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Abstract: Tensegrity robots offer several advantageous features, such as being hyper-redundant,
lightweight, shock-resistant, and incorporating wire-driven structures. Despite these benefits, tenseg-
rity structures are also recognized for their complexity, which presents a challenge when addressing
the kinematics and dynamics of tensegrity robots. Therefore, this research paper proposes a new
kinematic/kinetic formulation for tensegrity structures that differs from the classical matrix differen-
tial equation framework. The main contribution of this research paper is a new formulation, based
on vector differential equations, which can be advantageous when it is convenient to use a smaller
number of state variables. The limitation of the proposed kinematics and kinetic formulation is that
it is only applicable for tensegrity robots with prismatic structures. Moreover, this research paper
presents experimentally validated results of the proposed mathematical formulation for a six-bar
tensegrity robot. Furthermore, this paper offers an empirical explanation of the calibration features
required for successful experiments with tensegrity robots.

Keywords: prismatic tensegrity; robot kinematics and kinetics; tensegrity structure; simulation;
wire-driven actuation

1. Introduction and Related Work

A tensegrity structure (see Figure 1) can be defined as a truss-like system that includes
elements able to transmit loads in a single direction in space: these are struts/bars (compres-
sion members) and wires/cables (tension members). The connections between elements
are constituted by ball joints, which also represent the only points at which external loads
can be applied. As a consequence, all elements of a tensegrity structure can be loaded only
axially, which on the one hand simplifies their modeling, and on the other hand allows
one to choose element geometry and materials specialized for axial loads [1], enabling “the
creation of structures with high rigidity per unit mass” [2]. Due to its structure, a tensegrity
can easily absorb external forces and shocks [3]: for example, NASA proposed a mobile
robot based on a ball-shaped tensegrity structure with shock-absorbing features [4]. The
first research work on tensegrity systems focused on the study of structure equilibrium and
stability analysis [5]. The calculation of the initial equilibrium state of a tensegrity structure,
which is in itself a nontrivial task, is termed as “form-finding” [6–8]. Recently, researchers
have introduced a numerical approach for determining the stability of general structures
when their structural stiffness matrix K is positive semi-definite. This stability is defined as
the structure’s ability to return to its original state after the application of a small external
load [9,10].
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Figure 1. Prismatic tensegrity robot structures: (a) single segment triangular prismatic structure,
(b) single segment quadrangular prismatic tensegrity, and (c) dual segment triangular prismatic
structure with two layers.

1.1. Tensegrity Kinematics and Kinetics

Tensegrity kinematics is a challenging problem, as it is more complex than serial
robot kinematics. Indeed, a tensegrity robot is made of a network of strings and bars
with complex wire routing, and inherently has a parallel and closed linkage architecture
resulting in complex forward kinematics [11] with structural constraints [12]. One of the
most popular methods of solving forward kinematics, consisting of an iterative approach,
is the Newton–Raphson method [13]. Alternative methods have been proposed based
on genetic algorithms [14,15], potential energy [16,17], and deformation kinematics [18].
Another proposed kinematics formulation for a tensegrity robot structure is the deformation
kinematics method. This method imposes nodes in Euclidean space that are described
by the nodal coordinates with respect to an inertial Cartesian coordinate system. Position
of the joints is defined by deformed or stretched truss elements with respect to the initial
position [18]. This is a nontrivial task, as the form of the tensegrity structure should be
symmetric in terms of wire tensions. Finding the initial form of the robot after moving is
also a crucial task. There are some mechanical factors that deeply affect form-finding, such
as friction. The whole mechanism is driven by wires and has some contact between wires
and robot rigid components, which yields friction, causing a negative effect on the robot
motion, and requires more motor torque than it should [19–24].

A problem related to kinematics is that of determining the kinetics of a tensegrity
structure. Methods that account for the deformability of bars were described in [18,25,26].
A method based on a mixed Lagrangian–Eulerian approach was presented in [18] to derive
the linearized equation of motion around equilibrium configurations for modal analysis
and numerical simulation. Another approach to obtain linearized equations of motion was
introduced in [25] utilizing second-order ordinary differential equations, which simplified
the problem as compared to using partial differential equations, as in [18]. The major
drawback of the method in [25] is the large number of parameters required for calculations,
related to Young’s modulus and geometrical properties. Finally, the method in [26] directly
handles nonlinear tensegrity dynamics.

The most significant and well-known studies on tensegrity are those of Skelton and
co-workers. In their formulation, the bars in the tensegrity are considered as rigid bodies,
and the nonlinear dynamics of the structure are represented using node, bar, and string
connectivity matrices [27]. For example, the node matrix includes the coordinates in the
Cartesian space of all nodes (i.e., endpoints of bars) of the structure: it has three rows
and a number of columns equal to twice the number of bars. A dynamical model that
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employs such a formulation has a number of states equal to 12 times the number of bars
(i.e., position and velocity coordinates of all bar nodes in the Cartesian space). This is a
non-minimal set of coordinates, as the tensegrity dynamics is described using six degrees
of freedom for each bar, instead of the minimal number, i.e., five (see, e.g., [18,25,26]). This
might seem to be a disadvantage compared to frameworks based on minimal coordinates;
however, Skelton’s formalism has some remarkable advantages. First, it avoids using long
chains of trigonometric functions, as the only nonlinearities in the dynamic equations are
ratios and square roots. Second, the mass matrix of the system, although of larger size,
becomes constant, which simplifies certain calculations (mainly, its inversion).

Skelton’s formalism has been used in several studies. For example, a unified formu-
lation of the dynamics of general class-k tensegrity systems—we say that tensegrity is of
class-k when it has a maximum of k is rigid bars connected by ball joints—was studied
in [28,29]. In [30], the formulation of [29] was extended to account for the presence of
damping forces and forces along connected strings passing through several nodes. A
related framework was proposed by Goyal et al. [31] to simulate tensegrity dynamics in
the presence of rigid bars and massive strings, allowing one to distribute the mass of the
strings into a number of point masses along the string, at the same time preserving the exact
dynamics of the rigid bars. Finally, a software toolbox for static analysis and simulation of
the dynamics of tensegrity systems based on the modeling framework of [31] was created
and is described in [32].

The kinematics of tensegrity structures pose a challenge due to the need for simulta-
neous motor control, whereas serial manipulators with rigid links only require control of
individual motors [33]. The wire-net structure of tensegrity robots makes them susceptible
to movements and shocks from any of its actuators, whereas kinematics in serial manip-
ulators are based on their degrees of freedom [34,35]. Tensegrity structures have a large
number of structural constraints, making kinematic formulation based on constraint equa-
tions necessary to achieve the desired degrees of freedom, unlike the simpler kinematics
formulation in serial manipulators.

1.2. Prismatic Tensegrity Structures

A recent survey paper [36] classified tensegrity robots into different classes: pris-
matic [37], spherical [38,39], humanoid musculoskeletal [40–42], and bio-inspired [43].
Prismatic tensegrity robots (see Figure 1) that are based on the composition of so-called
tensegrity prisms constitute one of the most popular solutions adopted to date, which fa-
cilitates stability, symmetry, and self-equilibrium. A tensegrity prism is composed of p
struts and, usually, at least 3p strings that form p-sided polygons on the top and bottom,
such as triangular tensegrity prism with 3 struts and 9 strings, and quadrilateral tensegrity
prism with 4 struts and 12 strings’ [36]. Triangular and quadrilateral prisms (i.e., p = 3 and
p = 4, respectively) constitute the simplest and most commonly used designs. The fact
that prismatic tensegrity structures usually consist of repeating patterns makes it possible
to also use a simplified assembly sequence. Prismatic tensegrity structures have been
utilized to create tensegrity robots equivalent to industrial robot arms with open-chain
kinematic structure [44,45]. Due to their lightweight components (i.e., bars and strings) and
parallel architecture, these robots can manipulate higher payloads, relative to their weight,
as compared to traditional industrial manipulators [36]. Tensegrity robots are well-suited
for operating in uneven and unstructured environments, as they do not require additional
infrastructure and facilities, thus reducing the cost of exploitation [46]. Despite these
advantages, tensegrity robots cannot achieve high-speed operation comparable to delta
manipulators with a parallel structure [47,48]. On the other hand, compared to wire-driven
robots such as continuum manipulators [49,50], tensegrity robots have a significantly higher
payload capacity.
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1.3. Contribution and Paper Structure

This paper presents a new kinematics and kinetics formulation for prismatic tensegrity
robots with rigid bars, massless strings, and base nodes fixed to the ground, which uses
a minimal set of coordinates. Our kinematics formulation (which presents similarities
with the Denavit–Hartenberg convention for robot kinematics) employs Euler angles and
homogeneous transformations to express spatial rotation and translation of the node
coordinates. Then, the proposed kinetics formulation defines the equations of motion via
gravitational torque vectors. In a prismatic tensegrity structure with base nodes fixed to
the ground, it is easy to define the direction of the gravitational force vector, unlike, e.g., in
ball-shape tensegrity structures where the direction of the gravitational force vector may
change with time. The considered kinetics formulation requires basic parameters, such
as wire tensions, bar lengths, bar masses, end plate mass, and gravitation constant. The
kinematics and kinetics formulation proposed in this work can also be seen as a preliminary
step towards the determination of a dynamical model of prismatic tensegrity robots with
a minimal set of coordinates. The obvious advantage of such a model over non-minimal
coordinate systems would be the presence of a smaller number of variables. The drawbacks
would be its limitation to prismatic structures (only the formulation for triangular prisms
is explicitly considered), the presence of long chains of products of trigonometric functions,
and the need to calculate a symbolic expression of the inverse of the mass matrix, in order
to simulate the system dynamics. In certain contexts, this formulation can be advantageous
with respect to non-minimal coordinate systems: for example, if the motion of a tensegrity
robot has to be planned by numerical optimal control (using optimization solvers based on
sequential quadratic programming [51] or interior point methods [52]), then the presence
of an arbitrary number of sines and cosines (which are infinitely differentiable with respect
to their argument) would be preferable to the presence of square roots (which are found in
non-minimal coordinates formulations and are in general non-differentiable). In addition,
for the same type of solvers, the presence of a smaller number of decision variables in
the optimal control problem would be preferable in case the solver is not designed to
exploit the sparsity pattern deriving from the non-minimal coordinate system: indeed,
several software toolboxes exist that can account for sparsity in optimal control problems
(e.g., [53,54]), but none of them is designed for the specific sparsity patterns of non-minimal
tensegrity coordinate systems. The proposed kinematic and kinetic formulation, as noted
above, is applicable to prismatic tensegrity structures with fixed and movable top plates,
such as triangular and quadrangular prismatic tensegrity structures.

The paper is organized as follows. Section 2 introduces the specific tensegrity robot that
will be used as a case study to illustrate the details of our modeling framework. Section 3
will be devoted to the derivation of kinematics and dynamics, whereas the experimental
validation will be presented in Section 4. Conclusions will be drawn in Section 5.

2. Case Study

To introduce and then experimentally validate our kinematics and kinetics formula-
tion, we designed a triangular prismatic tensegrity robot with pulley-guided wire-driven
actuation (see Figure 2). The robot structure (see Figure 3) consists of two plates at the
bottom and the top (represented as grey surfaces), six bars (thick green, blue, and orange
lines), and a number of wires, represented as thinner lines, either solid or dashed. A total
of 12 nodes are present, divided into three sets: base nodes (n01, n02 and n03), mid nodes
(n11, n12, n13 and n1a, n1b, n1c), and end nodes (n21, n22, n23). The joints at the base nodes are
universal joints (with two degrees of freedom); at the locations of the mid nodes, wires
are connected to bars via a wire-guiding pulley (3D-printed except for the ball bearings
inside them); finally, the joint at the end nodes consist of spherical joints with 2 degrees
of freedom because upper nodes are directly connected to the active and passive wires,
which constraints rotational motion along the z-axis. Therefore upper node joints in the
mathematical formulation will be considered as universal joints. The robot is actuated
by three driving wires controlled by individual electric motors (see Figure 2). To provide
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rigidity and static stability, three passive wires were inserted in the structure (shown as
dashed green lines in Figure 3), whose pretension is adjustable via individual extension
springs. A saddle wire (solid blue line in Figure 3) is also utilized to ensure the static
balance of the structure.

Figure 2. The computer-aided design model of the prismatic tensegrity robot with triangular base.

Figure 3. Annotated schematics of the prismatic tensegrity robot. Thick blue, orange, and green
solid lines are solid bars. Dotted orange lines are driving wires; dotted green lines are passive wires.
The solid blue line is the saddle wire. Base and end-plate nodes are blue-filled circles. Black and
orange-filled circles are middle nodes (universal joints).

Experimental Setup and Initial Posture Calibration

In addition to the fixed parameters such as the lengths of the bars, the robot form
primarily depends on wire tension. In our prototype (shown in Figure 4), we use three
types of wires: active, passive, and saddle (also passive) wires. The three active wires
are directly connected to the electric motors, the three passive wires are connected to the
extension springs on the base for providing rigidity to the robot structure, and the saddle
wire sustains the weight of the upper layer and allows the kinetic balance of the whole
structure. In Figure 4, one can notice the presence of cameras: these are part of an Optitrack
motion capture system, which allows us to obtain high-precision data for node positions,
mainly used to experimentally validate our models.
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Figure 4. Tensegrity robot experimental setup with zoomed components inside the motion
capture area.

When running experiments involving robot motion, specific angular position ref-
erences were given to the motors (Dynamixel PRO H54-200-S500-R, Seoul, Korea) that
actuated the active wires. The control environment consisted of two independent parts.
The first was the robot control structure, implemented on a PC with Intel Core i9 CPU and
16 GB RAM via Robot Operating System (ROS) Kinetic running under Ubuntu 16.04 LTS;
the ROS environment integrated tension sensors readings, electric motors, and control code.
The second was implemented on a different PC with an Intel Core i3 CPU and 8 GB RAM
running Windows 8 and used to measure the robot trajectory with the Optitrack motion
capture system via the Motive software. In order to obtain readings from the Optitrack
system, reflective markers were embedded on tensegrity robot nodes, as shown in Figure 4.
A total of 12 infrared diffusing markers were used, one for each node of the structure.

To measure wire tension, we installed seven tension sensors (Flintec Y1, Hudson,
USA), one for each wire, also shown in Figure 4. The analog output of each tension sensor
is fed into an amplifier module, and the corresponding amplified signal is acquired by
the analog input of a microcontroller (Arduino Uno, Italy). This microcontroller sends the
measurements via a universal serial bus (USB) to the ROS workstation.

Posture calibration is achieved by using data from the tension sensors by satisfying
two main requirements:

1. The line that connects the centers of the upper plate and base plate should be perpen-
dicular to the ground while the upper plate is kept on a horizontal plane.

2. Each node in the upper plate is connected to one active wire and one passive wire.
Defining the corresponding initial tensions sinit

a1 , sinit
a2 , sinit

a3 for active wires and sinit
p1 ,

sinit
p2 , sinit

p3 for passive wires, the following condition should be satisfied:

sinit
a1 + sinit

p1 = sinit
a2 + sinit

p2 = sinit
a3 + sinit

p3 . (1)

3. Proposed Formulation of Tensegrity Kinematics and Kinetics

In this section we formulate the kinematics and kinetics of a class of prismatic tenseg-
rity robots that include the one in our case study. In more detail, we consider triangular
prismatic tensegrity structures with six bars and two triangular plates.
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3.1. Node Coordinates

As a preliminary step, we introduce the rotation matrices for an angle θ around the x,
y, and z axes of a generic right-handed reference frame as

eîθ =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

, e ĵθ =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

, ek̂θ =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

, (2)

where î, ĵ, and k̂ are skew-symmetric matrices of the unit vectors i, j, and k of the axes x, y,
and z, respectively. Specifically, we will use two reference frames, both shown in Figure 3:
the first, namely O0 − x0y0z0, is a fixed frame with origin at the center of the base plate;
the second, Op − xpypzp, is a moving frame attached to the top plate, with its origin at the
center of this plate.

We will now detail how to obtain each of the column vectors that define the coordinates
of each node of the prismatic tensegrity robot in the O0 − x0y0z0 frame. We can express the
coordinates of the nodes in the base plate as

n0i = ek̂(i−1)(− 2π
3 )(`0i 0 0)T = e−k̂θ0i (`0i 0 0)T , i = 1, 2, 3, (3)

where `0i, as indicated in Figure 3, is the distance between the plate center and n0i. The
angle θ0i is to account for irregular triangles, and in our case of an equilateral base triangle,
we can write θ0i = (i− 1)( 2π

3 ).
To define the positions of the mid nodes, we first introduce θ0ix and θ0iy as the two rota-

tion angles that describe the orientation of the universal joint at the nodes
n0i, (i = 1, 2, 3), starting from an upper vertical orientation in the O0 − x0y0z0 frame.
Using these angles, we can determine the position of the three mid nodes corresponding to
the upper node on each of the three corresponding bars:

n1i = n0<i> + eîθ0<i>x e ĵθ0<j>y(0 0 `1<i>)
T , i = 1, 2, 3, (4)

where < 1 >, 2, < 2 >, 3, and < 3 >, 1.
Three nodes of the top triangle plate are assumed to take positions such that

n2i = nup + eîφpx e ĵφpy ek̂φ(pz+rpi)(lpi 0 0)T , (5)

(i = 1, 2, 3) and (rp1 = −π
3 , rp2 = π, rp3 = π

3 ), where up = (upxupyupz)T is the position
of the upper plate origin Op, and φpx, φpy, φpz are tilting angle of the top-plate with respect
to the base frame.

Then, the node positions at the other extremities of the bars connected to the top plate
can be written as:

n1p = n2<ρ> − eîφpx e ĵφpy ek̂φpz eîθ2<ρ>x e ĵθ2<ρ>y
(
0 0 `2<ρ>

)T , ρ = a, b, c, (6)

where < a >= 2,< b >= 1,< c >= 3, and θ2<ρ>x and θ2<ρ>y, with ρ = a, b, c, are the two
rotation angles that describe the orientation of the universal joint at nodes n2<ρ>, starting
from a lower vertical orientation in the Op − xpypzp frame.

3.2. Definition of the Constraint Equations

To describe the configuration of the prismatic tensegrity robot, the following 22 vari-
ables have to be determined via kinematics and kinetics:

(a) Three coordinates describing the position of the center of the top plate:

up =
(
upx upy upz

)T ;
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(b) Three angles describing the rotation of the top plate:

φp =
(
φpx φpy φpz

)T ;

(c) Twelve angles defining the rotation of the six universal joints:

θ01x, θ01y, θ02x, θ02y, θ03x, θ03y, θ21x, θ21y, θ22x, θ22y, θ23x, θ23y;

(d) Three forces f21, f22, f23, defining the axial forces of the bars connected to the top
plate;

(e) The (scalar) tension of the saddle wire ss.

To determine these variables, we formulate 22 constraint equations (CEs) that describe
the kinematic and kinetic equilibrium state in the presence of external forces (i.e., gravity
and forces applied by the motors at the robot base to the active wires). In this research, the
tensegrity robot driving parameter is an active wire tension, and feedback values of wire
tension are obtained via tension sensors. In these equations, sa1, sa2, and sa3 indicate the
tension of each active wire, whereas sp1, sp2, and sp3 indicate the tension of each passive
wire. In order to simplify calculations, the latter will be considered as constant. This
approximation is realistic whenever the range of motion of the system is not of a very
significant entity. We divide the CEs into six groups:

• (CE1) The magnitude of moment vectors at the nodes n01, n02, and n03 applied by bars
l11, l12, and l13, respectively, must be zero (three equations).

• (CE2) The magnitude of the moment vectors at nodes n21, n22, and n23 applied by bars
l21, l22, and l23, respectively, must be zero (three equations).

• (CE3) The sum of the forces applied to nodes n21, n22, and n23 must be equal to the
opposite gravity vector applied to the mass center of the top plate (three equations).

• (CE4) The sum of the force vectors applied to nodes n1a, n1b, and n1c must be equal to
the opposite gravity vector applied to the nodes due to the weight of the end plate
and the bars (nine equations).

• (CE5) The resultant moment vector applied to the center of the top plate must be a
zero vector (three equations).

• (CE6) The length of the saddle wire is constant (one equation).

In this research, we do not consider the inertia effect because the simulation considers
absolutely static balance of force and torque and holonomic kinematic constraints. It does
not include dynamic force and torque, which means that no accelerations or angular accel-
erations are included in the formulations. In the following, we will provide a mathematical
formulation of the CEs. All other mathematical symbol notations are shown in Table A1.

3.2.1. Formulation of CE1

The first three equations express that the resultant moments of the external forces at
nodes n01, n02, and n03 applied at the other ends of the corresponding bars (i.e., n13, n11,
n12) by the active wires must be zero. By referring to these moments as T01, T02, and T03
(see Figure 5), we can write the following expressions:

T01=(n13 −n01)×
(

sa2(( ̂n21− n13)+ ( ̂n03− n13))+ ss(( ̂n1c −n13) +( ̂n1b −n13)) +
mLg

2
+mng

)
(7)

T02=(n11 − n02)×
(

sa3(( ̂n23 −n11) + ( ̂n01 −n11)) +ss(( ̂n1c −n11 +( ̂n1a −n11)) +
mLg

2
+mng

)
(8)

T03=(n12 −n03)×
(

sa1(( ̂n22 −n12) + ( ̂n02 −n12)) +ss(( ̂n1b −n12) +( ̂n1a −n12)) +
mLg

2
+mng

)
(9)
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where ̂n22 − n12 , (n22 − n12)/|n22 − n12| (and similarly for all other vectors), mL is the
mass of the bar (equal for all bars), and g ,

(
0 0 −9.80665

)T m/s2 is the gravity
acceleration vector. The CEs derived from (7)–(9) are

(c1 c2 c3)
T ≡ (|T01| |T02| |T03|)T = 0T

3 , (10)

where, for any integer k, 0k ,
(
0 . . . 0

)T ∈ Rk.

Figure 5. Illustration that shows the terms used for the computation of the torque vector T01.

3.2.2. Formulation of CE2

The torque vectors applied at nodes n21, n22, n23 can be written as

T21=(n1b −n21)×
(

sp1(( ̂n22 −n1b) +( ̂n03 −n1b)) +ss(( ̂n13 −n1b) +( ̂n12 −n1b)) +
mLg

2
+mng

)
(11)

T22=(n1a −n22)×
(

sp3(( ̂n23 −n1a) +( ̂n02 −n1a)) +ss(( ̂n11 −n1a) +( ̂n12 −n1a)) +
mLg

2
+mng

)
(12)

T23=(n1c −n23)×
(

sp2(( ̂n21 −n1c) +( ̂n01 −n1c)) +ss(( ̂n13 −n1c) +( ̂n11 −n1c)) +
mLg

2
+mng

)
(13)

The CEs derived from (11)–(13) are(
c4 c5 c6

)T ≡
(
|T21| |T22| |T23|

)T
= 0T

3 (14)

3.2.3. Formulation of CE3

The difference between the total sum of the forces applied to nodes n21, n22, and n23
and the gravity vector applied to the mass center of the top plate must be equal to zero:

(
c7 c8 c9

)T ≡ f21( ̂n21 − n1b) + f23( ̂n23 − n1c) + f22( ̂n22 − n1a)

− sp3( ̂n23 − n1a)− sp1( ̂n22 − n1b)− sp2( ̂n21 − n1c)

− sa1( ̂n22 − n12)− sa3( ̂n23 − n11)− sa2( ̂n21 − n13) + mtpg + 3mng = 03 (15)
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where mtp is the mass of the top plate. To run the convergence of Newton–Raphson, the
force terms in (15) can be defined as

f21 = sa1 + kplp1i +
(mtp

3
+ mL + mn

)
g

f22 = sa2 + kplp2i +
(mtp

3
+ mL + mn

)
g

f23 = sa3 + kplp3i +
(mtp

3
+ mL + mn

)
g

(16)

where mn is the node mass, kp is the spring constant of the passive wires, and lpn, n = 1, 2, 3,
are the lengths of each passive wire, defined as follows:

lp1 = |n22 − n1b|+ |n03 − n1b|
lp2 = |n21 − n1c|+ |n01 − n1c|
lp3 = |n23 − n1a|+ |n02 − n1a|

(17)

After Equation (17) we can calculate passive wire tension:

sp1 = (|n22 − n1b|+ |n03 − n1b| − lp1 + lp1i)kp

sp2 = (|n21 − n1c|+ |n01 − n1c| − lp2 + lp2i)kp

sp3 = (|n23 − n1a|+ |n02 − n1a| − lp3 + lp3i)kp

(18)

here, kp is the spring constant of the passive wire, lp1i, lp2i, and lp3i are an initial stretch of
the passive wire spring.

3.2.4. Formulation of CE4

The difference between the sum of the force vectors applied to nodes n1a, n1b, and n1c
and the gravity vector applied to the nodes due to the weight of the top plate and the bars
must be equal to zero:

(
c10 c11 c12

)T ≡ f22( ̂n1a − n22) + sp3(( ̂n23 − n1a) + ( ̂n02 − n1a))

+ ss(( ̂n11 − n1a) + ( ̂n12 − n1a))− (mn + mL)g = 03 (19)

(
c13 c14 c15

)T ≡ f21( ̂n1b − n21) + sp1(( ̂n22 − n1b) + ( ̂n03 − n1b))

+ ss(( ̂n13 − n1b) + ( ̂n12 − n1b))− (mn + mL)g = 03 (20)

(
c16 c17 c18

)T ≡ f23( ̂n1c − n23) + sp2(( ̂n21 − n1c) + ( ̂n01 − n1c))

+ ss(( ̂n11 − n1c) + ( ̂n13 − n1c))− (mn + mL)g = 03. (21)

3.2.5. Formulation of CE5

The moment vector applied to the center of the top plate must be equal to zero:

(
c19 c20 c21

)T

≡ (n21 − up)× ( f21( ̂n21 − n1b)− sa2( ̂n21 − n13)− sp2( ̂n21 − n1c))

+ (n22 − up)× ( f22(( ̂n22 − n1a)− sa1( ̂n22 − n12)− sp1( ̂n22 − n1b))

+ (n23 − up)× ( f23(( ̂n23 − n1c)− sa3( ̂n23 − n11)− sp3( ̂n23 − n1a)) = 03 (22)
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3.2.6. Formulation of CE6

The length of the saddle wire ls must be equal to the sum of all of its sub-parts, and
the related constraint can be written as follows:

c22 ≡ |n11 − n1c|+ |n1c − n13|+ |n13 − n1b|
+ |n1b − n12|+ |n12 − n1a|+ |n1a − n11| − ls = 0. (23)

3.3. Inverse Kinematics

The considered tensegrity robot can be described by 22 internal variables, namely θ01x,
θ01y, θ02x, θ02y, θ03x, θ03y, θ21x, θ21y, θ22x, θ22y, θ23x, θ23y, upx, upy, upz, φpx, φpy, φpz, f21, f22,
f23, and ss, which constitute, in the noted order, the components of the system configuration
vector q ∈ R22. On the other hand, Equations (7)–(23) form a vector of CEs

cv = (c1, c2, ..., c22)
T . (24)

Total differentiation of cv with respect to q and the active wire tension vector
sa =

(
sa1 sa2 sa3

)T gives us

∂cv

∂q
∆q +

∂cv

∂sa
∆sa = 022 (25)

Since ∂cv
∂q is a 22× 22 square matrix, an infinitesimal update of q yielded by a given vari-

ation of active wire tension δsa is calculated by, from (25), the variation of q corresponding
to a given variation of active wire tension ∆sa can be obtained as:

∆q = −( ∂c
∂q

)−1 ∂c
∂sa

∆sa (26)

Let us denote qnt ∈ R19 that excludes the position of the top-plate (up = upx upy upz)T

from q.
Total differentiation of cv with respect to qnt, up, and sa gives us

∂cv

∂qnt
∆qnt +

∂cv

∂up
∆up +

∂cv

∂sa
∆sa = 022 (27)

which can be reformed as

(
∂cv

∂qnt

∂cv

∂sa
)

(
∆qnt
∆sa

)
+

∂cv

∂up
∆up = 022. (28)

Since ( ∂cv
∂qnt

∂cv
∂sa

) is a 22× 22 square matrix, it can be solved as(
∆qnt
∆sa

)
= −( ∂cv

∂qnt

∂cv

∂sa
)−1 ∂c

∂up
∆up. (29)

Equation (27) gives us the tension of the active wires that provides a required infinites-
imal moving of the top plate. According to the formulation, the main driving variable is the
tension value of the active wire. The wire tension value in Equation (29) derives from sa.

4. Experimental Validation

This section describes the validation of the proposed kinematics and kinetics modeling
framework by comparing simulations based on the formulation in Section 3 with the results
of experiments. The parameters of our tensegrity robot are reported in Table 1.



Robotics 2023, 12, 56 12 of 19

Table 1. The initial parameters of the tensegrity robot in the experiments.

Parameters Symbol Value

l11 = l12 = l13
Bar length l21 = l22 = l23 1000 mm

Triangle length l01 = l02 = l03 450 mm

Spring constant kp 1800 N/m

Top plate mass mtp 0.86 kg

Bar mass mL 0.18 kg

Node mass mn 0.1 kg

Gravitation vector g
(
0 0 −9.80665

)T m/s2

Passive wire tension sp1 = sp2 = sp3 90 N

Active wire tension sa1 = sa2 = sa3 65 N

Saddle wire tension ss 120 N

4.1. Determination of the Initial Posture

First, the initial position of the tensegrity robot structure was replicated in our simula-
tion environment to check the validity of the proposed forward kinematic node positions.

Figure 6 shows the obtained initial posture of the tensegrity robot starting from the
values indicated in Table 1. The same values of sa and sp were also enforced in the actual
experimental setup, thus obtaining a corresponding robot posture. The two postures were
compared by reporting the node positions of the simulation and the node positions obtained
via motion capture in the experimental setup. The results can be seen in Table 2.

Figure 6. Initial posture of the tensegrity robot.
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Table 2. Initial node position for the simulation and experiment.

Nodes Simulation Experiment Difference

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

Base plate
n01 250 0 0 267 1 1.6 17 1 1.6
n02 −130 −225 0 −127 −232 1.6 3 7 1.6
n03 −130 225 0 −127 232 1.6 3 7 1.6

Mid nodes

n11 144 50 920 148 49 921 4 1 1
n12 −50 −150 920 −56 −148 872 6 2 48
n13 −130 110 910 −120 130 901 10 20 9
n1a 125 −70 673 112 −64 684 13 6 11
n1b 135 −70 662 122 −68 677 13 2 15
n1c −14 150 671 −12 142 651 2 15 2

Upper plate
n21 18 257 1590 17 218 1620 1 39 30
n22 −250 −104 1600 −260 −101 1614 10 3 14
n23 197 −156 1600 178 −160 1602 19 4 2

One can notice that the feasible initial configuration determined by forward kinematics
is relatively close to that observable in the experimental setup. A likely reason for these
discrepancies is the unavoidable presence of model uncertainties, which in this case are
likely represented by neglected friction terms (which are usually very difficult to model)
and by the assumption of constant passive wire tensions. The discrepancy between the
simulated and experimental node positions may also be due to the placement of Optitrack
markers on the nodes, which lack flat surfaces and are therefore positioned near the center
of the node.

4.2. Experiments and Control Strategy

The initial setup parameters for both systems—prototype and simulation—were iden-
tical, as indicated in Table 3. To verify kinematic formulation, we generated an end-effector
polynomial trajectory by running motors in a sinusoidal position. Furthermore, sinusoidal
position references are to the motors that actuate the three active wires, for a total time
of 35 s; the time evolution of sinusoidal position references and corresponding motor
positions, velocities, and torques are reported in Figure 7. Obtained trajectory data were
fed to both systems for the tensegrity prototype and the simulation. A sequence of values
of nup recorded from the experiment were provided to (24) in order to determine the whole
robot configuration given by q via Equation (27).
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Figure 7. Motor positions, velocities, and torques for the considered motion experiment.
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Table 3. Average node position error between the simulation and experiment.

Nodes Average Error (mm)

Base plate
n01 1.6
n02 1.6
n03 1.6

Mid nodes

n11 0.76
n12 0.89
n13 1.0
n1a 0.73
n1b 1.1
n1c 0.42

Upper plate
n21 0.156
n22 0.653
n23 0.327

The experiment environment structure is illustrated in Figure 8. The control environ-
ment consists of two independent structures. The robot control structure operates via the
Robot Operating System (ROS) Kinetic version, which runs on the Ubuntu OS. The ROS
environment integrates tension sensors, Dynamixel motors, and control code. Additionally,
we measured the robot trajectory using the Optitrack motion capture system in a Windows
OS environment. Reflective markers were embedded on the tensegrity robot nodes to
obtain the robot trajectory, as shown in Figure 4.

Figure 8. Tensegrity robot control environment.

Table 3 illustrates the average error between simulation and experiment. It can be
seen that the error of the base nodes is significantly higher than that of the middle and
upper plate nodes. This discrepancy is due to differences in the initial posture calibration
of the base nodes, as shown in Table 1. The base nodes remain stationary during motion,
resulting in no change in error rate. Conversely, the mid and upper nodes move along their
trajectory, leading to a lower error rate than the initial posture.

Figure 9 shows the corresponding configurations of the simulator and experimen-
tal setup for different time instants during the motion generated by the motor profiles
displayed in Figure 7; the full robot motion can be seen in the video provided as Supple-
mentary Materials. As demonstrated in Figure 10, circular motions of the nodes correspond
to the sinusoidal position profile of the motors; these circles have an increasing radius as
the distance with the robot base increases.
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Figure 9. Comparison between configurations at different time instants of the considered experiment
for simulator and actual tensegrity robot.

Figure 10. Tensegrity robot node trajectories provided from the Optitrack motion capture cameras.

To demonstrate the accuracy of our model, Figure 11 displays the overlay graph of the
simulated trajectories in the considered experiment for node n21. Based on the obtained
result, this figure shows the validity of the proposed kinematic/kinetic formulation.
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Figure 11. Comparison graph of experimental data (in blue) with simulation data (in green) for the
time evolution of the x and y coordinates of node n21.

5. Conclusions

The paper has presented a simplified combined formulation of kinematics and kinetics
for prismatic tensegrity robots using a minimal set of coordinates. The definition of
the proposed modeling framework is explained in detail for a laboratory prototype of a
tensegrity robot. The provided experimental results show that the proposed modeling
framework can provide an acceptable level of modeling accuracy, and thus be possibly
employed in different applications. In this research paper, we presented a new formulation
combined with kinematic and kinetic constraints and validated the proposed mathematical
formulation by the simulation results. Moreover, the nodes’ position obtained in the
simulation was compared with real tensegrity robot nodes’ position measured by MCS.
The obtained results were consistently close, which was demonstrated in Table 2.

Supplementary Materials: Supplementary video link here: https://youtu.be/yA5DsG2MuzE.
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Appendix A. Mathematical Notations List

Table A1. The initial parameters of the tensegrity robot in the experiments.

Symbol Description

l11, l12, l13
l21, l22, l23

Bar length

l01, l02, l03 Triangle length

kp Spring constant

mtp Top plate mass

mL Bar mass

https://youtu.be/yA5DsG2MuzE
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Table A1. Cont.

Symbol Description

mn Node mass

g Gravitation vector

sp1, sp2, sp3 Passive wire tension

sinit
p1 , sinit

p2 , sinit
p3 Initial passive wire tension

sa1, sa2, sa3 Active wire tension

sinit
a1 , sinit

a2 , sinit
a3 Initial active wire tension

ss Saddle wire tension

n01, n02, n03, Base nodes

n11, n12, n13, n1a, n1b, n1c Mid nodes

n21, n22, n23 Upper nodes

eîθ , e ĵθ , ek̂θ Rotational angles

θ01, θ02, θ03 Base universal joint angles

θ21, θ22, θ23 Top plate universal joint angles

φp Top plate rotation angle

f21, f22, f23 Axial forces applied from the top plate

up = (upxupyupz)T Top plate positioning of the center

op Upper plate origin

T01, T02, T03 Torque vector from the base

T21, T22, T23 Torque vector from top plate

lp1, lp2, lp3 Passive wire length

lp1i, lp2i, lp3i Passive wire initial stretch

q 22 internal variables

qnt 19 internal variables except nupx, nupy, nupz

cv = (c1c2 . . . c22) 22 constraints

∆sa Desired active wire tension

∆up Desired end-effector position

∆qnt
Desired variables to reach desired end-effector

position
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