virtual reality’ ones and solve these issues via an ad-hoc implemented library based on
the BDI architecture [41]. Although Virtual Institutions do not employ Logic Programming,
they adopt a declarative, rule-based approach amenable to reasoning and verification;
agents are driven by beliefs represented as logical facts, and the actions they can perform
are also represented in a symbolic way.

Outside the Virtual Institutions strand, one of the first works to mention is the PRESTO
project [54]. PRESTO (Plausible Representation of Emergency Scenarios for Training Opera-
tions) was an industrial R&D project spanning 2013–2016, aimed at creating an all-round
development environment for non playing characters’ behaviors, for developing BDI agents
that could play as ’intelligent opponents’ in small-scale military 3D serious games. As
reported by P. Busetta et al., the outcomes of PRESTO were significantly constrained by
the immaturity of game engines such as Unity, besides the immaturity of platforms for
BDI agents.

In the Master Thesis by N. Poli dating back 2018 [55], simple BDI agents were imple-
mented using a lightweight Prolog engine, tuProlog [56], that overcame some limitations
of UnityProlog (https://github.com/ianhorswill/UnityProlog, accessed on 19 January
2023), an existing Prolog interpreter compatible with Unity3D. A roadmap to exploit game
engines to model MAS that also discusses the results achieved in [55] has been published
by S. Mariani and A. Omicini in 2016 [57].

Similarly to work by N. Poli, the work by Marín-Lora et al. [58] describes a game
engine to create games as multiagent systems where the behavior specification system
is based on first-order logic and is hence closer to a declarative approach than a purely
procedural programming language.

Simulations that exploit Unity as the engine and visualization tool and the BDI model
as a reference for implementing individual agents have been developed in a few domains,
including large urban areas [59], fire evacuation [60], first aid emergency [61], gas and oil
industry [62], and bushfires in Australia [63]. Those works are driven by an application to
simulate and lack re-usability in other contexts.

The work closest to ours, at least in its final goal of creating a general-purpose exten-
sion of Unity that integrates BDI agents, is hence the one by A. Brännström and J.C. Nieves
in [64]. There, the authors introduce UnityIIS, a lightweight framework for implement-

https://github.com/ianhorswill/UnityProlog


Robotics 2023, 12, 46 9 of 24

ing intelligent interactive systems that integrate symbolic knowledge bases for reasoning,
planning, and rational decision-making in interactions with humans. This is performed
by integrating Web Ontology Language (OWL)-based reasoning [65] and ASP-based plan-
ning software into Unity. Using the components of the UnityIIS framework, the authors
developed an Augmented Reality chatbot following a BDI model: beliefs are the agent’s
internal knowledge of its environment, which are updated during the interaction from new
observations; desires are goals that the agent aims to fulfill, which are updated during the
interaction by reflecting upon new beliefs; intentions are what goals the agent has chosen
to achieve, selected in a deliberation process and used for generating a plan. The belief
of the agent is represented in an OWL ontology, as also suggested by other authors in the
past [66,67]. The UnityIIS framework enables belief revisions (OWL/ASP file updates) at
run time by interweaving the agent’s control loop with the Unity game loop. The Unity
game loop performs cyclic update iterations at a given frequency. During each frame,
external inputs are processed, the game status is updated, and graphics are redrawn.

Albeit sharing some similarities, there are also differences between VEsNA and Uni-
tyIIS. The main one is that UnityIIS does not integrate JaCaMo with Unity: the BDI model is
used as a reference but is not implemented using a standard agent programming language
as Jason. Rather, UnityIIS relies on OWL and ASP as languages for modeling knowledge
and declarative behavior of cognitive agents. The second one is that the chatbot described
in [64] is an example of the application of UnityIIS, in the same way as factory automation
is an example of the application of VEsNA. In VEsNA, the chatbot is one of the three pillars
of the framework and not just an application. What we might borrow from the UnityIIS
model is the adoption of OWL to model knowledge and reason about it in an interoperable,
portable way. What UnityIIS might borrow from VEsNA is the closer integration of a
standard framework for BDI agents into the system, JaCaMo, along with all its libraries
and add-ons, rather than the adoption of more generic logic-based languages such as ASP
and OWL.

4. VEsNA Design and Implementation

In this section, we provide some details on VEsNA design and implementation, and
we describe how a user may interact with it. Figure 2 reports a high-level architectural
scheme of VEsNA while Figure 3 shows a sequence diagram of the main execution steps.
Users that want to try out the framework have to download VEsNAfrom https://github.
com/driacats/VEsNA (accessed on 19 January 2023) and

1. create a scene on Unity, import the listener.cs script file, and attach it to the floor
object;

2. import the Dialogflow zip file on a new Dialogflow agent;
3. move to the JaCaMo directory and launch the multiagent system with gradle run.

After the execution of these steps, VEsNA is ready for use. In the proposed scenario,
the scene represents a factory, and the objects are robots but VEsNA works in every context.
In order to use custom objects users have to add sentences dealing with those objects in
Dialogflow.

On the VEsNA screen, the user can find a chat and a pre-built scene made with
Unity representing whatever he/she needs, based on the application domain; the scene
has at least one empty floor. The user can describe how the scene is organized via the
chat, using natural language (Thus far we have run experiments with English only, but
given that Dialogflow natively supports multiple languages, https://cloud.google.com/
dialogflow/es/docs/agents-multilingual, accessed on 19 January 2023, letting the user talk
in his/her own language should also be possible) and so telling the VEsNA agent what to
do. For example, the user could say (thus far, interactions are via a textual interface only;
nonetheless, to plug a voice-to-text component into the VEsNA control flow should not
raise any technical issues) “Add that object in the scene!”. This would make the object appear
inside the scene. However, the translation from the message to graphics animation requires
various intermediate steps.

https://github.com/driacats/VEsNA
https://github.com/driacats/VEsNA
https://cloud.google.com/dialogflow/es/docs/agents-multilingual
https://cloud.google.com/dialogflow/es/docs/agents-multilingual
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Figure 2. VEsNA architectural scheme.

Figure 3. Sequence Diagram of the execution. The actual functions called change depending on the
user input. This figure represents a general skeleton of the interactions among VEsNA components.

The Dialogflow agent knows two entities: the object and the employee. The object entity
has three fields: one for the object name, one for the position on the vertical axis, and
one for the position on the horizontal axis. The object name field is necessary to describe
an object entity, the two fields for the positions are additional knowledge. The employee
entity instead has two fields: one for the employee name and the other for the direction
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in which the user wants to move it. In this case, both fields are necessary to describe the
employee entity.

When a message is received, the Dialogflow agent understands if the action the user
wants to perform—namely the user’s intent—is an addition, a removal, or a motion.

If the intent is an addition, the Dialogflow agent identifies the name of the object the
user wants to add along with its position in the scene. This information is automatically
extracted from the user’s sentence through natural language processing. In more detail, the
position can be described by the user in two different ways. The first is by using global
positioning on the entire space available. In the current implementation, the space is
divided into nine available positions. Hence, the user can say “Ok agent, put that object in
front on the right” and the agent will understand what it is expected to do.

While the global positioning may work well with small scenarios, it is likely to be
too coarse grained with big ones; however, this may represent the “first” positioning of
objects inside the scene. Indeed, other objects may be added later on by referring to relative
positions (with regard to already present objects in the scene). The user can add new objects
that reference those already in scene. In that case, it would be possible to say “Ok, I told you
that there is that object on the right. Well, behind it there is this other object”. This is performed
by giving a unique name to each object added inside the scene. Such a name can be used
any time it is needed to identify an object as a reference: when a user adds an object, the
answer contains the reference name for it.

Furthermore, while Dialogflow can identify every object name inserted by the user, an
error will be generated if the name does not correspond to one of the available objects. To
make the system work, the user has to insert the name of the object in Unity in such a way
that Dialogflow can recognize it. For the moment, this also applies to identifiers of already
added objects: they must be among those provided by Unity and communicated to the user.
We are working to overcome this limitation by introducing scopes that will allow the user a
more natural description of the scene, making prior knowledge available and supporting
the ability to refer to the last added objects without having to remember their identifiers.

If, instead, the intent of the user is to remove an object, the Dialogflow agent identifies
the reference name of the object to be removed inside the sentence. In this case, the name is the
only piece of information needed. When the message is delivered, the object corresponding
to the reference name is destroyed. If the referenced object does not exist, an error message
is returned.

The last intent that can be identified by Dialogflow is motion. In this case, the Di-
alogflow agent identifies two pieces of information inside the sentence: the reference name
of the object to move and the direction to follow. The user can write sentences like “Move
employee1 to the right” and the employee will make a step to the right. Thus far, motion is
not intended for objects but for employees only. If the user tries to move an object instead
of an employee, an error message is generated: motion needs some specific instructions on
the Unity side that are implemented only for the employee game object.

From a technical point of view, once the user’s sentence has been processed by Di-
alogflow, the resulting intent is generated. In the case of the addition of a new object inside
the scene, the intent AddObject is used and trained to identify who is the object to add
and where to add it. In the case of removal, the intent RemoveObject is used and trained
to identify who is the object to remove. The motion makes use of MoveIntent, which is
trained to identify who is the employee to move and in which direction. All these intents
have fulfillment flagged so that when a sentence is traced back to that intent, a request
is propagated to the address where the JaCaMo agent is listening. Only intents with the
fulfillment flagged are propagated to the JaCaMo agent; all other intents are not propagated,
which means are not in need of an agent to be handled (e.g., sentences not concerning the
scene).

As a minor technical aspect, given that Dialogflow runs on the cloud while JaCaMo
runs locally on the user’s machine, the local machine must be made accessible from outside
its LAN. This is achieved by using ngrok (https://ngrok.com/, accessed on 19 January

https://ngrok.com/
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2023), which creates an HTTP tunnel, making a specific private port of the machine publicly
available. Since Dial4Jaca creates a listener on the classic 8080 port, we use ngrok to make
such listener accessible from Dialogflow. If another framework for developing the chatbot
were used, such as the already mentioned Rasa that we integrated into the new VEsNA
release or the viral ChatGPT (https://chat.openai.com accessed on 19 January 2023), this
external communication might be avoided. This aspect is indeed peculiar to Dialogflow
rather than to VEsNA. In the new VEsNA release, the adoption of Rasa has solved not only
the bottleneck due to the ngrok HTTP interface but also all the cybersecurity issues that it
might have raised.

After the intent has been generated by Dialogflow, it is propagated to the JaCaMo
multiagent system along with the needed pieces of information. Currently, the JaCaMo
multiagent system is composed of only one agent, the assistant agent, but in the future, it
will contain one agent for each employee on the scene, and it will provide intelligence to the
entire system: intelligent cognitive agents will allow virtual employees to decide what to
do, where to move and how to do things with autonomy, trying to get a given goal provided
by the user completed. In the first VEsNA releases, goals will be very simple and precise as
the ones that are introduced in this paper (“make a step”, “take that object”, “turn on the robot”,
etc.), but in our plans for the future, they will become more and more sophisticated and less
operational, still being expressed at a high level, using natural language. The intelligence of
the system will make the simulations more realistic and less predetermined since there will
not be a predefined sequence of actions, but each employee will be free to follow different
paths to obtain the same result.

The JaCaMo assistant agent is responsible for the reception, the computations, and
the forwarding of the request coming from the Dialogflow agent. For each intent that the
Dialogflow agent can recognize, there is a Jason plan in the assistant agent’s Jason code
that is triggered when the corresponding message is received. Depending on the requested
action, the assistant agent acquires and organizes the necessary information and forwards
them to Unity in a structured way. In particular:

• if the requested action is an addition, the assistant agent sends Unity the name of the
object and the position on the horizontal axis and on the vertical axis.

• if it is a removal, the assistant agent sends the reference name of the object to remove
and a removal flag.

• if it is a motion, the assistant agent sends the reference name of the employee to move,
the direction in which it should move, and a motion flag.

For the moment, communication between the assistant agent and Unity is imple-
mented using the HTTP protocol as follows:

1. http://unity_address:port/object_name/pos_x/pos_y
2. http://unity_address:port/remove/reference_name
3. http://unity_address:port/move/reference_name/direction

Respectively for addition, removal, and motion.
Unity has an asynchronous listener waiting for requests and receives all the informa-

tion sent by the assistant agent as strings. There are three possible string structures that
can be handled by the Unity listener, one for each command that has been designed. In
the case of an addition, the listener expects up to three instructions, and at least one (the
name of the object) is necessary. If users do not provide any information on the position on
one or both axis, a center position will be inferred. In this case, inside the string, there is no
clear instruction to add the object. In the case of removal and motion, the first piece of the
string describes the operation requested, respectively remove and move. The Unity listener
splits the string on the “/” character producing an array of strings, and checks the head of
the array. If the word is “remove”, then it only looks at the second element of the array that
contains the name of the object. If the word is “move”, the Unity listener looks in positions
1 and 2 and extracts the name of the employee and the direction. If, instead that position
does not contain one of the two instructions, the required operation is an addition, and the

https://chat.openai.com
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first position contains the name of the object to be added, and if positions 1 and 2 contain
some values, they are the values for horizontal and vertical positions. If these positions
contain nothing, the listener writes “center” in the corresponding variables.

For example, if the user writes in the chat “Put that object on the right”, what the
Unity listener receives is “that object, centre, right”. After that, Unity converts the
received string into a vector that describes the object’s position inside the scene. In the case
of global positioning, the resulting conversion is simple and is computed with regard to the
size of the scene. However, for relative positioning, Unity has to look for the object used as
a reference to compute the new position with regard to the latter. The global position is not
hard-coded but is computed with respect to the floor size. This is why the floor has to be a
single object: Unity uses its dimensions in order to compute where the center is, where the
right is, where the behind is, and so on. All positions are computed starting from the center
and moving in the desired direction with an offset of 25% of the entire floor side length, as
shown in Figure 4.

hl
vlfront = center − 25

100
vl

Figure 4. Computation of global positions.

The relative position computation instead

1. looks for the object referenced by the user;
2. gets its position;
3. computes the new position summing up the object one with an offset in the given

direction. The offset is computed as 10% of the correspondent axis.

The procedure is shown graphically in Figure 5.
Once the position for the new object is found, a physical check is performed on the

Unity side by exploiting native Unity’s colliders to make sure that the selected place has
not already been taken by another object. If the position is already taken, an error message
is sent back to the assistant agent. Otherwise, the object is added, and a “done” message is
sent back to the assistant agent containing the unique name of the object just added.

When Unity receives a removal instruction, it simply looks for the object with the
reference name given and destroys it. If other objects had been previously added in a
position relative to the removed one, they would remain on the scene and will maintain
their positions. If the object does not exist, an error message is returned to the assistant
agent.

When the user gives the instruction to move an employee, the Unity listener looks
for the employee with the given reference name for the removal, and it makes it move in
the direction it is already walking in. The motion is implemented inside a script that has
to be attached to the employee game object. The game object itself has some predefined
animations that can be used and that make the simulation look more natural. Directions
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are fixed and are not relative to the employee, and, for the moment, there is no check on
the content of the space in the chosen direction: if something is in the path, the employee
will try, in any case, to perform the assigned motion and the consequences are handled by
the physical constraint checker of Unity.

ob
j0

length

bbox/2

10% of length

right of obj0 = center of obj0 +
bbox

2
+

10
100

length

Figure 5. Computation of relative positions.

The script attached to the Unity floor looks like this in the editor:
• The objects that are stored in a dynamic list, the

user can add any object therein. The names that
are displayed are those the user must use. If, for
example, users have two tables and call the two
game objects “small table” and “big table”, then they
can write on the chat “Insert the big table in the scene”,
but if they write “Put a table in the scene”, nothing
will happen. The names, therefore, are up to the
users.

• The other dynamic list is the counters one. This
list is created by the script itself and has one entry
for each object provided by the user. By using this
list, the script is able to generate unique names: for
each object added, it concatenates its name with
the value of the corresponding counter and incre-
ments it. For the moment, there is no way to re-use
the numeric identifiers associated with objects that
have been removed: the counter goes on increasing
its value by one.

• The boolean values (Finished, Listener Lock,
Addition Ok, Remotion Ok, Listening) are technical
flags used to manage the HTTP listener.

• The Scene Size is a 3D vector with the dimensions
of the floor (Y component is near 0).

• My IP is the local address of the machine, and it is
used to configure the HTTP listener.

Once on the Unity side, the action has been completed, feedback is sent to the JaCaMo
assistant agent that, in turn, sends back a positive answer to Dialogflow, and a message
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is displayed to the user via the chat. Finally, the user may decide to stop or start another
iteration by adding a brand new object to the scene.
The response time, on average, is less than 1 s to see a reaction in the virtual environment
and around 1.1 s to have the answer in the chat. From a user experience point of view, the
delay is not visible.

The entire framework will work on every computer that can run Unity fluently. Unity
recommends Intel i5 CPU or better with at least 8 GB of RAM, which are also the minimum
hardware requirements for VEsNA to work efficiently. For the experiments, we worked
with a i7-8565U CPU and 20 GB of RAM.

5. Using VEsNA in the Factory Automation Domain

As a concrete example of use, let us consider the scenario introduced in Section 1. Let
us suppose that VEsNA’s user is the owner of a small-medium factory where extended-
reach welding robots (robots that can move their only arm in almost all directions but
cannot wander through the factory, see Figure 6b) must be positioned in an optimal way to
carry some automation work out. When VEsNA is first run, an empty model of the factory
in Unity is available to the user, ready to be modified (Figure 6a).

(a) The factory. (b) The robots.

(c) The employee.

Figure 6. Model in Unity.

In this case, the user is interested in simulating, in Unity, the outcome of putting robots
and employees in different positions to devise the optimal one for robots and to make
sure that employees can safely work with them. However, the user might not have the
programming skills to use Unity. This is when VEsNA comes into play to let the user
position objects in the Unity scene by using natural language. Let us suppose that the user
wants to position a Yaskawa MA2010 robot (https://www.robots.com/robots/motoman-
ma2010, accessed on 19 January 2023) in the front-right global position. The user may type

“Add a Yaskawa MA2010 in front on the right” in the VEsNA chat.
The sentence in the chat (Figure 7a) automatically creates the scene in Figure 7b. The

machinery behind the result displayed in Figure 7b is the following. The Dialogflow agent

https://www.robots.com/robots/motoman-ma2010
https://www.robots.com/robots/motoman-ma2010
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brings the “Add a Yaskawa MA2010 in front on the right” back to the intent AddObject. An
entity Object that has parameters

1. Name, the name of the object to be positioned, the robot in this case;
2. PosX, in global positioning, is the horizontal position, in relative positioning contains

the relative position (left of, right of, behind, in front of );
3. PosY, in global positioning, is the forward position, in relative positioning contains

the name of the object the user refers to.

In the sentence the Dialogflow agent finds the name “Yaskawa MA2010”, the posX
“right” and the posY “front” and sends a request to the link provided in the fulfillment
(where the JaCaMo agents awaits).

(a) The Dialogflow chat. (b) The graphical result.

Figure 7. Example of object addition with global coordinates.

Dial4Jaca receives the information from the Dialogflow agent and adds the following
belief to the assistant agent:

1 request(
2 ‘‘undefined ’’,
3 ‘‘5b485464 -f275 -42ab -853e -59514 b115359 -cf898478 ’’,
4 ‘‘AddObject ’’,
5 [
6 param(‘‘posX ’’,‘‘right ’’),
7 param(‘‘posY ’’,‘‘front ’’),
8 param(‘‘objName ’’,‘‘Yaskawa MA2010 ’’)
9 ],

10 ...

The assistant agent receives the message, verifies that it matches with the triggering
event of the following plan (after some syntactic reworking), checks that the plan’s context
is verified, and executes the plan’s body:

5 +! answer(RequestedBy , ResponseId , IntentName , Params , Contexts)
6 : (IntentName == ‘‘AddObject ’’)
7 <- !getParameters(Params);
8 addObject(Result);
9 reply(Result).

The assistant agent performs three simple steps:

1. gets the information on the position of the object;
2. calls the addObject function defined by the CArtAgO artifact that provides an inter-

face for Unity; the variable Result contains the result of the action provided by the
Unity listener;

3. sends Result back to Dialogflow, thanks to the reply action in the plan’s body.
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The addObject function provided by the artifact sends an HTTP request to the 8081
port on the same machine and waits for an answer (we remind readers that on port 8081,
Unity is listening for messages). The HTTP request is assembled as follows

http://localhost:8081/ Yaskawa%20MA2010︸ ︷︷ ︸
obj name

/ right︸ ︷︷ ︸
posX

/ front︸ ︷︷ ︸
posY

On the Unity side, the script attached to the factory has a listener on that port and
receives this piece of information. It then converts the location from a couple of strings (in
our example (right, f ront)) into a 3D vector of coordinates. This procedure is described
in Figure 4. In this specific case, the requested position is at the front of the right, and it
is computed as a combination of front and right starting from the center. When the Unity
listener has a position, it checks that it is not already occupied by something else and
eventually adds the object to the scene.

Let us now assume that the user wants to continue the interaction with VEsNA. For
instance, the user could ask to add a new robot to the left of the one inside the scene.
Since there is already another robot inside the scene, the user can add objects and position
them by reference. In this case, the user could write, “Add an ABB IRB 2600 left of Yaskawa
MA20100”. The request sent from the assistant agent to Unity will be

http://localhost:8081/ ABB%20IRB%202600︸ ︷︷ ︸
obj name

/ left%20of︸ ︷︷ ︸
posX

/ Yaskawa%20MA20100︸ ︷︷ ︸
posY

The posX parameter, in this case, tells where to put the new object with respect to the
one referenced in posY. The result obtained after this request is shown in Figure 8b:

(a) The Dialogflow chat. (b) The graphical result.

Figure 8. Example of object addition with relative coordinates.

Let us now suppose that the user changes his/her mind and decides to remove the
robot positioned at the beginning. The user could type “Remove the Yaskawa MA20100” and
the result would be the one shown in Figure 9, left, where the blue arm is no longer part of
the scene. The Jason plan used by the assistant agent in this case will be

10 +! answer(RequestedBy , ResponseId , IntentName , Params , Contexts)
11 : (IntentName == ‘‘RemoveObject ’’)
12 <- !getParameters(Params);
13 removeObject(Result);
14 reply(Result).

The removeObject request from the assistant agent to the Unity listener would turn out
to be:

http://localhost:8081/ remove︸ ︷︷ ︸
instr

/ Yaskawa%20MA20100︸ ︷︷ ︸
obj_name
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The first piece tells Unity that the operation to be performed is removal, and the
second one is the reference name of the object to be removed.

Figure 9. Example of object removal (above) and result of further interactions (below).

After a few iterations, all the robots would be positioned in the factory as the user
desires, and the result might look like the scene shown in Figure 9, right.

Finally, let us suppose that the user wants to check the practical usability of the created
configuration. In order to do it, the user will add an employee in the factory by writing
“Add an employee in the centre”. As for the other objects, the employee can be inserted using
either the global or the relative reference system, and it will appear in the scene. The user
can now make the employee move step by step, simulating the real motion and checking
the safety and convenience of the configuration. In this case, the assistant agent uses the
following Jason plan:

15 +! answer(RequestedBy , ResponseId , IntentName , Params , Contexts)
16 : (IntentName == ‘‘MoveActor ’’)
17 <- !getParameters(Params);
18 moveActor(Result);
19 reply(Result).

If, for example, the user writes “Make employee1 move on the left” in the chatbox, the
assistant agent will identify the Employee object in the sentence that has two fields:

1. Employee Name: the reference name of the employee to move;
2. Direction: the direction to follow when moving.

Once the two pieces of information are identified, the assistant agent executes this
request on the Unity listener:

http://localhost:8081/ move︸︷︷︸
instr

/ Employee1︸ ︷︷ ︸
obj_name

/ right︸ ︷︷ ︸
dir

As for the removal, the instruction contains not only the reference name and the direction
but also the instruction move as the first argument. The result is shown in Figure 10.
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Figure 10. Example of employee addition (above) and employee movement (below).

VEsNA stays awake and responsive until users say that they have completed their work.

6. Conclusions and Future Work

We presented VEsNA, a general-purpose framework to allow users with no program-
ming skills to populate simulations in Unity through natural language, heavily exploiting
agent-based technologies that might help in reasoning on scenarios, verifying the feasibility
of choices, and providing explanations. We showed how starting from natural language
sentences, VEsNA can automatically handle the creation, addition, and removal of objects
and employees and the motion of employees into a simulated scene in Unity. Specifi-
cally, this is obtained in VEsNA through the combination of three different frameworks:
Dialogflow, JaCaMo, and Unity. These frameworks support natural language analysis,
scene construction, and graphic representation, respectively. To the best of our knowledge,
VEsNA is the first framework that combines all these three aspects together.

For future developments, we are exploring additional uses for the objects in the
simulated scene. In particular, instead of having static objects, we might have active
objects as agents. This would help make the simulation more realistic, engaging, and
amenable to a more precise risk analysis. In the factory automation scenario, besides
employees that will be represented as cognitive agents in the factory to experiment with
the movements and the interactions with objects, robots could be implemented as agents
as well, with some degree of autonomy (Many standards define the level of autonomy
of artifacts and robotic systems; see, for example, the SAE Levels of Driving Automation,
https://www.sae.org/blog/sae-j3016-update, accessed on 19 January 2023, that goes from
Level 0 (no automation) to Level 5 (full automation): some robots in the factory might reach
high automation levels, and hence their implementation as intelligent agents would be
very appropriate). Given that robots would not need to be driven by mentalistic/cognitive
features as the simulated employees, we might implement them directly using the language
supported by the graphical environment tool, for example, C# or UnityScript for Unity.
The autonomy of the simulated robots and the autonomy of the simulated employees
would allow the developer of the simulation to explore possibly unexpected and harmful

https://www.sae.org/blog/sae-j3016-update
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combinations of autonomous behaviors. This is exactly why we believe that VEsNA may
be useful: to discover threats before they take place.

We are also exploring the possibility of integrating other game engines such as Unreal
(https://www.unrealengine.com/, accessed on 19 January 2023) and Godot (https://
godotengine.org, accessed on 19 January 2023) in VEsNA. Both support virtual reality
natively as Unity. Particular attention is given to Godot, which is open-source and lighter
than Unreal and Unity and can be a suitable alternative for a desktop application with a
small scene. The actual exploitation of virtual reality in the factory automation domain,
thanks to VEsNA, is a goal that will require some more time to be achieved. Thus far,
we took the possibility to “enter the graphical rendering of the factory thanks to tools for
virtual reality” as a VEsNA hard requirement, and indeed we selected graphical tools that
do support it, but we have not tested this feature yet. Virtual reality would guarantee
employees not only a better and more immersive experience but would also allow them to
interact directly with the robots to learn how to use them in a safe and controlled situation
when, for example, they are not working or they are working at a low autonomy level.

One relevant aspect we will take into account, as soon as the virtual reality com-
ponent will be better developed and tested, is to consider a way to reduce the power
consumption of virtual reality headsets, following, for example, the approach presented by
Z. Yang et al. [68].

Being general-purpose, VEsNA is not limited to the factory automation domain.
Indeed, one of our original reasons for the development of VEsNA was to create a tool for
interactive, agent-based theatrical story-telling along the lines of [69–74]. In that domain,
the presence of cognitive, goal-driven, nonplaying characters in the Unity scene able to
perform some actions on their own provides a strong motivation for the integration of
JaCaMo and Unity.

Finally, from a more practical perspective, we are also considering the exploration
of additional frameworks to improve the VEsNA usability and accessibility. As already
mentioned, other options are available on the sentence analysis side, such as Rasa. Rasa is a
valid alternative to Dialogflow because it is open-source and can be run locally, differently
from Dialogflow, which instead requires to be executed in the cloud. In the first VEsNA
release, we opted for Dialogflow for its simplicity and because we had already used it.
Further, Dialogflow was natively supported by Dial4JaCa. However, if used in scenarios
where privacy might be an issue, the possibility of having all software running locally
could be a necessary feature. Rasa solves these issues, and we will definitely substitute
Dialogflow in the forthcoming VEsNA releases.
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