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Abstract: A challenge for inspecting transmission power lines with Unmanned Aerial Vehicles (UAVs)
is to precisely determine their position and orientation, considering that the geo-location of these
elements via GPS often needs to be more consistent. Therefore, a viable alternative is to use visual
information from cameras attached to the central part of the UAV, enabling a control technique that
allows the lines to be positioned at the center of the image. Therefore, this work proposes a PID
(proportional–integral–derivative) controller tuned through interval type-2 fuzzy logic (IT2_PID)
for the transmission line follower problem. The PID gains are selected online as the position and
orientation errors and their respective derivatives change. The methodology was built in Python
with the Robot Operating System (ROS) interface. The key point of the proposed methodology is
its easy reproducibility, since the designed control loop does not require the mathematical model of
the UAV. The tests were performed using the Gazebo simulator. The outcomes demonstrated that
the proposed type-2 fuzzy variant displayed lower error values for both stabilization tests (keeping
the UAV centered and oriented with the lines) and the following step in which the trajectory is
time-variant, compared to the analogous T1_PID control and a classical PID controller tuned by the
Zigler–Nichols method.

Keywords: control scheme; fuzzy; UAV system; PID; power lines

1. Introduction

Currently, there is a growing demand for studies on the viability of using Unmanned
Aerial Vehicles (UAVs) in tasks that, until recently, were performed partially or exclusively
by human workers [1,2]. Characteristics such as the versatility of flight modes, reduced
dimensions, and the possibility of integration between sensors and actuators allow these
vehicles to help in several areas, such as agriculture [3,4], industry [5,6], military [7,8],
in the transportation of goods or people [9,10], in infrastructure inspection [11,12], forest
monitoring [13,14], and rescue missions [15,16].

Information gathered by the sensors attached to the UAVs can contribute to decision
making remotely, ensuring more secure operations [17]. The main reason for introducing
robotic systems in the mentioned tasks is to prevent operators from being exposed to
hazardous environments, such as reservoirs containing toxic materials or mines with a
potential risk of collapse. Another factor to consider is the repetitive and exhausting nature
of specific tasks. The capability of these drones to cover large areas in a relatively short
time allows them to help, for example, in the counting and monitoring of cattle [18,19].

Power line inspection is crucial for maintaining the quality of the power distribution.
Potential failures or incidents in transmission networks can result in financial losses due to
distribution interruption and accidents that can affect cities with the risk of environmental
damage. Conventional approaches require workers in helicopters or direct contact with
high-voltage components, are resource-demanding, often inefficient, and dangerous [20,21].
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In Brazil, accidents in the electrical industry are, on average, 4.8 times greater than other
sectors of the economy [22]. Therefore, there is a demand for robotic systems that can
support the identification of anomalies in distribution systems. UAVs are ideal for such
activity due to the ease of coupling cameras and other sensors in addition to the capability
of low-speed flights at a safe distance from the cables, allowing the acquisition of data and
images that are significant for the maintenance of the system.

In this field of research, [23] proposed a methodology for transmission line inspection
in which a UAV takes off and proceeds to the mission starting point, determined by
GPS readings. Then, the transmission cables are detected using a laser scanner, and the
inspection is complete. Other studies have focused on establishing local positional control
using image-based visual serving (IBVS) approaches. In these strategies, the features
extracted directly from the images determine the relative position of the drone, and then a
control technique is implemented. Therefore, Global Navigation Satellite System (GNSS)
data are one option for locating power lines, but are often inaccurate [24]. Ref. [25] proposed
a transmission line localization architecture that uses a histogram method of oriented
segments to determine the position of lines. Next, proportional control is applied to align
the drone with the lines. Ref. [26] proposed an output feedback control for line tracking
relative to a virtual image plane that compensates for the distortion created by the tilt of
the drone body frame.

The traditional PID controller is still employed in many applications due to its simplic-
ity of comprehension and ease of implementation, as it is not model-dependent. However,
its applicability is limited to controlling nonlinear systems subject to measurement un-
certainties, such as UAVs. Another problem faced by this approach is the necessity of
controller gain tuning. Some authors employ intelligent techniques for PID controller gain
tuning, such as Particle Swarm Optimization (PSO) [27,28] and Genetic Algorithm [29,30].
The sliding mode control is an adaptive tuning tool in [31,32].

The fuzzy logic theory has gained prominence in the controller tuning problem. Its
advantage over the abovementioned techniques is the dynamic tuning of gains through
fuzzy rules that are easy to interpret, to the detriment of complex equations that are usually
difficult to comprehend. Thus, the controller gains adapt according to the behavior of the
plant through the fuzzy membership functions. Hybrid approaches of type-1 fuzzy logic
PID controllers (T1_PID) were employed for UAV control in [33–36].

Type-1 fuzzy models have difficulty dealing with uncertainties since they work with
fixed membership functions. Therefore, the use of this technique in complex systems such
as UAVs, which are subject to inaccurate measurements inherent to IBVS control systems, is
worthy of attention. As a result, recent studies have introduced type-2 fuzzy systems, which
model the uncertainties on antecedents and consequents through type-2 fuzzy sets via a
Footprint of Uncertainty (FOU), the region enclosed by the union of all primary membership
functions. Type-2 fuzzy logic as a PID tuning method was explored in [37,38]. In [39],
a comparison of hybrid fuzzy-PID systems was conducted, demonstrating the superiority
of type-2 fuzzy in controlling UAVs in the presence of disturbances and uncertainties in
the model.

This paper presents an interval type-2 fuzzy-PID (IT2_PID) controller for the trans-
mission line follower problem through UAVs. The proposed methodology was compared
with a conventional PID controller and a type-1 fuzzy-PID (T1_PID) controller. The fuzzy
logic algorithm adaptively determines the proportional, derivative, and integrative gains
as the UAV performs tracking. The trajectory is determined through images from a camera
attached to the robot. For this purpose, the frame goes through a preprocessing step,
and the lines are detected through the Probabilistic Hough Transform [40]. The set of trans-
mission lines should serve as a parameter for defining the trajectory to be followed. Thus,
the strategy adopted is to compress all the pixels of the lines obtained into a single curve
that will guide the drone. The RANSAC technique performs this process; this is a robust
algorithm for curve parameter estimation from a subset of inliers from the complete data
set. The advantage of this technique is its robustness against outliers, which are common
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in geometric shape detection in images. Thus, based on the curve obtained by RANSAC,
the error variables are estimated and inserted into the control loop to keep the lines in
the center of the image. The entire proposed approach was implemented using the ROS
platform and validated through simulations performed by Gazebo. The main contributions
presented in this paper can be summarized as follows:

• The proposal of a power transmission line alignment and tracking methodology based
on visual information integrated with a hybrid type-2 fuzzy-PID approach suitable
for any multirotor vehicle.

• The adaptive ability of the technique is demonstrated by the comparisons performed
between a type-2 fuzzy-PID controller and its type-1 variant, a PID control tuned by
Ziggler–Nichols, and a PID control with the average gains of fuzzy approaches.

• The methodology is developed in Python with ROS integration making it easy to
reproduce in different scenarios.

• The proposed methodology is based on type-2 fuzzy logic, which has the advantage of
dealing well with uncertainty, which is inherent to controls based on visual information.

The rest of this paper is organized as follows: Section 2 describes the power lines
tracking problem performed by the aerial robot and its mathematical foundations. Section 3
presents the main outcomes and discusses the proposed methodology results. Finally,
Section 4 provides a brief conclusion and ideas for future work.

2. Problem Formulation

The methodology proposed in this paper is in the Image-Based Visual Servo (IBVS)
control category, which relies on visual information extracted in the image plane, providing
the control actions to be applied. In other words, the detected straight lines in a frame serve
as a parameter for the determination of the drone’s position in relation to the power lines
and, thus, the strategy adopted for trajectory tracking involves keeping the detected lines
in the center of the image with their orientation perpendicular to the lower portion of the
frame. Figures 1 and 2 display the lateral and superior views of the proposed problem,
respectively. Pf is the point of the path used to compute Z, h is the height of the UAV
relative to the power lines, θc is the tilt between the camera and the vertical axis of the UAV,
l and d are the distances between the projection of the UAV on the transmission lines plane
and the position of the camera to point Pf , respectively. The vectors

−→
Xw,
−→
Yw, and

−→
Zw are

related to the world frame W, while
−→
Xr,
−→
Yr , and

−→
Zr are related to the UAV frame R.

−→
T is

the vector parallel to the lines, while
−→
N is a vector perpendicular to

−→
N . ϕ is the UAV’s

orientation in relation to W. Table 1 presents the nomenclature used in this paper.

Figure 1. Lateral view of the line-following problem.
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Figure 2. Superior view of the line-following problem.

Table 1. Descriptions of variables used in the methodology.

Symbol Description

Z Lateral error
ϕr Angular error
Pf Point of the path used to compute Z
h Relative height of the UAV to the transmission lines
θc Camera tilting
l Distance between the projection of the UAV on the path plane and Pf
d Distance between the camera and Pf

W World frame
R UAV frame
dp Trajectory distance to the center of the frame
dy Latitudinal length for trajectory slope estimation
dx Longitudinal length for trajectory slope estimation
k Pixels to meters conversion factor
fL Focal length of the camera

FOVH Camera horizontal field of view
w Object width in the image

u, v, r, t Pitch, roll, yaw, and thrust velocities
KP, KD, Ki Proportional, derivative, and integrative gains

α Factor to compute Ki
Ku, Tu Ultimate gain and oscillation period

Based on this background, the proposed control methodology focuses on the mini-
mization of two inputs in an uncoupled approach, consisting of one controller for the lateral
error (Z) that indicates how far the UAV is away from the center of the frame, and the
second one for the angular error (ϕr) that represents the angular deviation between the
UAV and the power lines. Figure 3 illustrates how to calculate these errors through visual
information extracted from an image containing transmission power lines.
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Figure 3. Extraction of errors using visual information.

The position and orientation errors are estimated with Equations (1) and (2).

Z = dp · k (1)

ϕr = tan−1
(

dy
dx

)
(2)

where dy and dx are the latitudinal and longitudinal lengths for the trajectory slope estima-
tion, dp is the distance between the trajectory and the center of the frame in pixels, and k
is a conversion factor from pixels to meters (m/pixels). Equations (3) and (4) present the
relationships that compute k. An illustration is shown in Figure 4.

Figure 4. Visual information extracted from the image.

k =
FOVH

w
=

d
fL

(3)

d =
h

cos(θc)
(4)

where fL is the focal length of the camera, FOVH is the camera horizontal field of view, and
w is the object width in the image. It is assumed that the height h is known during the
tests and that all transmission lines are within the camera’s field of view, which must be
pointed downwards.

Note that controlling the x, y, and z inertial positions and ϕ orientation of a UAV is
achieved by adjusting its rotor speeds. In this manner, the dynamics of a quadcopter can
be interpreted with four velocities: pitch (u), roll (v), yaw (r), and thrust (t). The trajectory
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tracking problem introduced in this research work considers that the aircraft has a constant
pitching velocity u. v must be estimated to minimize Z, whereas r minimizes ϕr. Therefore,
an IT2_PID controller was developed for each velocity (IT2_PID_v and IT2_PID_r), with
each controller working independently, receiving the desired reference and the respective
error value and then generating roll and yaw velocities. A classic PID controller was also
employed to keep the UAV under a constant altitude relative to the lines. The rotors are
controlled by an internal control loop which is handled by the FCU (Flight Control Unit)
via a mixing algorithm that receives the four velocities (u, v, r, and t) and translates them
into commands for the actuators that control the rotors.

2.1. Image Processing

The parameters Z and ϕr must be defined accurately throughout the flight to prevent
the UAV from unwanted oscillations or undesirable routes. A difficulty in computing these
variables is caused by the presence of noise in the images, which may induce the rectilinear
segment detection techniques to assume spurious features as straight lines or not detect
them. To mitigate the effect of noise and increase the detectability of the lines, the obtained
frame at a given time t passes through an image preprocessing step.

First, the frame passes through a color space conversion from RGB to grayscale. Next,
a Gaussian blur is used to smooth the color transitions in the image frame, reducing the
noise interpreted as straight lines. Finally, the image undergoes a contour detection step
through the Canny edge detector. This process reduces the quantity of information in the
image and, consequently, the computational effort.

2.2. Line Detection and Trajectory Parameter Estimation

Following image processing, the next step is power line detection. The lines are
detected through the Probabilistic Hough Transform, a low-computational-cost technique
for determining geometric patterns in images based on a scheme of voting accumulators
containing candidate regions for the object to be detected. The difference between this
approach and the classical Hough Transform is the selection of a random subset of edge
points, which ensures less computational effort [40]. In images of environments containing
transmission lines, these features are expected to be highlighted against the other elements.
However, asphalt markings or concrete structures can also be treated as straight elements
and must be addressed as outliers to determine the path.

Following the transmission line detection, a binary image is created in which white
pixels correspond to the detected lines. In aerial transmission line imaging scenarios cap-
tured by UAVs, the resulting binary mask is generally represented by three or more aligned
straight lines corresponding to the transmission cables and other scattered rectilinear el-
ements in the image. Considering these characteristics, the path to be followed by the
UAV can be computed through a model-fitting technique. The method employed in this
work was the RANSAC (Random Sample Consensus) algorithm. One characteristic that
underlies such an approach is its robustness in the presence of outliers, since the model
parameters can be estimated using a minimum sample of data.

Although the path is often rectilinear, a second-order curve was used to model the
trajectory. The reason for this approach is that regions between two transmission poles can
result in an abrupt change in the path orientation. Considering the path as a curve smooths
these transitions, allowing navigation without significant oscillations. Figure 5 exemplifies
the trajectory estimation processes in two scenarios simulated with the Gazebo simulator.
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Figure 5. Trajectory estimation based on the RANSAC algorithm.

2.3. Fuzzy Logic—PID Controllers

The hybrid approach of PID with fuzzy logic controllers combines the simplicity
and robustness of traditional PID controllers with the capability of the fuzzy systems to
introduce linguistic rules to the model, enabling it to behave in distinct ways based on the
different input signals fed to the system. Therefore, the role of the fuzzy algorithm is to
operate as an adaptive mechanism, adjusting the PID gains according to the current state
of the plant.

In [34], a type-1 fuzzy PID controller (T1_PID) was proposed for the positional control
of a UAV as a starting point for the proposed methodology. The main difference is the re-
placement of the type-1 with a type-2 fuzzy logic block (IT2_PID). The internal architecture
of this approach is similar to the T1_PID controller, except for replacing type-1 fuzzy sets
(T1_FS) with type-2 fuzzy sets (T2_FS) and adding a type-reduction stage. A type-2 fuzzy
set (Ã) can be characterized by its type-2 membership function as follows:

Ã =
{(

(x, u), µÃ(x, u)
)
| ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
(5)

0 ≤ µÃ(x, u) ≤ 1 (6)

Ã can also be written as

Ã =
∫

x∈X

∫
u∈Jx

µÃ(x, u)
(x, u)

, Jx ⊆ [0, 1] (7)

where
∫ ∫

denotes the union of all admissible values for x and u. Jx is known as the
primary membership of x, while µÃ is a type-1 fuzzy set referred to as the secondary set
i.e.: µÃ = 1. Equation (8) defines the Footprint of Uncertainty (FOU), which, as the name
suggests, is the region that encloses the system input and output uncertainties.

FOU(Ã) =
⋃
∀x∈X

Jx = (x, u) : u ∈ Jx ⊆ [0, 1] (8)
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The FOU of a type-2 fuzzy set is enclosed by the lower membership function (LMF)
and the upper membership function (UMF) denoted by µÃ(x) and µÃ(x), which are defined
as follows:

µÃ(x) = FOU(Ã), ∀x ∈ X (9)

µÃ(x) = FOU(Ã), ∀x ∈ X (10)

The following steps organize the type-2 fuzzy logic block:

1. Fuzzifier: In this step, each crisp input is converted into a fuzzy input comprising the
UMF and LMF. The MFs used in this paper are trapezoidal and triangular, a particular
type of the first one.

2. Fuzzy Rule Base: The rule set of an IT2_FLS which is similar to a T1_FLS can be
expressed by Equation (11)

IF e1 is F̃i
1 and . . . and ep is F̃i

p , THEN y is Gl , l = 1, . . . , n (11)

where en are the input variables, F̃pi are the antecedents, and y is the output of the
ith rule.

3. Inference: Since the fuzzy sets of an IT2_FLS comprise the MFs (µÃ) and (µÃ), the fir-

ing strengh for the ith rule is given by

F̃i = [ f i, f i] (12)

f i and f i are given by

f i =
n

∏
i=1

µF̃i
n

(13)

f i =
n

∏
i=1

µF̃i
n

(14)

4. Type Reduction: The type-reduction stage converts T2_FS into T1_FS, so that crisp
outputs can be obtained. In this paper, the centroid type-reduction method was
employed as follows:

CÃ =
1

[yl , yr]
(15)

yl and yr are computed as follows:

yl =
∑L

i=1 yiµÃ(yi | x
′
) + ∑N

i=L+1 yiµÃ(yi | x
′
)

∑L
i=1 µÃ(yi | x′) + ∑N

i=L+1 µÃ(yi | x′)
(16)

yr =
∑R

i=1 yiµÃ(yi | x
′
) + ∑N

i=R+1 yiµÃ(yi | x
′
)

∑R
i=1 µÃ(yi | x′) + ∑N

i=R+1 µÃ(yi | x′)
(17)

The type-reduced set that is represented by the left (yl) and right (yr) end points can
be determined by the Karnik and Mendel method (KM) [41].

5. Defuzzifier: Finally, the outputs undergo a defuzzification process, depicted by
Equation (18).

y =
yl + yr

2
(18)

Figure 6 provides a type-2 fuzzy inference system diagram.
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Figure 6. IT2_FLS block diagram.

In this work, two type-2 fuzzy-PID controllers, IT2_PID_v and IT2_PID_r, were
adopted. The first is related to the lateral error Z, which also considers its time derivative,
and the second is related to the angular error ϕr and its derivative. Both operate inde-
pendently to minimize errors simultaneously as the UAV follows the trajectory. Figure 7
displays the schematic of the IT2_PID control used to control the input variable Z. KP,
KI and KD are the proportional, integrative and derivative gains. v is the roll velocity.
The controller for the ϕr error is similarly built.

Figure 7. Schematic of the IT2_PID controller.

Table 2 presents the fuzzy rules used in this paper, based on the rules presented by [34].
The errors are addressed as small, medium, and large, while the derivative of the error can
be either positive, negative, or zero. The consequents shown in the table refer to the set
(KP, KD, and α), which can assume small (L), medium (M), and large (B) values, indicating
the gains of the PID controller. The integrative gain Ki is obtained from the formula given
by Equation (19) in which α is a weighting factor.

KI =
Kp2

αKd
(19)
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Table 2. Fuzzy rule set.

Z

dZ/dt Small Medium Big

Negative L/B/B M/M/M B/L/L
Zero B/B/M B/M/L B/L/L

Positive L/B/B M/M/M B/L/L

The upper and lower bounds of the controller gains were established according
to [34,42]. The derivative and integrative gains are discarded, and the proportional gain
is increased to the point that the plant produces consistent oscillations. Thus, the values
of the ultimate gain Ku and oscillation period Tu can be calculated. For the IT2−FPIDv
controller, the values obtained were Ku = 2.3 and Tu = 1.8 s, whereas for IT2−FPIDr,
Ku = 6.4 and Tu = 1.2 s.

The upper (KP′ ,max,KD′ ,max) and lower (KP′ ,min,KD′ ,min) limits of the gains are then
calculated using Equations (20)–(23).

KP′ ,min = 0.32Ku (20)

KD′ ,min = 0.08KuPu (21)

KP′ ,max = 0.6Ku (22)

KD′ ,max = 0.15KuPu (23)

Finally, compression of the PID controller gain range is performed for a greater smooth-
ing of the UAV’s movements. Thus, the bounds KP,min, KD,min, KP,max, and KD,max are
obtained with Equations (24)–(27).

KP,min = KP′ ,min −
KP′ ,min

5
(24)

KD,min = KD′ ,min −
KD′ ,min

5
(25)

KP,max = KP′ ,min +
KP′ ,max

5
(26)

KD,max = KD′ ,min +
KD′ ,max

5
(27)

The input variables (i.e., errors and time derivatives) are transformed into fuzzy sets
through the fuzzification process represented by the membership functions shown in
Figures 8 and 9. Finally, the outputs are subjected to a defuzzification stage to establish
precise gain values.
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Figure 8. IT2_PID_v membership functions.
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Figure 9. IT2_PID_r membership functions.

3. Results and Discussion

The results presented in this section were obtained through Gazebo. This open-source
robotic simulator enables the interaction between simulated sensors and robot actuators
and integrates these robots with three-dimensional models. The communication between
the sensors and actuators with the simulator is accomplished through the framework ROS.

For this purpose, a scenario was developed consisting of transmission towers con-
nected by power cables, as seen in Figure 10. The UAV was simulated via a PX4 flight
controller through Software-in-the-Loop (SITL) simulation. The control node proposed
in this paper receives visual information from the frontal camera attached to the UAV,
estimates the relative position to the lines, and calculates the PID gains that are converted
into a velocity command, which is sent to the light management unit (FMU) through an
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ROS driver, the MAVROS. It is worth noting that the fuzzy controllers were developed
using the Python library PyIT2FLS [43].

Figure 10. Simulated scenario in Gazebo.

The tests were performed on a computer with an Intel Core i5-10400F processor,
an AMD Radeon RX 5600XT graphics card, and 16 GB of RAM. The operating system is
Ubuntu 20.04.5 LTS 64-bit with ROS Noetic.

3.1. Horizontal Controller

Initially, the experiments were conducted involving the lateral control of the drone.
For this purpose, the drone was positioned four meters above the lines, with a one-meter
offset from the middle cable. The proposed controller, IT2_PID, was compared with a
similar type-1 controller (T1_PID), the classic Ziegler–Nichols PID controller, and a PID
controller using the mean gains assumed for the fuzzy approaches. The reason for this
analysis is to investigate the capability of the proposed controller to adapt to different input
scenarios compared with fixed-gain approaches.

Table 2 shows the rule sets for both fuzzy approaches. Each controller was tested
50 times. The profile of the mean error over time is provided in Figure 11. The solid line
indicates the setpoint, while the dotted lines indicate the thresholds of the steady-state
region. Table 3 presents the quantitative results of the tests. IAE is the integral absolute
error, Mp is the maximum peak, Tp is the peak time,Ts is the settling time, and Ess is the
steady-state error. Additionally, the runtime for each controller was computed.

0 5 10 15 20 25 30

Time (s)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

L
a
te

ra
l 
E

rr
o
r 

(m
)

IT2_PID

T1_PID

PID_Mean

PID_ZN

Figure 11. Comparison of the presented approaches-lateral error.
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Table 3. Quantitative results—horizontal controller.

Controller IAE Mp(m) Tp(s) Ts(s) Ess(m) Proc. Time (s)

IT2_PID 2.3392± 0.1869 0.2005± 0.0572 3.72± 0.3423 9.21± 0.48 0.0164± 0.0078 0.0103± 2.57× 10−4

T1_PID 2.4742± 0.1896 0.2111± 0.0545 3.75± 0.3823 9.45± 0.54 0.0209± 0.0090 0.0077± 1.7267× 10−4

PID_Mean 2.5490± 0.1746 0.1563± 0.0292 4.85± 0.3823 10.32± 0.61 0.0184± 0.0075 1.0873× 10−4 ± 1.9944× 10−5

PID_ZN 3.3122± 0.1634 0.3437± 0.0252 3.05± 0.1526 18.91± 0.46 0.0219± 0.0057 1.0310× 10−4 ± 1.3417× 10−5

From the graphical analysis, it is seen that the four controllers could keep the UAV
close to the established setpoint. However, the PID_ZN control displayed a high overshoot
with higher oscillations, which is undesirable in UAV applications. The controllers IT2_PID
and T1_PID presented lower values of IAE, which evaluates the absolute error throughout
the test, with a slight advantage for the type-2 fuzzy version. The smallest value for the
maximum peak was achieved by the PID_Mean control, despite higher values for the peak
and accommodation times compared to the adaptive approaches. These findings justify the
employment of fuzzy models to adjust the parameters compared to fixed-gain approaches.
It is important to note that there are minor inconsistencies in the estimation of the lateral
error in scenarios where the UAV has a certain degree of tilt, especially when the lines are
near the end of the camera’s field of view. This effect was mitigated through an image
rectification process, which employs a rotation matrix to correct the image perspective.
Despite this behavior, the proposed controller kept the UAV close to the desired setpoint.

When comparing the two fuzzy approaches, the IT2_PID has superior results in all
observed metrics based on mean values despite, as expected, having a longer processing
time. However, it did not impact the overall system, which processes the information and
sends velocity commands with a frequency of 10 Hz.

Finally, the accumulated error, which shows how far the UAV is from the desired
position over the test period, is given in Figure 12. All controllers display a similar behav-
ior until approximately 1.4 s, when fixed-gain controllers exhibit more significant error
variations. At 2.0 s, the distinction between the fuzzy approaches can be noticed, with the
difference increasing throughout the steady state.
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Figure 12. Comparison of the accumulated lateral error.

3.2. Modifications on Fuzzy Rules

By examining the set of rules expressed in Table 2, proposed by [35], it is possible to
imply that the controller behaves uniformly in instances where the derivative of the error
is either negative or positive, that is, whenever the absolute error decreases or increases,
respectively. With this background information, some changes to the rule set were proposed
to make the controller more aggressive as the UAV moves away from the setpoint and
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moves more smoothly as it heads toward it. Additionally, the derived gain was reduced for
minor errors. Therefore, Table 4 presents the new proposed rule set.

Table 4. Modified fuzzy rule set.

Z

dZ/dt Small Medium Big

Negative L/M/B M/M/M B/L/L
Zero B/B/M B/M/L B/L/L

Positive M/M/B B/M/M B/L/L

The graphical results of this modification are presented in Figure 13, and the quantita-
tive data can be seen in Table 5.
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Figure 13. Comparison of the lateral error for different fuzzy rule sets.

Table 5. Comparison between original and modified fuzzy rule sets -quantitative results.

Controller IAE Mp(m) Tp(s) Ts(s) Ess(m) Proc. Time (s)

Original 2.3392± 0.1869 0.2005± 0.0572 3.72± 0.3423 9.21± 0.48 0.0164± 0.0078 0.0103± 2.5738× 10−4

Proposed 2.2936± 0.1692 0.1887± 0.0407 3.99± 0.3821 9.11± 0.43 0.0170± 0.0070 0.0098± 3.4819× 10−4

From the graphical analysis, the rule set modifications could induce a slight reduction
in the UAV oscillation in the transient regime. Such reduction can also be noticed in the
quantitative results, with the reduction in the IAE and Mp for the mean values. Ess and
processing time remain substantially unaffected.

3.3. Angular Controller

Subsequently, an angular controller was introduced to maintain the UAV in parallel
alignment with the power transmission lines. For the tests, the UAV was positioned at a
height of 4 m from the lines with an angular deviation of 1rad relative to the power lines.
The membership functions for the fuzzy approaches are shown in Figure 9, while the used
rule set is presented in Table 4.

Figure 14 shows the evolution of the error over time, while Table 6 presents the
quantitative measurements. As observed for the lateral error, the PID_ZN controller
exhibited a significant main peak value, an expected behavior due to the aggressive nature
of this type of controller. In comparison to the other approaches, it can be observed that the



Robotics 2023, 12, 60 16 of 22

fixed-gain PID has the lowest peak maximum value; however, the integral of the absolute
error is considerably higher than the adaptive gain controllers.

As observed for the lateral controller, the IT2_PID controller has outperformed the
T1_PID over both the IAE and the Mp considering the mean values. This can also be
noted by a slight reduction in the error deviation. From Figure 15, it can be noticed
that the difference in the cumulative error between the two methods was again in the
transient state of the system, remaining relatively unchanged throughout the steady state.
At approximately 1.5 s, the cumulative error of the PID_Mean increases, which emphasizes
the capability of adaptive models to deal with several different settings.
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Figure 14. Comparison of the presented approaches—angular error.

Table 6. Quantitative results—angular controller.

Controller IAE Mp(m) Tp(s) Ts(s) Ess(m) Proc. Time (s)

IT2_PID 0.7514± 0.0147 0.2012± 0.0238 1.23± 0.377 3.32± 0.49 1.12× 10−3 ± 1.91× 10−4 0.0150± 6.1912× 10−4

T1_PID 0.7647± 0.0179 0.2194± 0.0555 1.22± 0.366 3.28± 0.54 1.13× 10−3 ± 1.77× 10−4 0.0099± 6.7115× 10−4

PID_Mean 0.8608± 0.0192 0.1825± 0.0059 2.05± 0.140 3.35± 0.71 1.06× 10−3 ± 1.63× 10−4 1.0489× 10−4± 1.5211× 10−5

PID_ZN 0.7704± 0.0262 0.4863± 0.0667 0.92± 0.043 2.34± 0.349 1.18× 10−3 ± 2.13× 10−4 1.0811× 10−4± 1.5917× 10−5
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Figure 15. Comparison of the accumulated angular error.
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3.4. Simulation of an Inspection Mission

Finally, a simulation of a transmission line inspection mission was carried out. For this
purpose, the UAV starts the tracking at a lateral offset of 1 m with an angular error of
0.75 rad. The drone follows the trajectory of three transmission towers connected by three
cables, as shown in Figure 10, with a forward speed of 0.4 m/s. The mission has a duration
of 160 s. At approximately 90 s, the trajectory exhibits an inflection point, at which the
line detection and path estimation algorithms display a degree of inaccuracy due to the
addition of spurious rectilinear elements. For this experiment, the two fuzzy approaches,
IT2_PID and T1_PID, were tested with 50 executions of each controller.

Figures 16 and 17 display the evolution of the horizontal and angular errors during
the mission. It is possible to notice that both controls successfully kept the UAV in the
equilibrium condition. At 90 s, the UAV has crossed the point where the trajectory changes
direction, which leads to oscillatory behavior in the inferred measurements. Despite this,
the UAV remained on the established path throughout the mission.
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Figure 16. Comparison of the error for a transmission line inspection mission with fuzzy-PID—
lateral control.
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The numerical results for the IAE are presented in Table 7. The IT2_PID controller
achieved better performance for both the lateral and angular errors. This behavior can be
explained by the capability of type-2 fuzzy systems to better cope with uncertainties in the
input and output variables of the model [44]. Figures 18 and 19 present the accumulated
errors during the mission. It is possible to notice that the two controllers behave similarly
for both variables, with a slight advantage of the IT2_PID controller. When uncertainty is
inserted into the model, the difference between the curves becomes more significant for both
variables, highlighting the better performance of type-2 fuzzy systems in such scenarios.

Table 7. Inspection mission—IAE comparison.

Controller IAE_Z IAE_ϕr

IT2_PID 5.6645± 0.3721 1.5028± 0.1112
T1_PID 5.8454± 0.4960 1.5221± 0.1557
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Figure 18. Accumulated error evolution for the transmission line inspection mission simulation—
lateral control.
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3.5. Result Discussions

In the literature, most works involving the use of fuzzy logic as a tuning tool for PID
controllers use type-1 fuzzy systems. In this work, however, the use of a type-2 interval
fuzzy system was proposed. This modification included an FOU in the membership
functions of the model, making it more robust to the effect of noisy data, which is common
in robotic systems. The IT2_PID approach showed superior quantitative performance
results for the proposed transmission line tracking application over the T1_PID and the
classical Ziegler–Nichols tuning method. When comparing the proposed approach with
the Ziegler–Nichols method, it was possible to observe reductions in the average values of
29.4% for the IAE, 41.7% in the Mp for the horizontal controller, and 2.47% in the IAE and
58.6% in the Mp for the angular controller. In addition, the settling time was reduced by
51.3% for the horizontal controller and increased by 29.5% for the angle controller.

In the original approach that supported this work, the fuzzy rule set was not modi-
fied based on whether the derivative of the error was positive or negative. The authors
emphasized this, and thereby a new rule set was introduced in this research to allow the
controller to behave more aggressively in situations where the error increases and smooths
out otherwise. The results indicated a reduction of 1.9% in the integral of the absolute
error and 5.8% for the Mp. It is worth mentioning that further rule combinations can be
tested, and this is a topic for future works. Additionally, the rule sets should be evaluated
according to the proposed application. Moreover, in order to mitigate the discontinuity
behavior brought by fuzzy logic in the control system, the membership functions and rule
bases were appropriately designed to ensure smooth transitions between fuzzy sets.

It is also important to highlight that all sensor and actuator integration, image process-
ing, fuzzy logic algorithms, PID controllers, and commands sent to the UAV are handled
through the ROS framework in Python scripts, making it possible to test the methodology
on several UAV models without the need for significant modifications.

4. Conclusions and Future Work

UAVs have been the focal point of many types of research, expanding the range of
possible applications that increasingly support human workers in various tasks. In the
scope of power grid maintenance, UAVs can be helpful in the inspection of transmission
lines; therefore, algorithms must perform this task as safely and efficiently as possible.
With that in mind, the presented work proposed an interval type-2 fuzzy-logic-based PID
controller to allow the alignment and tracking of transmission power lines using a UAV.

The algorithm receives the positional and angular errors of the UAV relative to the
lines by processed images taken by a camera attached to the aircraft’s base. Next, an in-
terval type-2 fuzzy logic block provides the controller gains based on the errors and their
respective derivatives. This approach allows the controller to perform differently based
on the magnitude of the input variables. The type-2 fuzzy system introduces a region of
uncertainty in these variables, which helps the model deal with noisy data.

The proposed methodology was tested through flights conducted by the Gazebo
simulator. For the UAV alignment tests, it can be noticed that the IT2_PID controller
achieved superior metrics compared to its T1_PID variant and the traditional Zigler–
Nichols tuning technique for both lateral and angular errors, exhibiting lower cumulative
error values with lower Mp values. The comparison of the proposed technique with a
fixed-gain PID controller based on the average of the fuzzy gain range demonstrated the
ability of these models to adapt according to the stage the system is inserted. Experiments
involving the following of the UAV through the power lines have shown the capability of
the type-2 fuzzy system to better handle the presence of uncertainties in the measurements.

Note that this simulation experiment serves as a prior estimate for the proposed
application viability, indicating that the proposed methodology would be feasible to be
applied in the proposed scenario. It is also important to highlight that the implemented
methodology is thoroughly ready to be tested on a physical PixHawk PX4 FCU due to its
robust simulation results and the implemented MavROS ready-to-use offboard controller
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package. Therefore, testing the developed methodology in a real vehicle is an important
next step. However, potential challenges, such as lighting conditions and winds, could harm
the process in real applications. In this sense, this work opens several future possibilities.
The main point to be addressed is the implementation of the proposed methodology in an
embedded system in a real scenario. This task requires robust transmission line detection
techniques with a computational effort suitable to the controller requirements in order to
mitigate the mentioned issues in a real scenario.

One possible option to be explored for this issue is merging the information acquired
by the cameras with laser sensors, allowing for the identification and determination of
the distance of the UAV in terms of the power lines to be followed. Another aspect to
investigate is the modification of the shape of the membership functions and the effect of
the variation in the number of these functions on the controller behavior.
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