
Citation: Pappalettera, A.;

Bottiglione, F.; Mantriota, G.; Reina,

G. Watch the Next Step: A

Comprehensive Survey of Stair-

Climbing Vehicles. Robotics 2023, 12,

74. https://doi.org/10.3390/

robotics12030074

Academic Editor: Dan Zhang

Received: 31 March 2023

Revised: 9 May 2023

Accepted: 13 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Review

Watch the Next Step: A Comprehensive Survey of
Stair-Climbing Vehicles
Antonio Pappalettera †, Francesco Bottiglione †, Giacomo Mantriota † and Giulio Reina *,†

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70126 Bari, Italy;
antonio.pappalettera@poliba.it (A.P.); giacomo.mantriota@poliba.it (G.M.)
* Correspondence: giulio.reina@poliba.it
† These authors contributed equally to this work.

Abstract: Stair climbing is one of the most challenging tasks for vehicles, especially when transporting
people and heavy loads. Although many solutions have been proposed and demonstrated in practice,
it is necessary to further improve their climbing ability and safety. This paper presents a systematic
review of the scientific and engineering stair climbing literature, providing brief descriptions of the
mechanism and method of operation and highlighting the advantages and disadvantages of different
types of climbing platform. To quantitatively evaluate the system performance, various metrics are
presented that consider allowable payload, maximum climbing speed, maximum crossable slope,
transport ability and their combinations. Using these metrics, it is possible to compare vehicles with
different locomotion modes and properties, allowing researchers and practitioners to gain in-depth
knowledge of stair-climbing vehicles and choose the best category for transporting people and heavy
loads up a flight of stairs.

Keywords: stair-climbing vehicles; mobile robotics; obstacle negotiation; assistive technology; mobility
impairment; architectural barriers

1. Introduction

The number of people affected by any form of physical disability represents a sig-
nificant part of the world population, from children to adults alike. It is estimated that
approximately 131 million or 1.85% of people require wheelchairs in the world [1]. Almost
1% of United States population currently uses a wheelchair. Half of them must overcome
steps to enter and exit their homes. A similar fraction report having difficulty entering or
leaving the home [2]. In any case, there are also people without disabilities to consider.
According to the National Center for Health Statistics (Hyattsville, MD, USA), only in the
USA, the percent of adults aged 18 and over with any difficulty walking or climbing steps
in 2020 is 18.0%, almost 60 million of people [3].

Despite that, the worldwide number of people who find it difficult to overcome
architectural barriers daily has not yet been estimated. Because the world population is
aging, the people mobility problems are of increasing importance. In Italy, many multi-story
residential buildings are not accessible by people with disabilities or walking problems
because in them there is no elevator (or similar) for connection to the upper floors. The
situation in schools is no better. The ISTAT (The Italian National Institute of Statistics)
sources reveal that only 32% of them are barrier-free. In 63% of cases, the reason for the
lack of accessibility is the lack of an elevator or the presence of a lift that is not suitable for
the transport of people with motor disabilities [4].

Ground vehicles can help to solve these problems [5,6]. They face many challenges, in-
cluding the negotiation of obstacles [7,8], stairs [9,10] and uneven terrain [11–14]. Recently,
much attention has been attracted by solutions that allow to overcome a series of steps
towards stair-climbing platforms [15]. In order to design a ground vehicle that can success-
fully transport people and heavy loads up a flight of stairs, we started to look at existing
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solutions to obtain useful information for design purposes. However, the stair-climbing
literature is very sparse and poorly organized. In this paper, an attempt to survey the
state-of-the-art in this field is pursued. Since all the solutions proposed entail a rather high
level of automation, we will refer throughout the paper interchangeably to stair-climbing
robots or vehicles. However, some of the prototypes included in the survey are human
operated and not fully autonomous. One common aspect is that all the proposed solutions
use a fully electric propulsion system.

Stair climbing is a very challenging task for a mobile robot. It is now necessary to define
what is meant by robots that climb stairs. The idea is to look at those vehicles that have the
ability to overcome, without the human muscular help, an architectural barrier such as the
one shown in Figure 1, adapting itself effectively to different lengths of rise, run, tread and
respecting the presence of nosing. During the whole obstacle negotiation stage, safety and
tip over stability need to be guaranteed while avoiding immobilization conditions.
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Many climbing systems configurations, which include legged-type, crawler-type,
wheeled-type, or combination of the previous, have been proposed in the literature as
effective solutions to climb a flight of stairs in addition to driving on regular flat surfaces.
These mobile robots can be manually controlled, semi-automated or fully automated using
software algorithm combined with embedded CPUs, sensors and cameras [16].

This paper surveys the current state of the art of stair-climbing robots to provide
an at-a-glance view of the vast literature, including both commercial and research exam-
ples. Another important contribution refers to the introduction of metrics to quantitatively
evaluate the climbing performance and allow vehicles with heterogenous properties and
locomotion types to be fairly compared. While the previous literature reviews have focused
on specific aspects, including step-climbing ability of power wheelchairs [17], traction
characteristics of explosive ordnance disposal (EOD) robots [18], tracked locomotion sys-
tems [19] and load carriage assistive devices [20], here a comprehensive overview covering
a wide range of stair-climbing vehicles is presented.

This work is intended to be prescriptive for the readers. The proposed methodology of
analysis, based on quantitative measurable metrics such as allowable payload, maximum
climbing speed, maximum crossable slope and transport ability, can be used as an effective
criterion to obtain important robot features that cannot be deduced a priori through a
single qualitative analysis of the stair-climbing systems. Researchers and engineers can
choose exactly the most suitable stair climbing solution to meet the project requirements
based on and learning from the results presented in the following when designing new
stair-climbing vehicles.
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The article is organized as follows. Section 2 proposes a general categorization of
climbing vehicles considering payload capacity and locomotion mode. Next, a detailed
description of the different families of robots is provided in Section 3. Section 4 presents
performance measures and a side-by-side comparison among the various vehicle type,
along with a discussion of cost and complexity. Finally, Section 5 concludes this survey
providing relevant conclusions as to which category of robot is best able to transport people
and heavy loads up a flight of stairs.

2. Categorization of Stair-Climbing Vehicles

Many examples of stair-climbing vehicles have been proposed and demonstrated.
They can be divided into broad categories according to the scheme shown in Figure 2.
One of the main aspects to consider is whether the robot is designed to carry a payload.
Therefore, the first main classification can be made by differentiating “payload robots” from
“no payload robots”. In this classification, we consider payload may be people, animals or
goods that should be carried safely by the robot through a desired path. On the contrary,
equipment attached to the robot and not directly involved in the motion ability, such as
additional sensors and cameras, robotic arms and tools, are not considered as payload but
rather part of the robots itself.
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Payload robots can be further divided into wheelchair and carrier type. Wheelchair
types are systems in which a wheelchair for the transport of a person is used. In carrier
types, a container is used instead to allocate goods.

Finally, wheelchair type, carrier type and no payload robots can be divided according
to the stair-climbing mechanism used. These mechanisms belong to five main categories:
track-based, wheel cluster-based, articulated mechanism-based, hybrid and leg-based and
wheel-based systems.

(1) Track-based mechanisms have the largest ground contact surface and are very stable
due to a lower center of gravity. To facilitate the stair-climbing process, tracks can be
equipped with teeth. Track-based mechanisms enable robots to climb up or down the
stairs at a constant speed in a stable manner due to the interlocking effect between the
track’s outer teeth and the steps’ sharp corner. There are no problems regarding the
different length of rise, run, tread and noising of the stair steps’ shape. The track-based
mechanisms are widely adopted.

(2) Wheel cluster-based mechanisms: A wheel cluster is a component with multiple wheels
uniformly distributed in the same plane around a common center. While using a stair-
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climbing mechanism, the wheels rotate around the central axis of the wheel cluster
and propel the robot up or down the stairs. Often, wheel cluster-based mechanism
robots are not able to overcome all type of stair, so a range of available step lengths
are given. Wheel cluster-based robots are characterized by speed fluctuation during
the ascending and descending motion.

(3) Articulated mechanism-based systems: This type of stair-climbing robots uses an articu-
lated mechanism in combination with wheels to accomplish the stair-climbing task.

(4) Hybrid and leg-based mechanisms: This type of stair-climbing mechanism originates
from the imitation of humans’ and animals’ stair-climbing techniques, using legs
and feet to walk on various steps. Theoretically they can adapt to all type of stairs
provided that the control system is sufficiently developed.

(5) Wheel-based mechanisms: Two or more wheels are used to perform the stair-climbing
task. They can be suspended respect to the robot’s frame, using mechanical suspen-
sion, or not. Wheeled robots can reach high speeds with low power consumption.

3. Payload Robots

These types of vehicles are designed to carry a load during staircase negotiation.
They can be divided into wheelchair type (please refer to Figure 3a), where the person
transported is seen as a payload, or carrier type (see Figure 3b). Both families are described
in detail in the remainder of this section.
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3.1. Wheelchair Type Robots

Since the 1990s, many research results on wheelchair-type stair climbing robots have
been achieved and a variety of commercial wheelchairs and prototypes have been de-
veloped [23]. Many examples of wheelchair-type stairs have been demonstrated at Cy-
bathlon [24]. Cybathlon is a non-profit project of ETH Zurich (Zurich, Germany) who acts
as a platform that challenges teams from all over the world to develop assistive technolo-
gies suitable for everyday use with and for people with disabilities. Different disciplines
comprise the competitions. They apply the most modern powered devices such as pros-
theses, wearable exoskeletons, wheelchairs and functional electrical stimulation, as well
as novel brain–computer interfaces to remove barriers between the public, people with
disabilities and science. In the Powered wheelchair race competition, the most modern
solutions compete with each other. Among the different tasks there is precisely that of
overcoming a small series of steps.
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Some examples of wheelchair type robots are now presented using classification
shown in Figure 2. Track-based robots are reported in Table 1.

Table 1. Track-based wheelchair type robots list.

Name Solution Features

Scewo Bro [25]
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Table 1. Cont.

Name Solution Features

Fortissimo [33]
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Most of the solutions [25,26,29,30,33,34] use wheels as preferred locomotion mode on
regular flat ground while the track-based system is stowed under the carriage. Obstacle
negotiation is performed in track locomotion mode: the position of the tracks is changed
so that they are lowered to the ground while wheels detach from the ground. Instead,
in [27,30,33] a reconfigurable track-based system is proposed to prepare the robot to negoti-
ate stairs: in WT-Wheelchair internal linkages, positions are changed while front and rear
flipper angulation are used in B-Free Ranger and Fortissimo. The wheelchair-type robots
that participated in the Cybathlon are: Scewo Bro [25], B-Free Ranger [30], ZED evolu-
tion [31], Caterwil GTS5 Lux [32], Fortissimo [33], Hkust [33], All-Terrain Wheelchair [34].

The wheel cluster robots are reported in Table 2.

Table 2. Wheel cluster-based wheelchair type robots list.

Name Solution Features

iBOT 4000 [35,36]
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Table 2. Cont.

Name Solution Features

Castillo [39]. Adapted with
permission from ref [39] 2017

Basilio Dobras Castillo
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Prototype solution, manual
control, self-balancing control

system, low comfort

Each solution has very different features from others. iBOT 4000 [35] has inverted
pendulum-type dynamic stability control to go up and down stairs while holding the seat
stable. Wheelchair.q [37] is composed of a pair of locomotion units and a retractable track
that guarantees the rear support point. Finally, Castillo [39], uses four X-shaped wheels
to climb and descend stairs while the seat angle of the wheelchair can be changed to hold
the center of gravity close to the center of the supporting polygon. Hybrid and leg-based
robots are reported in Table 3.

Table 3. Hybrid and leg-based wheelchair type robots list.

Name Solution Features

Wang [40]. Adapted with
permission from ref [40] 2014

Hongbo Wang
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Wang [40] and Zero Carrier [41,42] have chain-driven legs that move vertically and
wheels at the end of each leg. Some are driven to provide forward locomotion while other
are passive wheels. Lee wheelchair [47] (not shown in Table 3) climbs stairs using the two
3-DOF legs with boomerang-shaped feet. The leg mechanisms are folded into the compact
wheelchair body when the wheelchair moves over flat surfaces. JWCR-1 [43,44] and WL-16
II [45] simulate humanoid walking to going up and down stairs. The first uses 12-DOF
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mechanism to replicate a human leg while the second has 6-DOF parallel mechanism for
each leg. Articulated Mechanism-based robots are reported in Table 4.

Table 4. Articulated mechanism-based wheelchair type robots list.

Name Solution Features

RT-Mover PType WA [48–50]
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In general, they use a wheel or wheels mounted on a structure whose position changes
during stair climbing. Chen [55] and TBW-I [53] use simple rotation to change the shape
of the mechanism, Morales [51] and Lawn [52] use deployable rigid supports to lift the



Robotics 2023, 12, 74 9 of 37

device and a secondary mechanism to place the wheels on the new support surface. Finally,
RT-Mover PType WA [48] has two leg-like axle mechanism and a seat slider. Four wheels
are mounted at the leg tips. Every leg-like mechanism possesses two shafts: one for roll ad-
justments and one for steering adjustment. RT-Mover PType WA [48–50] and RPWheel [56]
wheelchair type robots participated at the 2020 Cybathlon edition.

3.2. Carrier Type Robots

One goal of robotics is to replace human operators in daily tasks. Mobile robots for
goods delivery represent an important application area. The challenge that these robots
must face is to climb a flight of stairs (up and down) of a building carrying a load. With
reference to the classification proposed in Section 2, examples of carrier-type stair-climbing
vehicles will be introduced and discussed.

Track-based robots are reported in Table 5.

Table 5. Track-based carrier type robots list.

Name Solution Features

Zhang [57,58]
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Table 5. Cont.

Name Solution Features

Haulerbot [62]
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mobility over challenging environments that include staircases. A wheel cluster-based
robot is reported in Table 6.

Table 6. Wheel cluster-based carrier type robots list.

Name Solution Features

Deshmukh [68]
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payload horizontally, a simple mechanism is used to raise and lower the platform. Hybrid
and leg-based robots are reported in Table 7.
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Table 7. Hybrid and leg-based carrier type robots list.

Name Solution Features

Wen [69]
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Wen [69] has driven legs which move vertically, and four wheels attached to the
body frames. Moreover, [72] (not shown in Table 7) uses driven legs as Wen [69] but a
different system to appreciate stairs corners. Peopler-II [70,71] has perpendicularly oriented
planetary legged wheels that are used to climb and descend stairs. Finally, Yeping [73] (not
shown in Table 7) is a four-legged stair-climbing robot. Each leg has 4-DoF and support a
roller at their own end. An articulated mechanism-based robot is reported in [74]. It uses
deployable rigid supports to lift the device and a secondary mechanism for placing the
wheels on the new support surface. The front wheels can change shape to paws.

3.3. No Payload Robots

This type of robot has been designed without foreseeing any payload capacity. They
usually employ less complicated systems to perform the ascent and descent of the flight of
stairs. Referring to Figure 2, no payload robots can be categorized based on the specific
climbing mechanism. It should be noted that the hybrid and leg-based platforms can be
further divided into three subcategories: biped, quadruped and hexapod.

Track-based robots are reported in Table 8.

Table 8. Track-based robots list.

Name Solution Features

ROBHAZ-DT3 [75]. Adapted
with permission from ref. [75]

2004 Woosub Lee
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Table 8. Cont.

Name Solution Features

MACbot [77]
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Prototype solution, flat
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All solutions use reconfigurable track-system to negotiate stairs. The Robhaz-dt3 [75]
track is divided into two parts that can rotate one with respect to the other. Reference [76]
changes internal linkages positions to modify the track shape. Finally, [77–79] have front
and rear moving flippers to perform the stair climbing task. Wheel-cluster-based robots are
reported in Table 9.

Table 9. Wheel cluster-based robots list.

Name Solution Features

The Tri-Wheel [80,81].
Adapted with permission
from ref. [81] 2015 Lauren

M. Smith
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Table 9. Cont.

Name Solution Features

Looper [86]. Adapted with
permission from ref. [86] 2008

Sam D. Herbert
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Most of the solutions [80–82,86] use rotating wheels to perform stair climbing. The
Tri-Wheel [80,81] has two locomotion units at the front of the robot, Asguard [82,83] and
Looper [86] four. Krys [84,85] possess special wheels for movement on stairs: its rotary
segments are capable of smooth driving on stairs without oscillation of the chassis center
of mass. Articulated mechanism-based robots are reported in Table 10.

Table 10. Articulated mechanism-based robots list.

Name Solution Features

TuskBot [87]. Adapted with
permission from ref. [87] 2017

Jonghun Choe
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Table 10. Cont.

Name Solution Features

Mantis [92]. Adapted with
permission from ref. [92] 2014

Luca Bruzzone
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Prototype solution,
teleoperated control

They present very different systems to perform the stair-climbing task. Mabuchi [93]
(not shown in Table 10) has arms to hook onto the tread of stairs. TuskBot [87] has rear
assistive track mechanisms to accommodate stairs and front a protruded structure to climb
the stair. Rocker-Bogie [88] and Rocker-Pillar [89] derive their structures from strong
mobility in an unexpected terrain vehicle. Octopus [90] has many parallel suspension
architectures that lead to a very smooth slope of the center of gravity when overcoming
vertical slopes. Finally, WheTLHLoc [91] and Mantis [92] are characterized by a main body
equipped with actuated wheels and two protruded structures to allow for climbing stairs.
The biped types of hybrid and leg-based robots are reported in Table 11.

Table 11. Biped-based robots list.

Name Solution Features

WL-12RIII [94]
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Table 11. Cont.

Name Solution Features

Cassie [96,97]. Adapted with
permission from White, J.;

Swart, D.; Hubicki, C.;
Force-based Control of
Bipedal Balancing on

Dynamic Terrain with the
“Tallahassee Cassie” Robotic

Platform. 2020 IEEE
International Conference on

Robotics and Automation
(ICRA), Paris, France, 2020,

pp. 6618–6624, 2020 J. White
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WL-12RIII [94] and RoboSapien [95] are inspired by humanoid locomotion. Cassie [96,97]
is the most recent robot of the three listed. Its mechanical structure resembles more the hindlimbs
of a gazelle. In all the solutions presented, it is of fundamental importance the use of a control
for standing and walking without tipping. Quadruped type of hybrid and leg-based robots are
reported in Table 12.
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Table 12. Cont.

Reference Solution Features
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Prototype solution,
manual control

In recent years these solutions have been increasingly developed with special atten-
tion to the walking gait control. With their structure, Cheetah 3 [101], Spot [102], ANY-
mal [103] and HyTRO-I [104] simulate the movements of a four-legged mammalian animal.
Labib [105] (not shown in Table 12) uses a simpler solution and uses a reconfigurable Klann
linkage mechanism to perform the stair climbing task. Finally, Quattroped [98] has a “trans-
formation mechanism” to modify wheels as legs. Specifically, each leg has 2-DoF and can
rotate and move linearly with respect to the hip, which is defined as the connecting point
from the body to the leg/wheel and is fixed on the body. A hexapod type of hybrid and
leg-based robot is reported in Table 13. Rhex [106] is inspired by cockroach locomotion to
traverse highly fractured and unstable terrain, as well as to ascend and descend a particular
flight of stairs. It has 6 rotational DoFs, one for each leg.

Table 13. Hexapod-based robots list.

Name Solution Features

RHex [106]. Adapted with
permission from ref. [106]

2002 E.Z. Moore
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Prototype solution, automatic
stair-climbing system

The only wheeled-based robot is reported in Table 14. Two large wheels are used to
perform the stair-climbing task. They are suspended respect to the robot’s frame by two
parallel elastic jumping mechanisms. Ascento Pro can overcome full flights of stairs, drive
at up to 12 km/h and all this for up to 8 h per battery charge.
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Table 14. Wheeled-based robots list.

Name Solution Features

Ascento Pro [107]
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4. Analysis and Comparison

In this section, various performance metrics are presented that consider allowable
payload, maximum climbing speed, maximum crossable slope, transport ability and their
combinations. By referring to these metrics, it is possible to compare vehicles with different
locomotion modes and properties, highlighting the advantages and disadvantages of each.

4.1. Performance Metrics

Various metrics, suggested by Binnard [108], are introduced to quantitatively evaluate
the performance of a given stair-climbing vehicle. Special attention has been given to
the normalization of the metrics allowing heterogeneous platforms to be fairly compared.
Metrics were estimated based on the specifications stated in related scientific papers or
technical sheets. Where data are not available, corresponding metrics are not calculated.

The first performance metric is the payload capacity, PC, defined as the percentage
ratio of the maximum payload mass to the robot mass:

PC =
payload mass

robot net mass
× 100 (1)

As a second metric, the normalized speed, NS, can be defined as the ratio of the robot
maximum climbing speed to the robot body length.

NS =
Maximun Speed

Body length
(2)

As an overall performance metric, the Normalized Work Capability, NWC, can be con-
sidered. It is suggested by Binnard [108] and it is defined as the product of the Normalized
Speed (NS) and Payload Capacity (PC).

NWC = PC × NS (3)

Figure 4 shows a bar chart where the Normalized Work Capability is estimated for
the wheelchair type vehicles presented in Sections 3.1 and 3.2. Details can be found in the
Appendix A Tables A1–A3 where the numeric value of PC, NS and NWC are provided for
each platform. Red refers to track-based, blue to wheel cluster-based, green to hybrid and
leg-based and yellow to articulated mechanism-based robots.

It can be said that NWC quantifies the robot general performance, as it considers both
the ability to carry payload and the climbing speed. As seen from the bar charts, the NWC
metric well defines the different robot categories: track-based, wheel cluster-based, hybrid
and leg-based and articulated mechanism-based. In fact, each category has a characteristic
range of NWC. Articulated mechanism-based robots are mainly concentrated in the range of
values that varies between 0 and 3 [s−1]. Even legged robots have low NWC values, ranging
between 0 and 5 [s−1]. Wheel cluster-based robots have high NWC values and are mostly
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concentrated in the range between 5 and 15 [s−1]. Finally, the track-based stair-climbing
robots are distributed evenly over the entire range of NWC values, where the most recent
robots have NWC values ranging from 6 to 18 [s−1].

The NWC of carrier type robots is presented in Figure 5.
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Figure 4. Normalized Work Capability comparison for wheelchair type robots; Chen [55]; TBW-I [53];
Lawn [52]; Morales [51]; RT-Mover PType WA [48–50]; WL-16 II [45,46]; Lee [47]; Zero Carrier [41,42];
Wheelchiar.q [37,38]; iBOT 4000 [35,36]; All-Terrain Wheelchair [34]; Caterwill GTS5 Lux [32]; B-Free
Ranger [30]; Tao [29]; WT-Wheelchair [27,28]; TopChair-S [26]; Scewo Bro [25].

Robotics 2023, 12, x FOR PEER REVIEW 25 of 43 
 

 

 

Figure 4. Normalized Work Capability comparison for wheelchair type robots; Chen [55]; TBW-I 

[53]; Lawn [52]; Morales [51]; RT-Mover PType WA [48–50]; WL-16 II [45,46]; Lee [47]; Zero Carrier 

[41,42]; Wheelchiar.q [37,38]; iBOT 4000 [35,36]; All-Terrain Wheelchair [34]; Caterwill GTS5 Lux 

[32]; B-Free Ranger [30]; Tao [29]; WT-Wheelchair [27,28]; TopChair-S [26]; Scewo Bro [25]. 

It can be said that NWC quantifies the robot general performance, as it considers both 

the ability to carry payload and the climbing speed. As seen from the bar charts, the NWC 

metric well defines the different robot categories: track-based, wheel cluster-based, hybrid 

and leg-based and articulated mechanism-based. In fact, each category has a characteristic 

range of NWC. Articulated mechanism-based robots are mainly concentrated in the range 

of values that varies between 0 and 3 [s−1]. Even legged robots have low NWC values, 

ranging between 0 and 5 [s−1]. Wheel cluster-based robots have high NWC values and are 

mostly concentrated in the range between 5 and 15 [s−1]. Finally, the track-based stair-

climbing robots are distributed evenly over the entire range of NWC values, where the 

most recent robots have NWC values ranging from 6 to 18 [s−1]. 

The NWC of carrier type robots is presented in Figure 5. 

 

Figure 5. Normalized Work Capability comparison for carrier type robots; Deshmukh [68]; iRobot 

710 Kobra [63]; Haulerbot [62]; HELIOS-VI [61]; TAQT Carrier [60]; Yoneda [59]. 

Normalized Work Capability is not the only metric to measure the performance of 

payload stair-climbing robots. To evaluate the versatility of use of one robot compared to 

another, the maximum crossable step height and stair slope are also used as performance 

metrics. Maximum crossable step height and stair slope are reported in Appendix A Table 

A4 for each existing vehicle. A graphical representation of the maximum crossable height 

and slope is given below. Figure 6 refers to wheelchair-type robots while Figure 7 refers 

Figure 5. Normalized Work Capability comparison for carrier type robots; Deshmukh [68]; iRobot
710 Kobra [63]; Haulerbot [62]; HELIOS-VI [61]; TAQT Carrier [60]; Yoneda [59].

Normalized Work Capability is not the only metric to measure the performance of
payload stair-climbing robots. To evaluate the versatility of use of one robot compared to
another, the maximum crossable step height and stair slope are also used as performance
metrics. Maximum crossable step height and stair slope are reported in Appendix A
Table A4 for each existing vehicle. A graphical representation of the maximum crossable
height and slope is given below. Figure 6 refers to wheelchair-type robots while Figure 7
refers to carrier-type robots. Based on these two metrics, different categories do not cluster
clearly. Each single robot may be designed in such a way to match desired values of
maximum step height and slope regardless of the category it belongs.
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Figure 6. Max crossable height and slope comparison for wheelchair type robots; Chen [55]; HELIOS-
V [54]; TBW-I [53]; Lawn [52]; Morales [51]; RT-Mover PType WA [48–50]; WL-16 II [45,46]; Lee [47];
Zero Carrier [41,42]; Castillo [39]; Wheelchiar.q [37,38]; iBOT 4000 [35,36]; All-Terrain Wheelchair [34];
Caterwill GTS5 Lux [32]; B-Free Ranger [30]; Tao [29]; WT-Wheelchair [27,28]; TopChair-S [26]; Scewo
Bro [25].
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Figure 7. Max crossable height and slope comparison for carrier type robots; Wen [69]; Deshmukh [68]
iRobot 710 Kobra [63]; Haulerbot [62]; Yoneda [59].

Here, the Transport Ability (TA) is introduced to quantify how effective the robot is at
carrying payload during stair-climbing operation. We defined it as the ratio of the payload
mass to the maximum robot power.

TransportAbility (TA) [kg/W] =
Payload mass
Robot power

(4)

The value of TA represents how many kilograms of payload the robot can transport
using a unit quantity of power, and so how effective the robot is during transport operation.
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Again, the values calculated for different robots are reported in Appendix A Table A5.
When data are not provided, the metrics are not reported. A comparison bar chart of
Transport Ability values is provided in Figure 8 for wheelchair-type robots and in Figure 9
for carrier-type robots. Red is used to indicate track-based robots, blue to wheel cluster-
based, green to hybrid and leg-based and yellow to articulated mechanism-based robots.
The most transport-effective categories appear to be track-based and wheel cluster-based
because they reach higher value of TA. In fact, they combine a good carrying capacity with
a small number of actuators. In contrast, the articulated mechanism-based robots and
hybrid and leg-based categories, using many actuators to move the system, exhibit lower
transport effectiveness because they reach lower values of TA.
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Figure 8. Transport Ability comparison for wheelchair type robots; Chen [55]; HELIIOS-V [54];
TBW-I [53]; Morales [51]; RT-Mover PType WA [48–50]; WL-16 II [45,46]; Lee [47]; Zero Carrier [41,42];
Castillo [39]; Wheelchiar.q [37,38]; iBOT 4000 [35,36]; All-Terrain Wheelchair [34]; B-Free Ranger [30];
Tao [29]; TopChair-S [26].
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Figure 9. Transport Ability comparison for carrier type robots; Deshmukh [68]; Haulerbot [62]
HELIOS-VI [61]; TAQT Carrier [60].

4.2. Comparison Charts

To have a graphical representation of the various performance metrics and their
correlation, several scatter plots are provided. Track-based robots are reported with red
points, wheel cluster-based robots are reported in blue, hybrid and leg-based robots are
reported in green, and articulated mechanism-based robot with yellow points. Figure 10
relates the two independent metrics: the Payload Capacity and the Normalized Speed. It
can be observed that most of the points fall below an imaginary diagonal that from the
top left to the bottom right cuts the graph into two parts. This highlights the intuitive
inverse proportionality that exists between the payload and the transport speed. The lower



Robotics 2023, 12, 74 21 of 37

the payload, the higher the speed of the robot. On the contrary, when the payload to
be transported is very heavy, the speed of the robot decreases considerably. Articulated
mechanism-based robots deviate from this behavior. Indeed, the normalized speed is almost
independent on the payload capacity of each robot, as a result of a technical limitation of
the gate-based walking strategy typical for this category.
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Figure 10. Payload Capacity—Normalized speed scatter plot.

It is important to observe the distribution of the various types of robots in the graph
of Figure 10. For the two-dimensional data ([NS, PC]) pertaining to a given category, a
standard deviational ellipse can be defined centered on the mean center and considering
one standard deviation. These ellipses were created using the Gaussian Ellipsoids function
of the MatLab® software (MathWorks, Natick, MA, USA). It can be seen how the ellipse of
the articulated mechanism-based robots (marked in yellow) lies in an area at the bottom of
the graph. These vehicles cannot carry a load greater than the robot’s own weight and never
exceed a Normalized Speed of 0.02 s−1. Hybrid and leg-based robots (green ellipse), despite
being able to carry a wide range of payloads, never exceed an NS value greater than 0.1 s−1.
Wheel cluster-based vehicles are always able to carry a payload comparable to the weight
of the robot and at a speed higher than both that of articulated mechanism-based robots
and that of hybrid and leg-based robots. Finally, the track-based robots are distributed in
the central area of the graph. It is thus evident that they can carry a payload comparable to
the weight of the robots. In addition, the arrangement of the ellipse on the graph shows
that track-based robots on average have a higher transport speed than the other categories.

In Figure 11, the NWC is shown as a function of the PC for the four types of vehicles.
The distribution in this plane is significant. Again, to better highlight the arrangement of
the different categories within the chart, it is also possible to add the already mentioned
Gaussian ellipses to the graph. These ellipses are based on the statistical values of the PC
and NWC parameters. Recall that the NWC is an index of the total performance of the
vehicle, as it considers the load transported and the speed of transport [104]. Once a PC
value is calculated, it is possible to identify which category of robot has better performance
based on the position of the ellipses in the chart plan. Track-based and wheel cluster-based
robots are more suitable for carrying a load on stairs because their ellipses reach higher
values of NWC than the articulated mechanism-based and hybrid and leg-based robots.
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Figure 11. Normalized Work Capability—Payload Capacity scatter plot.

We define the stairs slope as the inclination respect the horizontal of the notional line
connecting the nosings of all treads in a flight. Compared to the step height, the slope
considers not only the height of the step, but also the depth of the same. For this reason,
when comparing the performance of different robots, it is preferable to use the maximum
slope of the stairs. Then, Figure 12 illustrates the maximum stairs slope to payload capacity
scatter plot. It can be seen which slope of stairs can overcome the different categories
of robots. It emerges that most categories of robots are able to overcome values of stairs
slope included in the range 25–45◦. These are the typical slope values of stairs for most
real applications.
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In Figure 13 the maximum stairs slope values for the different robots are diagrammed
as a function of Normalized Work Capability instead of Payload Capacity. The maximum
slope range of stairs is always between 25◦ and 45◦. The graph shows that the two categories
that have the highest total performance are track-based and wheel cluster-based, as they
have higher Normalized Work Capability values in that range, so that they are most suitable
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to perform the stair-climbing task respect to articulated mechanism-based and hybrid and
leg-based robots.

Robotics 2023, 12, x FOR PEER REVIEW 30 of 43 
 

 

In Figure 13 the maximum stairs slope values for the different robots are diagrammed 

as a function of Normalized Work Capability instead of Payload Capacity. The maximum 

slope range of stairs is always between 25° and 45°. The graph shows that the two catego-

ries that have the highest total performance are track-based and wheel cluster-based, as 

they have higher Normalized Work Capability values in that range, so that they are most 

suitable to perform the stair-climbing task respect to articulated mechanism-based and 

hybrid and leg-based robots. 

 

Figure 13. Maximum Stairs Slope—Normalized Work Capability scatter plot. 

Figure 14 shows the Transport Ability versus Payload Capacity scatter plot. Again, to 

better highlight the arrangement of the different categories within the chart, it is also pos-

sible to add the already mentioned Gaussian ellipses to the graph. These ellipses are based 

on the statistical values of the TA and PC parameters. Hybrid and leg-based robot ellipse 

is almost horizontal, sign that the Transport Ability varies little as the load carried varies. 

Moreover, hybrid and leg-based category has the lowest transport ability for all payload 

capacity values. On the contrary, wheel cluster-based robot ellipse is almost vertical, sign 

that the Transport Ability varies greatly depending on the climbing mechanism used. The 

most high transport ability value belongs to track-based robots category. 
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Figure 14 shows the Transport Ability versus Payload Capacity scatter plot. Again,
to better highlight the arrangement of the different categories within the chart, it is also
possible to add the already mentioned Gaussian ellipses to the graph. These ellipses are
based on the statistical values of the TA and PC parameters. Hybrid and leg-based robot
ellipse is almost horizontal, sign that the Transport Ability varies little as the load carried
varies. Moreover, hybrid and leg-based category has the lowest transport ability for all
payload capacity values. On the contrary, wheel cluster-based robot ellipse is almost vertical,
sign that the Transport Ability varies greatly depending on the climbing mechanism used.
The most high transport ability value belongs to track-based robots category.
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At the end, Figure 15 relates the two independent metrics: the Transport Ability and
the Normalized Work Capability. As we have already said, the NWC is an index that
reflects a bit the overall performance of the robot, since it considers both the load capacity
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and the transport speed of the robot. Similarly, TA is an index that considers how much
power the robot needs to carry a unit load. Based on these two parameters, the Transport
Ability-Normalized Work Capability graph can be divided into four zones: (1) in the top
right the area of the robots with high overall performance and high transport ability, (2) in
the bottom right the area of the robots with high overall performance but with low transport
ability, (3) in the top left the area of the robots with high transport ability but with low
overall performance, (4) in the bottom left the area of the robots with low transport ability
and low overall performance. Moreover, in this case, to highlight the arrangement of the
points of the different categories, the ellipses have been added.
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So, from the position of the ellipses in the TA-NWC plan in the figure, it is possible to
have important indications on the different categories of robots that cannot be deduced a
priori through a single qualitative analysis of the systems. Articulated mechanism-based
robots are shown to have variable transport ability depending on the climbing mechanism
used. However, they demonstrate low overall performance by positioning themselves in the
leftmost area of the graph plane in Figure 15. Wheel cluster-based and track-based robots
are the categories that come closest to the area of the plan with high overall performance
and high transport ability, proving to be the most suitable categories for transporting a
payload on a flight of stairs. In contrast, the hybrid and leg-based robots category clusters
in an area with low transport ability and low overall performance.

4.3. Complexity and Cost Issues

Drawing from [109], fundamental design choice criteria in mobile robotics are mechan-
ical and control complexity, as also underlined in [5].

Mechanical complexity has a considerable influence on the reliability of robot opera-
tion. Track-based and wheel cluster-based robots are apparently simple and robust, while
robots with complicated mechanical designs, such as legged and articulated mechanism-
based robots are complex and delicate. Control complexity has significant influence on
the robot motion control. It is higher for solutions involving legs and a sophisticated
mechanism due to gait planning requirements.

Mechanical and control complexity can be used to evaluate the simplicity of realization
of one robot compared to another. Therefore, in addition to the performance metrics of
Section 4.1, it is decided to develop a qualitative evaluation scale of mechanical complexity
(MC) and control complexity (CC) for the robots analyzed in this paper. Detailed numeric
data are presented in Appendix A Table A6. Scores start from low and continue with
medium-low, medium, medium-high, high and very-high.
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Another fundamental design parameter is the overall cost. From mechanical and
control complexity, it is possible to obtain an idea of the possible cost of the robot. It is
plausible that an expensive solution has very high complexity. Therefore, cost is used to
evaluate the simplicity of realization of one robot compared to another, and how much a
robot can be easily sold compared to another one.

It is also decided to draw up a qualitative evaluation scale of cost for the robots in this
paper. Cost evaluation scores are presented in Appendix A Table A7. Scores start from low
and continue with low-medium, medium, medium-high and high. To have a graphical
representation of the results obtained, a cost scale graph is provided below in Figure 16.
The five cost grades and the total number of robots belonging to each grade are reported
on the abscissa and ordinate axis, respectively.
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It is useful to say that the wheelchair type track-based robots Scewo Bro [25] and B-Free
Ranger [30] are now available for $40,536 and $17,688, respectively. Wheel cluster-based
robot iBOT 4000 Mobility System [35] was available for $26,000 in the period from 1999
to 2016.

Figure 16 provides information on how robots type affects the cost. Due to the elaborate
mechanical structure, the presence of numerous actuators and sensors and the complexity
of the control system, the most expensive robots are the legged ones, immediately followed
by the articulated mechanism-based ones. Track-based robots have an average system cost,
while wheel-clustered robots are the cheapest type to make.

5. Discussion

This paper surveyed the current state-of-the-art in stair-climbing vehicles to obtain
useful information about which category of robot is best able to transport people and
heavy loads up a flight of stairs. In the first part of the article, a brief description of the
stair-climbing existing mechanisms and method of operation are provided. Then, based
on the capability of carrying payload and the type of locomotion mechanism, we propose
a general stair-climbing system categorization. Next, to compare the different payload
robots, several quantitative performance metrics are defined and calculated on the purpose,
namely: payload capacity, normalized speed, normalized work capability, maximum
step height, maximum stairs slope and transport ability. Correlations among previous



Robotics 2023, 12, 74 26 of 37

performance metrics are sought by plotting one metric against the other, providing the
reader with an in-depth understanding of the stair climbing problem. Then, complexity
and cost issues are addressed. As a conclusion of the work, we tried to identify what to look
at to choose the best category for transporting people and heavy loads up a flight of stairs.
The normalized work capacity parameter is chosen to quantify the overall performance
of different climbing robots and the respective categories. A complete overview of the
different stair-climbing system performance is obtained when expressing Transport Ability
as a function of Normalized Work Capability. Since hybrid and leg-based robots are located
in the lower left area of the TA-NWC plan (Figure 15) and have a high cost, they prove to
be the least suitable category for transporting a payload on a flight of stairs. Moreover,
articulated mechanism-based robots do not seem suitable for stair-climbing operations.
This is because they have low overall performance, low transport ability, complicated
mechanical structure and control strategy. On the contrary, track-based and wheel cluster-
based robots prove to be the most suitable categories to perform the transport of a load
during the ascent of a flight of stairs. This is because they combine good overall performance
and good transport ability, positioning in the right part of the TA-NWC plan (Figure 16),
with low mechanical complexity, simple control strategy and low construction cost. With
these results it will be possible to design a track-based or wheel-cluster based robot that
better than articulated mechanism-based robots and hybrid and leg-based robots can
transport people and heavy loads up a flight of stairs. The posture control categorization,
the control algorithm categorization, the gait planning categorization, the driving force
distribution categorization and highlighting the advantages and disadvantages of them are
work understudied issues and future development. They have not been dealt with so as
not to make the paper too heavy to read.
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Appendix A

In this appendix, performance metrics introduces in Section 4.1 are calculated for
the robots analyzed in this document. WT and CT indicate wheelchair type and carrier
type robots, respectively. When technical data are not provided, metrics are omitted.
Tables A1 and A2 show the Payload Capacity and Normalized speed, respectively. Normal-
ized Work Capability is calculated in Table A3. Maximum crossable step height and stairs
slope are reported in Appendix A Table A4. Then, Transport Ability values are calculated
in Table A5.



Robotics 2023, 12, 74 27 of 37

Table A1. Robot’s Payload Capacity.

Name Type Category PC [%] Payload/Robot

Scewo Bro Errore. [25] WT Track 74.07% 120 kg/162 kg

WT Wheelchair [27,28] WT Track 57.69% 75 kg/130 kg

TopChair-S [26] WT Track 73.33% 110 kg/150 kg

Tao [29] WT Track 150% 75 kg/50 kg

B-Free Ranger [30] WT Track 82.19% 120 kg/146 kg

Caterwil GTS5 Lux [33] WT Track 87.71% 100 kg/114 kg

All-Terrain Wheelchair [34] WT Track 50% 80 kg/160 kg

iBOT 4000 [35,36] WT Wheel cluster 123.63% 136 kg/110 kg

Wheelchair.q [37,38] WT Wheel cluster 88.77% 87 kg/98 kg

Zero Carrier [41,42] WT Hybrid and Leg 173.91% 80 kg/46 kg

Lee [47] WT Hybrid and Leg 85.71% 60 kg/70 kg

WL-16 II [45,46] WT Hybrid and Leg 96.77% 60 kg/62 kg

RT-Mover PType
WA [48–50] WT Articulated

Mechanism 76.08% 70 kg/92 kg

Morales [51] WT Articulated
Mechanism 90% 90 kg/100 kg

Lawn [52] WT Articulated
Mechanism 50% 80 kg/160 kg

TBW-I [53] WT Articulated
Mechanism 38.96% 60 kg/154 kg

HELIOS-V [54] WT Articulated
Mechanism 100% 50 kg/50 kg

Chen [55] WT Articulated
Mechanism 100% 80 kg/80 kg

Yoneda [59] CT Track 92.30% 60 kg/65 kg

TAQT Carrier [60] CT Track 25.80% 80 kg/310 kg

HELIOS-VI [61] CT Track 141.17% 120 kg/85 kg

Haulerbot [62] CT Track 89.04% 130 kg/146 kg

iRobt 710 Kobra [63] CT Track 40.96% 68 kg/166 kg

Deshmukh [68] CT Wheel cluster 125% 10 kg/8 kg

Table A2. Robot’s Normalized Speed.

Name Type Category NS [s−1] Speed/Length

Scewo Bro [25] WT Track 0.18 s−1 21 cm/s/113.5 cm

WT Wheelchair [27,28] WT Track 0.07 s−1 10 cm/s/131 cm

TopChair-S [26] WT Track 0.16 s−1 19 cm/s/115 cm

Tao [29] WT Track 0.08 s−1 7.3 cm/s/90 cm

B-Free Ranger [30] WT Track 0.074 s−1 8.3 cm/s/112 cm

Caterwil GTS5 Lux [33] WT Track 0.21 s−1 22 cm/s/102 cm

All-Terrain
Wheelchair [34] WT Track 0.19 s−1 30 cm/156 cm

iBOT 4000 [35,36] WT Wheel cluster 0.12 s−1 10 cm/s/81.3 cm



Robotics 2023, 12, 74 28 of 37

Table A2. Cont.

Name Type Category NS [s−1] Speed/Length

Wheelchair.q [37,38] WT Wheel cluster 0.14 s−1 10 cm/s/70.9 cm

Zero Carrier [41,42] WT Hybrid and Leg 0.01 s−1 1 cm/s/60 cm

Lee [47] WT Hybrid and Leg 0.02 s−1 2 cm/s/85.5 cm

WL-16 II [45,46] WT Hybrid and Leg 0.07 s−1 5 cm/s/70 cm

RT-Mover PType
WA [48–50] WT Articulated

Mechanism 0.02 s−1 2.2 cm/s/110 cm

Morales [51] WT Articulated
Mechanism 0.007 s−1 1 cm/s/145 cm

Lawn [52] WT Articulated
Mechanism 0.006 s−1 1 cm/s/170 cm

TBW-I [53] WT Articulated
Mechanism 0.005 s−1 0.5 cm/s/108 cm

Chen [55] WT Articulated
Mechanism 0.02 s−1 2 cm/s/82 cm

Yoneda [59] CT Track 0.09 s−1 10.2 cm/s/118 cm

TAQT Carrier [60] CT Track 0.10 s−1 14 cm/s/130 cm

HELIOS-VI [61] CT Track 0.06 s−1 7 cm/s/105.5 cm

Haulerbot [62] CT Track 0.072 s−1 8.3 cm/s/115 cm

iRobt 710 Kobra [63] CT Track 0.15 s−1 14 cm/s/91.4 cm

Deshmukh [68] CT Wheel cluster 0.08 s−1 6.28 cm/s/78 cm

Table A3. Robot’s Normalized Work Capability.

Name Type Category NWC[s−1]

Scewo Bro [25] WT Track 13.33 s−1

WT Wheelchair [27,28] WT Track 4.40 s−1

TopChair-S [26] WT Track 11.73 s−1

Tao [29] WT Track 12.14 s−1

B-Free Ranger [30] WT Track 6.08 s−1

Caterwil GTS5 Lux [33] WT Track 18.85 s−1

All-Terrain Wheelchair [34] WT Track 9.61 s−1

iBOT 4000 [35,36] WT Wheel cluster 14.83 s−1

Wheelchair.q [37,38] WT Wheel cluster 12.43 s−1

Zero Carrier [41,42] WT Hybrid and Leg 1.74 s−1

Lee [47] WT Hybrid and Leg 1.71 s−1

WL-16 II [45,46] WT Hybrid and Leg 6.77 s−1

RT-Mover PType WA [48–50] WT Articulated
Mechanism 1.52 s−1

Morales [51] WT Articulated
Mechanism 0.62 s−1

Lawn [52] WT Articulated
Mechanism 0.3 s−1
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Table A3. Cont.

Name Type Category NWC[s−1]

TBW-I [53] WT Articulated
Mechanism 0.195 s−1

Chen [55] WT Articulated
Mechanism 2 s−1

Yoneda [59] CT Track 8.30 s−1

TAQT Carrier [60] CT Track 2.58 s−1

HELIOS-VI [61] CT Track 8.47 s−1

Haulerbot [62] CT Track 6.41 s−1

iRobt 710 Kobra [63] CT Track 6.27 s−1

Deshmukh [68] CT Wheel cluster 10.06 s−1

Table A4. Crossable step height and stairs slope.

Name Type Category Step Height [cm] Stairs Slope [◦]

Scewo Bro [25] WT Track 20 cm 36◦

WT Wheelchair [27,28] WT Track 15 cm 25◦

TopChair-S [26] WT Track 20 cm 35◦

Tao [29] WT Track 18 cm 35◦

B-Free Ranger [30] WT Track 20 cm 35◦

Caterwil GTS5 Lux [33] WT Track 20 cm 40◦

All-Terrain
Wheelchair [34] WT Track 17 cm 31◦

iBOT 4000 [35,36] WT Wheel cluster 20 cm 39◦

Wheelchair.q [37,38] WT Wheel cluster 24 cm 40◦

Castillo [39] WT Wheel cluster 18 cm 37◦

Zero Carrier [41,42] WT Hybrid and Leg 18 cm 27◦

Lee [47] WT Hybrid and Leg 25.5 cm 45◦

WL-16 II [45,46] WT Hybrid and Leg 15 cm 27◦

RT-Mover PType
WA [48–50] WT Articulated

Mechanism 17 cm 35◦

Morales [51] WT Articulated
Mechanism 24 cm 40◦

Lawn [52] WT Articulated
Mechanism 20 cm 35◦

TBW-I [53] WT Articulated
Mechanism 20 cm 20◦

HELIOS-V [54] WT Articulated
Mechanism 16 cm 28◦

Chen [55] WT Articulated
Mechanism 20 cm 37.5◦

Yoneda [59] CT Track 16 cm 30◦

Haulerbot [62] CT Track 20 cm 38◦



Robotics 2023, 12, 74 30 of 37

Table A4. Cont.

Name Type Category Step Height [cm] Stairs Slope [◦]

iRobt 710 Kobra [63] CT Track 21.2 cm 45◦

Deshmukh [68] CT Wheel cluster 16 cm 40◦

Wen [69] CT Hybrid and Leg 20 cm 35.5◦

Table A5. Transport Ability values.

Name Type Category TA [kg/W] Power [W] Payload [kg]

TopChair-S [25] WT Track 0.137 800 W 110 kg

Tao [29] WT Track 0.075 1000 W 75 kg

B-Free Ranger [30] WT Track 0.08 1500 W 120 kg

All-Terrain
Wheelchair [34] WT Track 0.087 920 W 80 kg

iBOT 4000 [35,36] WT Wheel cluster 0.075 1800 W 136 kg

Wheelchair.q [37,38] WT Wheel cluster 0.174 500 W 87 kg

Castillo [39] WT Wheel cluster 0.041 1430 W 60 kg

Zero Carrier [41,42] WT Hybrid and Leg 0.074 1080 W 80 kg

Lee [47] WT Hybrid and Leg 0.06 1200 W 60 kg

WL-16 II [45,46] WT Hybrid and Leg 0.033 1800 W 60 kg

RT-Mover PType
WA [48–50] WT Articulated

Mechanism 0.041 1700 W 70 kg

Morales [51] WT Articulated
Mechanism 0.119 840 W 100 kg

TBW-I [53] WT Articulated
Mechanism 0.066 900 W 60 kg

HELIOS-V [54] WT Articulated
Mechanism 0.062 800 W 50 kg

Chen [55] WT Articulated
Mechanism 0.025 3200 W 80 kg

TAQT Carrier [60] CT Track 0.044 1800 W 80 kg

HELIOS-VI [61] CT Track 0.193 622 W 120 kg

Haulerbot [62] CT Track 0.086 1500 W 130 kg

Deshmukh [68] CT Wheel cluster 0.069 144 W 10 kg

Qualitative evaluation scale of mechanical complexity (MC) and control complexity
(CC) are presented in Table A6. Grades start from low and continue with medium-low,
medium, medium-high and high. Finally, cost evaluation grades are presented in Table A7.
Grades start from low and continue with medium-low, medium, medium-high and high.

Table A6. Mechanical and Control Complexity values.

Name Type Category MC CC

Scewo Bro [25] WT Track Medium-low Medium-low

WT Wheelchair [27,28] WT Track Medium-high Medium-high

TopChair-S [26] WT Track Medium-low Medium-low

Tao [29] WT Track Medium-low Medium-low
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Table A6. Cont.

Name Type Category MC CC

B-Free Ranger [30] WT Track Medium-high Medium-high

ZED Evolution [31] WT Track Medium-high Medium-high

Caterwil GTS5 Lux [32] WT Track Medium-low Medium-high

Fortissimo [33] WT Track Medium-low Medium-high

Hkust [33] WT Track Low Medium-low

All-Terrain
Wheelchair [34] WT Track Medium-high Medium-high

iBOT 4000 [35,36] WT Wheel cluster Medium-low Medium-high

Wheelchair.q [37,38] WT Wheel cluster Medium-low Medium-high

Castillo [39] WT Wheel cluster Low Low

Wang [40] WT Hybrid and Leg Medium-low Medium-high

Zero Carrier [41,42] WT Hybrid and Leg Medium-high High

Lee [47] WT Hybrid and Leg High High

JWCR-1 [43,44] WT Hybrid and Leg Very-high Very -high

WL-16 II [45,46] WT Hybrid and Leg Very -high Very -high

RT-Mover PType
WA [48–50] WT Articulated

Mechanism High High

Morales [51] WT Articulated
Mechanism High High

Lawn [52] WT Articulated
Mechanism High High

TBW-I [53] WT Articulated
Mechanism High High

HELIOS-V [54] WT Articulated
Mechanism Medium-high Medium-high

Chen [55] WT Articulated
Mechanism High High

RPWheel [56] WT Articulated
Mechanism Medium-high Medium-high

Zhang [57,58] CT Track Medium-low Medium-high

Dongsheng [67] CT Track Medium-low Medium-high

Htoo [65] CT Track Low Low

Amoeba Go-1 [22] CT Track Medium-low Medium-high

Yoneda [59] CT Track Low Low

Riuqin [66] CT Track Low Low

TAQT Carrier [60] CT Track Medium-low Medium-high

HELIOS-VI [61] CT Track Medium-low Medium-low

Haulerbot [62] CT Track Medium-high Medium-high

iRobt 710 Kobra [63] CT Track Medium-low Medium-high

Deshmukh [68] CT Wheel cluster Low Low

Wen [69] CT Hybrid and Leg Medium-high High

Shihua [72] CT Hybrid and Leg Medium-low Medium-high
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Table A6. Cont.

Name Type Category MC CC

PEOPLER-II [70,71] CT Hybrid and Leg High Most-high

Yeping [73] CT Hybrid and Leg Very-high Very-high

Yinhui [74] CT Articulated
Mechanism Medium-high Medium-high

Table A7. Mechanical Complexity, Control Complexity and Cost Scale values.

Name Type Category Cost

Scewo Bro [25] WT Track Medium

WT Wheelchair [27,28] WT Track Medium

TopChair-S [26] WT Track Medium-low

Tao [29] WT Track Medium-low

B-Free Ranger [30] WT Track Medium

ZED Evolution [31] WT Track Medium

Caterwil GTS5 Lux [32] WT Track Medium-low

Fortissimo [33] WT Track Medium

Hkust [33] WT Track Medium-low

All-Terrain Wheelchair [34] WT Track Medium

iBOT 4000 [35,36] WT Wheel cluster Medium-low

Wheelchair.q [37,38] WT Wheel cluster Medium-low

Castillo [39] WT Wheel cluster Medium-low

Wang [40] WT Hybrid and Leg Medium

Zero Carrier [41,42] WT Hybrid and Leg High

Lee [47] WT Hybrid and Leg Medium-high

JWCR-1 [43,44] WT Hybrid and Leg High

WL-16 II [45,46] WT Hybrid and Leg High

RT-Mover PType WA [48–50] WT Articulated
Mechanism Medium-high

Morales [51] WT Articulated
Mechanism Medium-high

Lawn [52] WT Articulated
Mechanism Medium-high

TBW-I [53] WT Articulated
Mechanism Medium-high

HELIOS-V [54] WT Articulated
Mechanism Medium

Chen [55] WT Articulated
Mechanism Medium-high

RPWheel [56] WT Articulated
Mechanism Medium

Zhang [57,58] CT Track Medium

Dongsheng [67] CT Track Medium

Htoo [65] CT Track Medium-low

Amoeba Go-1 [22] CT Track Medium
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Table A7. Cont.

Name Type Category Cost

Yoneda [59] CT Track Medium-low

Riuqin [66] CT Track Medium-low

TAQT Carrier [60] CT Track Medium

HELIOS-VI [61] CT Track Medium-low

Haulerbot [62] CT Track Medium

iRobt 710 Kobra [63] CT Track Medium

Deshmukh [68] CT Wheel cluster Low

Wen [69] CT Hybrid and Leg Medium-high

Shihua [72] CT Hybrid and Leg Medium-low

PEOPLER-II [70,71] CT Hybrid and Leg High

Yeping [73] CT Hybrid and Leg High

Yinhui [74] CT Articulated
Mechanism Medium
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