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Abstract: The efficient computation of viewpoints while considering various system and process
constraints is a common challenge that any robot vision system is confronted with when trying
to execute a vision task. Although fundamental research has provided solid and sound solutions
for tackling this problem, a holistic framework that poses its formal description, considers the
heterogeneity of robot vision systems, and offers an integrated solution remains unaddressed. Hence,
this publication outlines the generation of viewpoints as a geometrical problem and introduces a
generalized theoretical framework based on Feature-Based Constrained Spaces (C-spaces) as the
backbone for solving it. A C-space can be understood as the topological space that a viewpoint
constraint spans, where the sensor can be positioned for acquiring a feature while fulfilling the
constraint. The present study demonstrates that many viewpoint constraints can be efficiently
formulated as C-spaces, providing geometric, deterministic, and closed solutions. The introduced
C-spaces are characterized based on generic domain and viewpoint constraints models to ease the
transferability of the present framework to different applications and robot vision systems. The
effectiveness and efficiency of the concepts introduced are verified on a simulation-based scenario
and validated on a real robot vision system comprising two different sensors.

Keywords: viewpoint planning; 3D sensors; vision task automation; constraint planning; robot
vision system

1. Introduction

The increasing performance of 2D and 3D image processing algorithms and the falling
prices of electronic components (processors and optical sensors) over the last two decades
have motivated not only researchers but also the industry to investigate and automate
different machine vision tasks using robot vision systems (RVSs) consisting of a manipulator
and a 2D or 3D sensor [1,2]. Whether programmed offline or online, RVSs demand multiple
planning modules to execute motion and vision tasks efficiently and robustly. For instance,
the efficient and effective planning of valid viewpoints to fulfill a vision task considering
different constraints, known as the view(point) planning problem (VPP), still represents an
open planning problem within diverse applications [2,3], e.g., camera surveillance, scene
exploration, object detection, visual servoing, object reconstruction, image-based inspection,
robot calibration, and mobile navigation [2,4].

1.1. Viewpoint Generation Problem Solved Using C-Spaces

To tackle the VPP, we first re-examine its reformulation and propose its modular-
ization. Then, this study focuses on the most fundamental sub-problem of the VPP, i.e.,
the Viewpoint Generation Problem (VGP). The VGP addresses the calculation of valid
viewpoints to acquire a single feature while considering the fulfillment of different view-
point constraints.
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With this in mind, this paper outlines the VGP as a purely geometrical problem that
can be solved in the special Euclidean group denoted as SE(3) (6D spatial space), based
on the concept of Feature-Based Constrained Spaces (C-spaces). C-spaces represent the
spatial solution space of up to 6D of each viewpoint constraint ci ∈ C̃, denoted as C i, that
comprises all valid sensor poses ps to acquire a feature f . In other words, it can be assumed
that any sensor pose lying within an i C-space fulfills the corresponding i viewpoint
constraint. Hence, this solution space can be interpreted as an analytical [5], geometrical
solution with an infinite set of valid viewpoints to satisfy the regarded viewpoint constraint.
Moreover, the integration of multiple C-spaces spans the jointed C-space denoted as C ,
where all viewpoint constraints are simultaneously fulfilled. Figure 1 depicts a simplified
representation of the VGP, C-spaces, and overview of the most relevant components.

Sensor pose
ps

Individual C-spaces
C1(c1), C2(c2), C3(c3)

Viewpoints:
v1 := (ps,1, f , �C), v2 := (ps,2, f , �C)

C-space
C

y

z

x

Feature
f

Frustum Space

Robot

Figure 1. Simplified, graphical representation of the Viewpoint Generation Problem (VGP): Which
are valid sensor poses ps to acquire a feature f considering a set of diverse viewpoint constraints
C̃? To answer this question, this study proposes the characterization of Feature-Based Constrained
Spaces (C-spaces). The C-space denoted as C can be regarded as the geometrical representation of
all viewpoint constraints in the special Euclidean group SE(3). Any sensor pose within it ∀ ps ∈C
can be considered to be valid to acquire a feature satisfying all viewpoint constraints C̃. The C-space
is constituted by individual C-spaces C i(ci), i.e., geometrical representations of each viewpoint
constraint ci ∈ C̃.

In this context, the most significant challenge behind the conceptualization of C-spaces
lies in the generic and geometric formulation and characterization of diverse viewpoint
constraints. Throughout this paper, we will use the term formulationto refer to the formal,
mathematical definition of an individual C-space; however, note that the characterization
addresses the concrete implementation or computation of a C-space using a specific algo-
rithm or method. This publication introduces nine C-spaces corresponding to different
viewpoint constraints (i.e., sensor imaging parameters, feature geometry, kinematic errors,
sensor accuracy, occlusion, multisensors, multi-features, and robot workspace) aligned to a
consistent modeling framework to ensure their consistent integration.

1.2. Related Work

Our study treats the VGP as a sub-problem of the VPP. Since most authors do not
explicitly consider such a problem separation, this section provides an overview of related
research that addresses the VPP in general. In a broader sense, the VPP can be even
categorized as a sub-problem of a more popular challenge within robotics, that is, the
coverage path planning problem [6].
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Over the last three decades, the VPP has been investigated within a wide range of
vision tasks that integrate an imaging device, but not necessarily a robot, and require
the computation of generalized viewpoints. For a vast overview of the overall progress,
challenges, and applications of the VPP, we refer to the various surveys [2,4,7–10] that have
been published.

The approaches for viewpoint planning can be classified depending on the knowledge
required a priori about the RVS to compute a valid viewpoint. Thus, a rough distinction
can be made between model-based and non-model-based approaches [11].

1.2.1. Model-Based

Most of the model-based viewpoint planning methods can be roughly differenti-
ated between synthesis and sampling-based (related terms: generate and test) modeling ap-
proaches [5]. While synthesis approaches use analytical relationships to first characterize a
continuous or discrete solution space before searching for an optimal viewpoint, sampling
techniques are more optimization-oriented and compute valid viewpoints using a set of
objective functions.

Since the present study seeks to characterize a solution space, i.e., a C-space, for
each individual viewpoint constraint using analytical and geometrical relationships, the
mathematical foundation of our framework can be classified as a model-based method
following a synthesis approach. Hence, this section focuses mainly on the related literature
following a similar approach.

Synthesis
Many of the reviewed publications considering model-based approaches have built

their theoretical framework based on set theory to formulate either a continuous or discrete
search space in a first step. Then, in a second step, optimization algorithms are used to find
valid viewpoints within these search spaces and assess the satisfiability of the remaining
constraints that were not explicitly considered.

The concept of characterizing such topological search spaces, in our work addressed
as C-spaces (related terms: viewpoint space, visibility map, visibility matrix, visibility volumes,
imaging space, scannability frustum, configuration space, visual hull, search space), has been
proposed since the first studies addressing the VPP. Such a formulation has the advantage of
providing a straightforward comprehension and spatial interpretation of the general problem.

One of the first and seminal studies that considered the characterization of a contin-
uous solution space in R3 can be attributed to the publication of [12]. In their work, the
authors introduced a model-based method for 2D sensors, which synthesized analytical
relationships to geometrically characterize a handful of constraints in terms of resolution,
focus, field of view, visibility, view angle, occluding regions, and in later works [13], even
constraints on the placement of a lighting source.

Based on the analytical findings provided by the previous work of [13], Ref. [7]
introduced a model-based sensor planning system called Machine Vision Planner (MVP).
On one hand, the MVP can be seen as a synthesis approach that characterizes a feature-
based occlusion-free region using surface model decomposition [14,15]. On the other
hand, the authors posed the problem in the context of an optimization setting using
objective functions to find valid viewpoints within the occlusion-free space that meet
imaging constraints.

The MVP was extended by [16] for its use with an industrial robot and moving objects.
Their study addressed the drawbacks (non-linearity and convergence guarantee) of the opti-
mization algorithms and opted to characterize 3D search spaces for the sensor’s resolution,
field of view, and workspace of the robot. Although the authors could not synthesize every
constraint in the Euclidean space, they confirmed the benefits of solving the problem in R3

instead of optimizing equations for finding suitable viewpoints. Furthermore, in a series of
publications Reed et al. [17,18] extended some of the models introduced in the MVP and
addressed the characterization of a search space in R3 for range sensors, which integrates
imaging, occlusion, and workspace constraints. Their study also proposed the synthesis of
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an imaging space based on extrusion techniques of the surface models in combination with
the imaging parameters of the sensor.

Another line of research within the context of model-based approaches follow the
works of Tarbox and Gottschlich, which proposed the synthesis of a discretized search
space using visibility matrices to map the visibility between the solution space and the surface
space of the object. In combination with an efficient volumetric representation of the object of
interest using octrees, Refs. [19,20] presented different algorithms based on the concept of
visibility matrices to perform automated inspection tasks. The visibility matrices consider a
discretized view space with all viewpoints lying on a tessellated sphere with a fixed camera
distance. Analogously, under the consideration of further constraints, Refs. [11,21] intro-
duced the measurability matrix extending the visibility matrix of Tarbox and Gottschlich to
three dimensions. Within his work, Scott considered further sensor parameters, e.g., the
shadow effect, measurement precision, and the incident angle, which many others have
neglected. More recent works [3,22–24] confirmed the benefits of such an approach and
used the concept of visibility matrices for encoding information between a surface point
and a set of valid viewpoints.

In the context of space discretization and feature-driven approaches, further publi-
cations [20,25,26] suggested the characterization of the positioning space for the sensor
using tessellated spheres to reduce the 6D sensor positioning problem to a 2D orientation
optimization problem. Similarly, Refs. [27,28] introduced the concept of visibility maps to
encode feature visibility mapped to a visibility sphere. Years later, Refs. [29,30] considered
variations of this approach for their viewpoint planning systems. The major shortcomings
of techniques considering a problem reduction is that most of them require a fixed working
distance, which limits their applicability for other sensors and reduces their efficiency for
the computation of multi-feature acquisition.

In the context of laser scanners, other relevant works, such as Refs. [31–33], also
considered solutions to first synthesize a search space before searching for feasible solutions.
Additionally, the publication of [34] needs to be mentioned, since, besides [21], this is one
of the few studies that considered viewpoint visibility for multisensor systems using a
lookup table.

Sampling-Based
Many other works [35–39] do not rely on the explicit characterization of a search

space and assess the satisfiability of each viewpoint constraint individually by sampling
the search space using metaheuristic optimization algorithms, e.g., simulated annealing
or evolutionary algorithms. Such approaches concentrate on the adequate and efficient
formulation of objective functions to satisfy the viewpoint constraints and find reason-
able solutions.

1.2.2. Non-Model Based

In contrast, non-model based approaches require no a priori knowledge; the object
can be utterly unknown to the planning system. In this case, online exploratory techniques
based on the captured data are used to compute the next best viewpoint [26,40–43]. Most
of these works focus on reconstruction tasks and address the problem as the next-best-view
planning problem. Since our work is considered a feature-driven approach requiring a
priori knowledge of the system, this line of research will be not further discussed.

1.2.3. Comparison and Need for Action

Although over the last three decades, many works presented well-grounded solutions
to tackle the VPP for individual applications, a generic approach for solving the VPP has
not been established yet for commercial or industrial applications nor research. Hence,
we are convinced that a well-founded framework, comprising a consistent formulation
of viewpoints constraints combined with a model-based synthesis approach, while also
considering a continuous solution space, has the greatest potential to search for viewpoints
that efficiently satisfy different viewpoint constraints.
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Synthesis vs. Sampling: Within the related works, we have found recent publications
following an explicit synthesis and sampling techniques of solution spaces for the same
applications. Hence, a clear trend towards any of these model-based approaches could not
be identified. On the one hand, sampling methods can be especially advantageous and
computationally efficient within simple scenarios while considering few constraints. On the
other hand, model uncertainties and nonlinear constraints are more difficult to model using
objective functions and, within multi-feature scenarios, the computation efficiency can be
severely affected. Therefore, we believe that this problem can be solved more efficiently
based on C-spaces composed of explicit models of all regarded viewpoint constraints
within applications comprising robot systems and partially known environments with
modeling uncertainties.

Continuous vs. Discrete Space: Most of the latest research has followed a synthesis
approach based on visibility matrices or visibility maps to encode the surface space and
viewpoint space together for a handful of applications and systems [3,22–24,30]. Although
these works have demonstrated the use of discrete spaces to be practical and efficient,
from our point of view, its major weakness lies in the intrinsic limited storage capacity and
processing times associated with matrices. This limitation directly affects the synthesis of
the solution space considering just a fixed distance between sensor and object. Moreover,
in the context of RVS, limiting the robot’s working space seems to be in conflict with the
inherent and most appreciated positioning flexibility of robots. Due to these drawbacks and
taking into account that the fields of view and working distances of sensors have increased
and will continue to do so, we believe that the discretization of the solution space could
become inefficient for certain applications at some point.

Problem Formulation: Many of the revised works considering synthesized model-
based approaches posed the VGP formulation on the fundamentals of set theory. However,
our research suggests that a consistent mathematical framework, which promotes a generic
formulation and integration of viewpoint constraints, has not been appropriately placed.
Hence, we consider that an exhaustive domain modeling and consistent theoretical math-
ematical framework are key elements to provide a solid base for a holistic and generic
formulation of the VGP.

1.3. Outline

After providing an overview of the related work that has addressed the VPP and VGP
in Section 1.2, first, Section 2 presents the domain models of generic RVSs used through the
present study. Then, Section 3 poses the formulation VGP from another perspective and
introduces the concept of C-spaces to tackle this problem. Section 4 exploits the introduced
formulation, and different viewpoint constraints are formulated, characterized, and verified.
Then, Section 5 assesses the validity of the proposed formulations and characterization
of C-spaces and demonstrate its potential and generalization using a real RVS. Finally,
Section 6 presents a summary and conclusions of this paper. In addition, a comprehensive
set of supplemental material (e.g., simulation video, C-spaces meshes, renders) is digitally
attached to this publication. An overview of the paper outline is presented in Figure 2.

Figure 2. Outline.
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1.4. Contributions

Our publication presents the fundamental concepts of a generic framework comprising
innovative and efficient formulations to compute valid viewpoints based on C-spaces to
solve the fundamental sub-problem of the VPP, i.e., the VGP. The key contributions of this
paper are summarized as follows:

• Mathematical, model-based, and modular framework to formulate the VGP based on
C-spaces and generic domain models.

• Formulation of nine viewpoint constraints using linear algebra, trigonometry, ge-
ometric analysis, and Constructive Solid Geometry (CSG) Boolean operations, in
particular:

– Efficient and simple characterization of C-space based on sensor frustum, feature
position, and feature geometry.

– Generic characterization of C-spaces to consider bi-static nature of range sensors
extendable to multisensor systems.

• Exhaustive supporting material (surface models, manifolds of computed C-spaces, ren-
dering results) to encourage benchmark and further development (see supplementary
material).

Additionally, we consider the following principal advantages associated with the
formulation of C-spaces:

• Determinism, efficiency, and simplicity: C-spaces can be efficiently characterized using
geometrical analysis, linear algebra, and CSG Boolean techniques.

• Generalization, transferability, and modularity: C-spaces can be seamlessly used and
adapted for different vision tasks and RVSs, including different sensor imaging sensors
(e.g., stereo, active light sensors) or even multiple range sensor systems.

• Robustness against model uncertainties: Known model uncertainties (e.g., kinematic
model, sensor, or robot inaccuracies) can be explicitly modeled and integrated while
characterizing C-spaces. If unknown model uncertainties affect a chosen viewpoint,
alternative solutions guaranteeing constraint satisfiability can be found seamlessly
within C-spaces.

In combination with a suitable strategy, C-spaces can be straightforwardly integrated
into a holistic approach for entirely solving the VPP. The use of C-spaces within an adequate
strategy represents the second sub-problem of the VPP, which falls outside the scope of
this paper and will be handled within a future publication.

2. Domain Models of a Robot Vision System

This section outlines the generic domain models and minimal necessary parameters
of an RVS, including assumptions and limitations, required to characterize the individual
C-spaces in Section 4.

We consider an RVS, a complex mechatronical system that comprises the following
domains: a range sensor (s) that is positioned by a robot (r) to capture a feature ( f ) of an object
of interest (o) enclosed within an environment (e). Figure 3 provides an overview of the RVS
domains and some parameters described within this section.
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BTCP
s

Bf2

Bs1
s Bs2

s

Robot (r)

Object (o) and Features (f1, f2) Sensor (s)

Bf1

Occluding Object κe

from Environment (e)

Figure 3. Overview of the RVS domains and kinematic model.

2.1. General Notes

General Requirements This paper follows a systematic and exhaustive formulation of the
VGP, the domains of an RVS, and the viewpoint constraints to characterize C-spaces
in a generic, simple, and scalable way. To achieve this, and similar to previous
studies [11,33,36], throughout our framework the following general requirements
(GR) are considered: generalization, computational efficiency, determinism, mod-
ularity and scalability, and limited a priori knowledge. The given order does not
consider any prioritization of the requirements. A more detailed description of the
requirements can be found in Table A1.

Terminology Based on our literature research, we have found that a common terminology
has not been established yet. The employed terms and concepts depend on the related
applications and hardware. To better understand the relation of our terminology
to the related work and in an attempt towards standardization, whenever possible,
synonyms or related concepts are provided. Please note that in some cases, the
generality of some terms is prioritized over their precision. This may lead to some
terms not corresponding entirely to our definition; therefore, we urge the reader to
study these differences before treating them as exact synonyms.

Notation Our publication considers many variables to describe the RVS domains compre-
hensively. To ease the identification and readability of variables, parameters, vectors,
frames, and transformations, we use the index notation given in Table A2. Moreover,
all topological spaces are given in calligraphic fonts, e.g., V ,P , I , C, while vectors,
matrices, and rigid transformations are bold. Table A3 provides an overview of the
most frequently used symbols.

2.2. General Models

Kinematic model Each domain comprises a Kinematics subsection to describe its kinematic
relationships. In particular, all necessary rigid transformations (given in the right-
handed system) are introduced to calculate the sensor pose. The pose p of any element
is given by its translation t ∈ R3 and a rotation component that can be given as a
rotation matrix R ∈ R3x3, Z-Y-X Euler angles r = (αz, β

y
, γx)T or a quaternion q ∈ H.

For readability and simplicity purposes, we use mostly the Euler angle representation
throughout this paper. Considering the special orthogonal SO(3) ⊂ R3x3, the pose p ∈
SE(3) is given in the special Euclidean group SE(3) = R3 × SO(3) [44]). f ps ∈ SE(3)
in the feature’s coordinate system B f :
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f ps =
f
sT

=
f
oT f · o

wTe · w
rTe · rsTr.

(1)

It is assumed that all introduced transformations are roughly known and given in the
world (w) coordinate system or any other reference system. Moreover, we also consider
a summed alignment error εe in the kinematic chain to quantify the sensor’s positioning
inaccuracy relative to a feature.

Surface model A set of 3D surface models κ ∈ K characterizes the volumetric occupancy
of all rigid bodies in the environment. The surface models are not always explicitly
mentioned within the domains. Nevertheless, we assume that the surface model of
any rigid body is required if this collides with the robot or sensor or impedes the
sensor’s sight to a feature.

2.3. Object

This domain considers an object (o) (related terms: object of interest, workpiece, artifact,
measurement object, inspection object, or test object) that contains the features to be
acquired.

Kinematics The origin coordinate system of o is located at frame Bo. The transformation
to the reference coordinate system is given in the world coordinate system Bw
by w

oTe.

Surface Model Since our approach does not focus on the object but rather on its features,
the object may have an arbitrary topology.

2.4. Feature

A feature ( f ) (related terms: region, point or area of interest, inspection feature, key
point, entity, artifact) can be fully specified considering its kinematic and geometric param-
eters, i.e., frame B f and set of surface points G f (L f ), which depend on a set of geometric
dimensions L f :

f := (B f , G f (L f )). (2)

Kinematics We assume that the translation ot f and orientation or f of the feature’s origin
is given in the object’s coordinate system Bo. In the case that the feature’s orientation
is given by its minimal expression, i.e., just the feature’s surface normal vector on f .
The full orientation is calculated by letting the feature’s normal to be the basis z-
vector oez

f = on f and considering the rest basis vectors oex
f and oey

f to be mutually
orthonormal. The feature’s frame is given as follows:

B f =
oT f (

ot f , or f ). (3)

Geometry While a feature can be sufficiently described by its position and normal vector, a
broader formulation is required within many applications. For example, dimensional
metrology tasks deal with a more comprehensive catalog of geometries, e.g., edges,
pockets, holes, slots, and spheres.
Thus, the present study explicitly considers the geometrical topology of a feature and
a more extensive model of it [15,28]. Let the feature topology be described by a set of
geometric parameters, denoted by L f , such as the radius of a hole or a sphere or the
lengths of a square.

Generalization and Simplification Moreover, we consider a discretized geometry model
of a feature comprising a finite set of surface points corresponding to a feature g f ∈ G f

with g f ∈ R3. Since our work primarily focuses on 2D features, it is assumed that
all surface points lie on the same plane, which is orthogonal to the feature’s normal
vector on f and co-linear to the z-axis of the feature’s frame B f .
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Towards providing a more generic feature model, the topology of all features is
approximated using a square feature with a unique side length of {l f } ∈ LF and five
surface points g f ,c, c = {0, 1, 2, 3, 4} at the center and at the four corners of the square.
Figure 4 visualizes this simplification to generalize diverse feature geometries.

g f ,4

l f

Generalized
Square Feature

g f ,2g f ,1

g f ,0

g f ,3

Figure 4. A square feature with the length l f comprising five surface points g f ,c is used to generalize
any feature topology, e.g., a circle, a slot, or a star (complex geometry).

2.5. Sensor

We consider a sensor (s) (related terms: range camera sensor, 3D sensor, imaging
system) a self-contained acquisition device comprising at least two imaging devices
{s1, s2} ∈ S̃ (e.g., two cameras or a camera and a lighting source) capable of comput-
ing a range image containing depth information. Such sensors can be classified by the
principles used to acquire this type of depth information, e.g., triangulation, intensity,
or time of flight [45]. The present work does not explicitly distinguish between these
acquisition principles. Moreover, this subsection outlines a generic and minimal sensor
model that is in line with our framework. Note that even though the present report focuses
primarily on range sensors, the models can also be considered for single imaging devices.

Kinematics The sensor’s kinematic model considers the following relevant frames: BTCP
s ,

Bs1
s , and Bs2

s . Taking into account the established notation for end effectors within the
robotics field, we consider that the frame BTCP

s lies at the sensor’s tool center point
(TCP). We assume that the frame of the TCP is located at the geometric center of the
frustum space and that the rigid transformation re f

TCPTs to a reference frame such as
the sensor’s mounting point is known.
Additionally, we consider that frame Bs1

s lies at the reference frame of the first imaging
device that corresponds to the imaging parameters Is. We assume that the rigid
transformation re f

s1 Ts between the sensor lens and a known reference frame is also

known. re f
s2 Ts provides the transformation of the second imaging device at the frame

Bs2
s . The second imaging device s2 might be a second camera considering a stereo

sensor or the light source origin in an active sensor system.

Frustum space The frustum space I-space (related terms: visibility frustum, measurement
volume, field-of-view space, sensor workspace) is described by a set of different sensor
imaging parameters Is, such as the depth of field ds and the horizontal and vertical
field of view (FOV) angles θx

s and ψ
y
s . Alternatively, some sensor manufacturers may

also provide the dimensions and locations of the near hnear
s , middle hmiddle

s , and far
h f ar

s viewing planes of the sensor. The sensor parameters Is allow only the topology of
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the I-space to be described. To fully characterize the topological space in the special
Euclidean, the sensor pose ps must be considered:

I s := I s(ps, Is) ={ps ∈ SE(3),

(ds, hnear
s , h f ar

s , θx
s , ψ

y
s ) ∈ Is}

. (4)

The I-space can be straightforwardly calculated based on the kinematic relationships
of the sensor and the imaging parameters. The resulting 3D manifold I s is described
by its vertices V I s

k := V k(I s) = (Vx
k , Vy

k , Vz
k )

T with k = 1, . . . , l and corresponding
edges and faces. We assume that the origin of the frustum space is located at the
TCP frame, i.e., BIs

s = BTCP
s . The resulting shape of the I-space usually has the form

of a square frustum. Figure 5 visualizes the frustum shape and the geometrical
relationships of the I-space.

hnear
s

�

VI s
1 , VI s

5

BTCP
s

y

z

x
Bf

ds = hmiddle
s

h f ar
s

I s

Bs1
s

Bs2
s

θx
s

VI s
2 , VI s

6

VI s
3 , VI s

7

VI s
4 , VI s

8

�
f β

y
s

ps

Figure 5. Detailed kinematic and imaging model of the sensor in the x-z plane. The frustum space I s
is spanned by the imaging parameters of the sensor (ds, hnear

s , h f ar
s , θx

s , ψ
y
s ) ∈ Is considering a sensor

pose ps. The I-space is described by a minimum of eight vertices V I s
1−8 (note that in this 2D view the

vertices 5–8 lie on the far x-z plane and that the FOV angle ψ
y
s is not illustrated).

Range Image A range image (related terms: 3D measurement, 3D image, depth image,
depth maps, point cloud) refers to the generated output of the sensor after triggering a
measurement action. A range image is described as a collection of 3D points denoted
by gs ∈ R3, where each point corresponds to a surface point of the measured object.

Measurement accuracy The measurement accuracy depends on various sensor parameters
and external factors and may vary within the frustum space [21]. If these influences
are quantifiable an accuracy model can be considered within the computation of the
C-space. For example, ref. [34] proposed a method based on a Look-Up Table to
specify quality disparities within a frustum.

Sensor Orientation When choosing the sensor pose for measuring an object’s surface
point or a feature, additional constraints must be fulfilled regarding its orientation.
One fundamental requirement that must be satisfied to guarantee the acquisition
of a surface point is the consideration of the incidence angle f ϕs (related terms:
inclination, acceptance, view, or tilt angle). This angle is expressed as the angle



Robotics 2023, 12, 108 11 of 59

between the feature’s normal n f and the sensor’s optical axis (z-axis) ez
s and can be

calculated as follows:

f ϕmax
s > | f ϕs|, f ϕs = arccos

(
n f · ez

s

|n f | · |ez
s |

)
. (5)

The maximal incidence angle f ϕmax
s is normally provided by the sensor’s manufac-

turer. If the maximal angle is not given in the sensor specifications, some works have
suggested empirical values for different systems. For example, ref. [46] propose a
maximum angle of 60◦ [47] suggests 45◦, while [48] propose a tilt angle of 30◦ to 50◦.
The incidence angle can also be expressed on the basis of the Euler angles (pan, tilt)
around the x- and y-axes: f ϕs(

f β
y
s , f γx

s ).

Furthermore, the rotation of the sensor around the optical axis is given by the Euler
angle αz

s (related terms: swing, twist). Normally, this angle does not directly influence
the acquisition quality of the range image and can be chosen arbitrarily. Nevertheless,
depending on the lighting conditions or the position of the light source while consid-
ering active systems, this angle might be more relevant and influence the acquisition
parameters of the sensor, e.g., the exposure time. Additionally, if the shape of the
frustum is asymmetrical, the optimization of αz

s should be considered.

2.6. Robot

The robot (related terms: manipulator, industrial robot, positioning device) has the
main task of positioning the sensor to acquire a range image.

Kinematics The robot base coordinate frame is placed at Br. We assume that the rigid
transformations between the robot basis and the robot flange, r

fr
Tr, and between

the robot flange and the sensor, fr
sTr, are known. We also assume that the Denavit-

Hartenberg (DH) parameters are known and that the rigid transformation r
fr

Tr(DH)

can be calculated using an inverse kinematic model. The sensor pose in the robot’s
coordinate system is given by

r ps =
r
sTr =

r
fr

Tr · fr
sTr. (6)

The robot workspace is considered to be a subset in the special Euclidean, thus
Wr ⊆ SE(3). This topological space comprises all reachable robot poses to position
the sensor r ps ∈ Wr.

Robot Absolute Position Accuracy It is assumed that the robot has a maximal absolute
pose accuracy error of εr in its workspace and that the robot repeatability is much
smaller than the absolute accuracy; hence, it is not further considered.

2.7. Environment

The environment domain comprises models of remaining components that were not
explicitly included by other domains. Particularly, we consider all other rigid bodies that
may collide with the robot or affect the visibility of the sensor, e.g., fixtures, external axes,
robot cell components. Thus, if the environment domain comprises rigid bodies, these
must be included in the set of surface models κe ∈ K.

2.8. General Assumptions and Limitations

The previous subsections have introduced the formal models and parameters to char-
acterize an RVS. Hereby, we present some general assumptions and limitations considered
within our work.

• Sensor compatibility with feature geometry: Our approach assumes that a feature
and its entire geometry can be captured with a single range image.
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• Range Image Quality: The sensor can acquire a range image of sufficient quality.
Effects that may compromise the range image quality and have not been previously re-
garded are neglected include measurement repeatability, lighting conditions, reflection
effects, and random sensor noise.

• Sensor Acquisition Parameters: Our work does not consider the optimization of
acquisition sensor parameters such as exposure time, gain, and image resolution,
among others.

• Robot Model: Since we assumed that a range image can just be statically acquired,
a robot dynamics model is not contemplated. Hence, constraints regarding velocity,
acceleration, jerk, or torque limits are not considered within the scope of our work.

3. Problem Formulation

This section first introduces the concept of generalized viewpoints and briefly de-
scribes the viewpoint constraints considered within the scope of our work. Then, the
modularization of the VPP and formulation of the VGP as a geometric problem are in-
troduced to understand the placement of the present study. In Section 3.5, C-spaces are
introduced within the context of Configuration Spaces as a practical and simple approach
for solving the VGP. Moreover, considering that various viewpoint constraints must be
satisfied to calculate a valid viewpoint, we outline the reformulation of the VGP based on
C-spaces within the framework of Constraint Satisfaction Problems.

3.1. Viewpoint and V-Space

Although the concept of generalized viewpoints has been introduced by some of the
related works (the concept of a generalized viewpoint was first introduced by [7] and was
later used by [11,36]), there seems to be no clear definition of a viewpoint v. Hence, in this
study, while considering a feature-centered formulation, we define a viewpoint as being
a triple of the following elements: a sensor pose ps ∈ SE(3) to acquire a feature f ∈ F
considering a set of viewpoint constraints C̃ from any domain of the RVS:

v := ( f , ps, C̃).

Additionally, we consider that any viewpoint that satisfies all constraints is an element
of the viewpoint space (V-space):

v ∈ V . (7)

Hence, the V-space can be formally defined as a tuple comprising a feature space
denoted by a feature set F and the C-space FC (C̃), which satisfies all spatial viewpoint
constraints to position the sensor:

V := (F, FC (C̃)).

Note that within this publication, we only consider spatially viewpoint constraints affect-
ing the placement of the sensor. As given by the limitations of our work in Section 2.8, addi-
tional sensor setting parameters are not explicitly addressed. Nevertheless, for purposes of
correctness and completeness, let these constraints be denoted by C̃s, then Equation (7) can
be extended as follows:

( f , ps, C̃, C̃s) ∈ V .

3.2. Viewpoint Constraints

To provide a comprehensive model of a generalized viewpoint and assess its validity,
it is necessary to formulate a series of viewpoint constraints. Hence, we propose an abstract
formulation of the viewpoint constraints needed to acquire a feature successfully. The
set of viewpoint constraints ci ∈ C̃, i = 1, . . . , j comprises all constraints ci affecting the
positioning of the sensor; hence, the validity of a viewpoint candidate. Every constraint ci
can be regarded as a collection of domain variables of the RVS under consideration, e.g.,
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the imaging parameters Is, the feature geometry length l f , the maximal incidence angle
f ϕmax

s .
This subsection provides a general description of the constraints; a more compre-

hensive formulation and characterization are handled individually within Section 4. An
overview of the viewpoint constraints considered in our work is given in Table A4.

Although some related studies [11,12,20,36] also considered similar constraints, the
main differences in our formulations are found in their explicit characterization and inte-
gration with other constraints. While some of these works assess a viewpoint’s validity in a
reduced 2D space or sampled space, our work focuses on characterizing each constraint
explicitly in a higher dimensional and continuous space.

3.3. Modularization of the Viewpoint Planning Problem

The necessity to break down the VPP into two sub-problems can be better understood
by considering the following minimal problem formulation based on [20]:

Problem 1. How many viewpoints are necessary to acquire a given set of features?

We believe that considering a multi-stage solution to tackle the VPP can reduce its
complexity and contribute to a more efficient solution. Thus, in the first step, we consider
the modularization of the VPP and address its two fundamental problems separately: the
VGP and the Set Covering Problem (SCP).

First, we attribute to the VGP the computation of valid viewpoints to acquire a single
feature considering a set of various viewpoint constraints. Moreover, in the context of
multi-feature scenarios and presuming that all features cannot be acquired using a single
viewpoint, the efficient selection of more viewpoints becomes necessary to complete the
vision task, with which arises a new problem, that is, the SCP.

This paper concentrates on the comprehensively formulation of the VGP; thus, this
problem is discussed more extensively in the following sections. Although our work
focuses on a feature-based approach, the concept of features can be also be extended to
surface points or areas of interest.

3.4. The Viewpoint Generation Problem

The VGP (related terms: optical camera placement, camera planning) and concept of
viewpoints can be better understood considering a proper formulation:

Problem 2. Which is a valid viewpoint v to acquire a feature f considering a set of viewpoint
constraints C̃?

A viewpoint v exists, if there is at least one sensor pose ps that can capture a feature
f and only if all j viewpoint constraints C̃ are fulfilled. The most straightforward way
to find a valid viewpoint for Problem 2 is to assume an ideal sensor pose p0

s and assess
its satisfiability against each constraint using a binary function hi : (p0

s , ci)→ true. If the
sensor pose fulfills all j constraints, the viewpoint is valid. Otherwise, another sensor pose
must be chosen and the process must be repeated until a valid viewpoint is found. The
mathematical formulation of such conditions is expressed as follows:

v ={( f , p0
s , C̃) ∈ V

| f ∈ F, p0
s ∈ SE(3),

⋂

ci∈C̃

hi : (p0
s , ci)→ true}.

(8)

The formulation of a generalized viewpoint as given by Equation (8) can be consid-
ered one of the most straightforward formulations to solve the VGP, if for each viewpoint
constraint, a Boolean condition can be expressed. For instance, by introducing such cost
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functions for different viewpoint constraints, several works [9,21,36,37,49–51] demon-
strated that optimization algorithms (e.g., greedy, genetic, or even reinforcement learning
algorithms) can be used to find local and global optimal solutions within polynomial times.

3.5. VGP as a Geometrical Problem in the Context of Configuration Spaces

Although the generalized viewpoint model as given by Equation (8) yields a sufficient
and generic formulation to solve the VGP, this formulation is inefficient considering real
applications with model uncertainties. System modeling inevitably involves discrepancies
between virtual and real-world models, particularly within dynamically changing envi-
ronments. Due to such model inconsistencies, considering optimal viewpoints to acquire
a feature could be regarded as ineffective and inefficient in some applications. Hence, in
our opinion, it is more reasonable to treat the VGP as a multi-dimensional problem and to
consider multiple valid solutions throughout its formulation.

A sound solution for the VGP will require characterizing a continuous topological
space comprising multiple solutions that allow deviation from an optimal solution and
efficient choice of an alternative viewpoint. This challenge embodies the core motivation of
our work to formulate and characterize C-spaces.

If the VGP can be handled as a spatial problem that can be solved geometrically, we refer
to the use of configuration spaces, as introduced by [52,53] and exhaustively studied by [54]
in the well-studied motion planning field for solving geometrical path planning problems.

“Once the configuration space is clearly understood, many motion planning problems
that appear different in terms of geometry and kinematics can be solved by the same
planning algorithms. This level of abstraction is therefore very important.” [54]

In our work, we use the general concepts of configuration spaces based on the for-
mulation of topological spaces to characterize the manifold spanned by a viewpoint con-
straint—the C-space. A C-space should not be confused with the configuration space
(C-Space) used within the motion planning field to characterize the robot’s joint configura-
tion space.

3.6. VGP with Ideal C-Spaces

Following the notation and concepts behind the modeling of configuration spaces, we
first consider a modified formulation of Problem 2 and assume an ideal system (i.e., sensor
with an infinite field of view, without occlusions and neglecting any other constraint) for
introducing some general concepts.

Problem 3. Which is the ideal C-space C∗ to acquire a feature f ?

Sticking to the notation established within the motion planning research field, let us
first consider an ideal, unconstrained space denoted as C∗ ⊆ SE(3)

C∗ =R3 × SO(3)

={ps ∈ C∗, ps ∈ SE(3)} (9)

={ps(ts, rs) ∈ C∗

| ts ∈ R3, rs ∈ SO(3)},

which is spanned by the Euclidean Space R3 and the special orthogonal group SO(3), and
holds all valid sensor poses ps to acquire a feature f . An abstract representation of the
unconstrained C-space C∗ is visualized in Figure 6.
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C∗ C3

C1

C2

C

Bf

Figure 6. Abstract and simplified 2D representation of the ideal C-space C∗ without viewpoint
constraints; if viewpoint constraints are considered, the intersection of the corresponding C-spaces,
e.g., C1, C2, C3, forms the C-space C .

3.7. VGP with C-Spaces

The ideal C-space as given by Equation (9) considers a sufficient generic model that
spans an ideal solution space to solve the VGP. Assuming a non-ideal RVS where a
viewpoint must satisfy a handful of requirements, an extended formulation of the C-space
admitting viewpoint constraints is introduced within this subsection.

3.7.1. Motivation

The VGP recalls the formulation of decision problems, a class of computational prob-
lems, which has been widely researched within different applications. Inspired by other
research fields dealing with artificial intelligence and optimization of multi-domain ap-
plications, we observed that decision problems, including multiple constraints, can be
well formulated under the framework of Constraint Satisfaction Problems (CSP) [55]. This
category of problems does not consider an explicit technique to formulate the constraints
under consideration. Moreover, a consistent, declarative, and simple representation of the
domain’s constraints can be decisive for their efficient resolution [56].

3.7.2. Formulation

Formulating the VGP as a CSP requires a proper formulation to consider viewpoint
constraints in the first step; hence, let Problem Formulation 2 be extended by the following:

Problem 4. Which is the C-space C spanned by a set of viewpoint constraints C̃ to acquire a
feature f ?

The C-space denoted as
C := C ( f , C̃) (10)

can be understood as the topological space that all viewpoint constraints from the set C̃
span in the special Euclidean group so that the sensor can capture a feature f fulfilling
all of these constraints. The C-space that a single viewpoint constraint ci ∈ C̃ spans is
analogously given:

C i := C i( f , ci).

To guarantee a consistent formulation and integration of various viewpoint constraints,
within our framework we consider the following characteristics for the formulation of
C-spaces:
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1. If an i constraint, ci, can be spatially modeled, there exists a topological space denoted
as C i, which can be ideally formulated as a proper subset of the special Euclidean:

C i ⊆ SE(3).

In a broader definition, we consider that the topological space for each constraint
is spanned by a subset of the Euclidean Space denoted as T s ⊆ R3 and a special
orthogonal group subset given by Rs ⊆ SO(3). Hence, the topological space of a
viewpoint constraint is given as follows:

C i = T s × Rs

={ps ∈ C i, ps ∈ SE(3)} (11)

={ps(ts, rs) ∈ C i

| ts ∈ T s, rs ∈ Rs}.

2. If there exists at least one sensor pose in the i C-space ∃ ps ∈ C i, then this sensor pose
fulfills the viewpoint constraint ci to acquire feature f ; hence, a valid viewpoint exists
( f , ps, ci) ∈ V .

3. If there exists a topological space, C i, for each constraint ∀ci ∈ C̃ then the intersection
of all individual constrained spaces constitutes the joint C-space C ⊆ SE(3):

C (C̃) =
⋂

ci ∈ C̃

C i(ci). (12)

4. If the joint constrained space is a non-empty set, i.e., C 6= ∅, then there exists at least
one sensor pose ∃ ps ∈ C and consequently a viewpoint ( f , ps, C̃) ∈ V that fulfills all
viewpoint constraints.

An abstract representation of the C-spaces and the resulting topological space C
intersected by various viewpoint constraints is depicted in Figure 6. It is worth mentioning
that although the framework considers an independent formulation of each viewpoint
constraint, the real challenge consists of characterizing each constraint individually to
maintain a high generalization and flexibility of the framework (cf. Table A1).

4. Methods: Formulation, Characterization, and Verification of C-Spaces

This section outlines the formulation and characterization of the C-spaces of all view-
point constraints considered in the scope of this paper (see Table A4). First, Section 4.1
introduces the core constraint, which is built up based on the imaging parameters of the
sensor, which are characterized by the I-space. Then, Section 4.2 shows how C-spaces
can be combined to span a topological space in the special Euclidean group using differ-
ent sensor orientations. We systematically analyze how the sensor frustum space can be
used to describe a C-space in SE(3) and introduce simple and generic formulations for
its computation.

While Sections 4.1 and 4.2 introduced the core constraints for characterizing C-spaces,
the following Sections 4.3–4.8 deal with the characterization of the remaining viewpoint
constraints. Moreover, Section 4.9 presents one possible strategy to integrate all C-spaces,
demonstrating the advantages of a consistent and modular characterization.

The formulations presented in this section are motivated by the general requirements
(cf. Table A1) that aim to deliver a high generalization of the models to facilitate their
use with different RVSs and vision tasks. Hence, whenever possible, the characterization
of some constraints using simple scalar arithmetic is prioritized over more complex tech-
niques, and simplifications are introduced for the benefit of pragmatism, efficiency, and
generalization of the approaches considered.
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4.1. Frustum Space, Feature Position, and Fixed Sensor Orientation

This section shows how the feature position and the frustum space I-space can be
directly employed to characterize a C-space, which fulfills the first viewpoint constraint
for a fixed sensor orientation. For the benefit of the comprehension of the concepts intro-
duced within this subsection, we consider a feature as just a single surface point with a
normal vector.

4.1.1. Formulation

Base Constraint Formulation In the first step, we introduce a simple condition for the
first constraint, c1 := c1(g f ,0, ps, I s), which considers the feature (minimally represented
by a surface point), and the frustum space, which is characterized by all imaging parameters
and the sensor pose. Let c1 be fulfilled for all sensor poses ∀ ps ∈ SE(3), if and only if
the feature surface point lies within the corresponding frustum space at the regarded
sensor pose:

c1 ⇐⇒ g f ,0 ∈ I s(ps). (13)

Problem Simplification with fixed Sensor Orientation Due to the limitations of some
sensors regarding their orientation, it is a common practice within many applications to
define and optimize the sensor orientation beforehand. Then, the VGP can be reduced to an
optimization of the sensor position ts. Hence, let condition (13) be reformulated to consider
a fixed sensor orientation r f ix

s ∈ SO(3) and to be true for all sensor positions ∀ ts ∈ R3 that
fulfill following condition:

c1 ⇐⇒ g f ,0 ∈ I s(ps(ts, rs = r f ix
s )). (14)

Constraint Reformulation based on Constrained Spaces Recalling the idea of ge-
ometrically characterizing any viewpoint constraint (see Section 3.7), we find that the
viewpoint constraint formulation of Equation (14) to be unsatisfactory. We believe that this
problem can be solved efficiently using geometric analysis and assume there exists a topo-
logical space denoted by C1 := C1(c1), which can be characterized based on the I-space
considering a fixed sensor’s orientation. If such space exists, then all sensor positions
within it fulfill the viewpoint constraint given by Equation (14).

Combining the formulation for C-spaces given by Equation (11) and the viewpoint
constraint condition from Equation (14), the formal definition of the topological space C1
is given:

C1 = {∀ ps(ts, rs = r f ix
s ) ∈ C1

| ∀ ts ∈ T s, r f ix
s ∈ Rs, g f ,0 ∈ I s}.

(15)

4.1.2. Characterization

Within the framework of our research, we found out that the manifold of C1 can
be characterized in different ways. This subsection presents two possible solutions to
characterize the C-space as given by Equation (15) using analytic geometry. The manifolds
of the computed C-spaces and additional supporting material from this and the following
subsections are found in the digital appendix of this publication.

1. Extreme Viewpoints Interpretation The simplest way to understand and visualize
the topological space C1 is to consider all possible extreme viewpoints to acquire
a feature f . These viewpoints can be easily found by positioning the sensor so
that each vertex (corner) of the I-space, V I s

k , lies at the feature’s origin B f , which
corresponds to the position of the surface point g f ,0. The position of such an extreme

viewpoint corresponds to the k vertex V C1
k ∈ VC1 of the manifold C1. Depending on

the positioning frame of the sensor BTCP
s or Bs1

s , the space can be computed for the
TCP(TCPC1) or the sensor lens (s1

C1). The vertices can be straightforwardly computed
following the steps given in Algorithm A1. The left Figure 7 illustrates the geometric
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relations for computing C1 and a simplified representation of the resulting manifolds
in R2 for the sensor TCP BTCP

s and lens Bs1
s .

2. Homeomorphism Formulation Note that the manifold re f C1 illustrated in Figure 7a
has the same topology as the I-space. Thus, it can be assumed there exists a home-
omorphism between both spaces such that h : I s → C1. Letting the function h
correspond to a point reflection over the geometric center of the frustum space, the
vertices of the manifold Vre f C1 can be straightforwardly estimated following the steps
described in the Algorithm 1. The resulting manifold for the TCP frame is shown in
Figure 7b.

Algorithm 1 Homeomorphism Characterization of the Constrained Space C1

(a) Consider a constant sensor orientation re f r f ix
s to acquire a feature f .

(b) Position the sensor reference frame at the feature’s surface point origin re f p f
s (re f ts =

B f ).
(c) For each k vertex of the frustum space, compute its reflection transformation h across

the reference pivot frame Bre f
s

re f V re f C1
k = h(V I s

k (re f ts = B f ), Bre f
s ).

(d) Connect all vertices from Vre f C1 analogously to the vertices of the frustum space
VI s to obtain the re f C1 manifold.

s1
VC1

3 = Bs1
s

TCPC1

y

z

x

TCPVC1
3 = BTCP

s

VI s
3

s1
C1

Bf I s

(a) Extreme Viewpoint Formulation: Characterization of
C-space C1 by positioning all vertices of I s at the feature’s
frame B f .

TCPC1
VI s

3

BTCP
s = Bf

Bs1
s

y

z

x

TCPVC1
3 (TCPts = Bf )

Bf

(b) Homeomorphism Formulation: Characterization of
C-space TCPC1 by reflecting all vertices of I s around the
feature’s frame B f .

Figure 7. Geometrical characterization of the C-space C1 using the frustum space with two different
approaches.

General Notes We considered the steps described in Algorithm 1 to be the most
traceable strategy using a homeomorphism to compute the constrained space re f C1. Never-
theless, we do not refuse any alternative approach for its characterization. For instance, the
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same manifold of re f C1 for any reference frame can also be obtained by first computing the

reflection model of the frustum space I∗s over its geometric center at BI s
s :

h : (BI s
s , I s)→ I∗s . (16)

The manifold of I∗s can then be simply translated to the desired reference frame so
that BI

∗
s

s = Bre f
s , considering that the TCP must be positioned at the origin of the feature

TCP p f
s (TCPts = B f , re f r f ix

s ).
Moreover, our approach considers that the topological space spanned by C1 exists if

the following conditions hold:

• the frames of all vertices of the frustum space V s,i(I s), i = 1..j are known,
• the frustum space is a watertight manifold,
• and the space between connected vertices of the frustum space is linear; hence, adjacent

vertices are connected only by straight edges.

Throughout this paper, we characterize most of the C-spaces considering just the
reference frame for the sensor lens s1; hence, if not stated otherwise, consider C1 := s1

C1.

4.1.3. Verification

Any of the two formulations presented in this subsection can be straightforwardly
extended to characterize the C-space C1 in SE(3). However, we found the homeomorphism
formulation to be the most practical way to compute the C1 manifold. Hence, to verify the
characterization of C1 using this approach, we first defined a sensor orientation in SE(3)
denoted as f0 r f ix

s to acquire the feature f0. We then computed the I-space manifold using
a total of j = 8 vertices with the imaging parameters of s1 from Table A6 and computed
the reflected manifold of the I-space I∗s as proposed by Equation (16). Some sensors
might consider a variation of the FOV between the near-middle planes and the middle-far
planes. Hence, in such cases 12 vertices would be necessary to characterize the frustum
space correctly. If the slope between the near and far planes is constant, eight vertices are
sufficient. In the next step, we transformed I∗s using the rigid transformation

f
s1 T = TCP p f

s (TCPts = B fo , TCPrs =
f0 r f ix

s )

to obtain the C-space manifold TCPC1 for the sensor TCP frame and the transformation
f

s1 T =
f

TCPT · TCP
s1

T to characterize the manifold s1
C1 for the sensor lens frame.

Figure 8 shows the resulting C1 manifolds considering different sensor orientations.
The left Figure 8a visualizes the s1

C1 and TCPC1 manifolds considering the following

orientation in SE(3): f0 r f ix
s (αz

s = 170◦, β
y
s = 5◦, γx

s = 45◦). On the other hand, Figure 8b
visualizes the C-spaces just for the sensor lens considering two different sensor orientations.

To assess the validity of the characterized C-spaces, we selected eight extreme sensor
poses lying at the vertices of each C-space manifold

{ps,1(ts = V C1
1 , rs =

f0 r f ix
s ), . . . ,

ps,8(ts = V C1
8 , rs =

f0 r f ix
s )} ∈ C1

and computed their corresponding frustum spaces I s(ps,1), . . . , I s(ps,8). Our simulations
confirmed that the feature f0 lay within the frustum space for all extreme sensor poses,
hence satisfying the core viewpoint condition (14). Some exemplary extreme sensor poses
and their corresponding I-space are shown in the Figure 8. The rest of the renders, mani-
folds of the C-spaces, frames, and object meshes for this example and following examples
can be found in the digital supplement material of this paper.

As expected, the computational efficiency for characterizing one C-space showed
a good performance with an average computation time (30 repetitions) of 4.1 ms and
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a standard deviation of σ = 2.4 ms. The computation steps comprise a read operation
of the vertices (hard-coded) of the frustum space as well as the required reflection and
transformation operations of a manifold with eight vertices.

s1
C1(

f0r f ix
s )

B f0

s1
ps,2

s1
ps,1

I s(ps,1)

I s(ps,2)

TCPC1(
f0r f ix

s )

TCPps,2

TCPps,1

(a) C-spaces manifolds s1
C1(

f0 r f ix
s ) (blue-filled) and

TCPC1(
f0 r f ix

s ) (transparent with blue edges) in SE(3) consid-

ering a fixed orientation f0 r f ix
s (αz

s = 170◦, β
y
s = 5◦, γx

s = 45◦).

B f0

ps,1

I s(ps,1)

I s(ps,2)

C1(
f0rs,2(β

y
s = −30◦))

C1(
f0rs,1(β

y
s = −25◦))

ps,2

(b) C-spaces manifolds considering two different sensor ori-
entations C1(

f0 rs,1(α
z
s = 180◦, γx

s = 0◦, β
y
s = −25◦)) and

C1(
f0 rs,2(α

z
s = 180◦, γx

s = 0◦, β
y
s = 30◦)).

Figure 8. Characterization of different C-spaces C1( f0, I s, f0 rs) (blue manifolds) in SE(3) considering
different sensor orientations using the homeomorphism formulation. The I-spaces (green manifolds)
corresponding to different evaluated extreme viewpoints demonstrate that the feature f0 can be
captured even from a sensor pose lying at the vertices of the C-space; hence, any sensor pose within
the C-space ps ∈ C1 can also be considered valid.

4.1.4. Summary

This subsection outlines the formulation and characterization of the fundamental
C-space C1, which is characterized based on the sensor imaging parameters, the feature
position, and a fixed sensor orientation. Using an academic example, we demonstrated that
any sensor pose (fix orientation) within C1 was valid to acquire the regarded feature satis-
fying the imaging sensor constraints. Moreover, two different strategies were proposed to
efficiently characterize such a topological space based on fundamental geometric analysis.

The formulations and characterization strategies introduced in this subsection are
considered the backbone of our framework. The potential and benefits of the core C-space
C1 are exploited within the following subsections to consider the integration of additional
viewpoint constraints.

4.2. Range of Orientations

In the previous subsection, the formulation of C-spaces for a fixed sensor orientation
was introduced. Based on this formulation, this subsection outlines the formulation of a
topological space in the special Euclidean group SE(3), which allows a variation of the
sensor orientation.

Within the scope of our work, and taking into account applications that comprise an a
priori model of the object and its features as well as the problem simplification addressed
in Section 4.1, we consider it unreasonable and inefficient to span a configuration space that
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comprises all orientations in Rs ⊆ SO(3). This assumption can be confirmed by observing
Figure 8b, which demonstrates that the topological space, which will allow sensor rotations
with an incidence angle of −25◦ and 30◦, does not exist.

For this reason, we consider it more practical to span a configuration space, which
comprises a minimal and maximal sensor orientation range rmin

s ≤ rs ≤ rmax
s ∈ R f

s instead
of an unlimited space with all possible sensor orientations. The minimal and maximal
orientation values can be defined considering the sensor limitations given by the second
viewpoint constraint.

4.2.1. Formulation

First, consider the range of sensor orientations with

rs,m ∈ Rs, rmin
s ≤ rs,m ≤ rmax

s , m = 1, . . . , n,

and let the C-space for a single orientation as given by Equation (15) be extended as follows:

C2(Rs) ={ps(ts, rs,m) ∈ C2(Rs)

| ts ∈ T s, g f ,0 ∈ I s,

rs,m ∈ Rs, Rs ⊆ R f
s }.

(17)

The topological space, which considers a range of sensor orientations, and denoted by
C2(Rs), can be seamlessly computed by intersecting the individual configuration spaces
for each m orientation:

C2(Rs) =
n⋂

rs,m∈Rs ,
C1(rs,m, I s, B f ). (18)

4.2.2. Characterization

The C-space C2(Rs) as given by Equation (18) can be seamlessly computed using CSG
Boolean Intersection operations. Considering that each intersection operation yields a new
manifold with more vertices and edges, it is well known that the computation complexity
of CSG operations increases with the number of vertices and edges. Thus, to compute
C2(Rs) in a feasible time, a discretization of the orientation range must be first considered.

One simple and pragmatic solution is to consider different sensor orientations comprising
the maximal and minimal allowed sensor orientations, e.g., (rmin

s , rideal
s, , rmax

s ) ∈ Rs. Figure 9a il-
lustrates the 2D C1 manifolds of five different sensor orientations {−20

◦
,−10

◦
, 0
◦
, 10

◦
, 20

◦} ∈ β
y
s

using a discretization step of rd
s = 10◦ for the positioning frames TCP TCPC2(Rs) and sensor

lens frame s1
C2(Rs). The C2 manifolds are characterized by intersecting all individual

spaces C1 as given by Equation (18).
As can be observed from Figure 9b,c, it should be noted that the manifolds s1

C2
and TCPC2 span different topological spaces (here in SE(1)) depending on the selected
positioning frame. Contrary to the C-spaces s1

C1 and TCPC1 considering a fixed sensor
position, the selection of the reference positioning frame should be considered before
computing C2 and taking into account the explicit requirements and constraints of the
vision task.
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Figure 9. (a) Characterization of C-spaces in R2
s1
C2(Rs) and TCPC2(Rs) for different positioning

frames with the following range of sensor orientations {−20
◦
,−10

◦
, 0
◦
, 10

◦
, 20

◦} ∈ β
y
s . (b) Verification

of two different viewpoints using sensor lens at positioning frame { f0
s1 ps,1(β

y
s = 20

◦
), f0

s1 ps,2(β
y
s =

−20
◦
)} ∈ s1

C2(Rs). (c) Verification of two different viewpoints using sensor TCP as positioning frame

{ f0
TCP ps,1(β

y
s = 20

◦
), f0

TCP ps,2(β
y
s = −20

◦
)} ∈ TCPC2(Rs).

Discretization without Interpolation Note that C2(Rs) spans a topological space that
is just valid for the sensor orientations in Rs and that the sensor orientation rs
cannot be arbitrary chosen within the range rmin

s < rs < rmax
s . This character-

istic can be more easily understood by comparing the volume form, Vol, of the
C-spaces C2(rmin

s , rmax
s ) and C2(rmin

s , rideal
s, , rmax

s ), which would show that the C-space
C2(rmin

s , rmax
s ) is less restrictive:

Vol(C2(rmin
s , rmax

s )) > Vol(C2(rmin
s , rideal

s, , rmax
s )). (19)

This characteristic can particularly be appreciated in the top of the s1
C2(rmin

s , rmax
s )

manifold in Figure 9a. Thus, it should be kept in mind that the constrained space
C2(Rs) does not allow an explicit interpolation within the orientations of Rs.

Approximation of C2 However, as can be observed from Figure 9, the topological space
spanned while considering a step size of 10◦, C2(Rs(rd

s = 10◦)), is almost identical
to the space if we would relax the step size to 20◦, C2(Rs(rd

s = 20◦)). Hence, it can
be assumed for this case that the C-spaces are almost identical and the following
condition will hold:

C2(Rs(rd
s = 10◦)) ≈ C2(Rs(rd

s = 20◦)). (20)

4.2.3. Verification

For verification purposes, we consider an academic example with the following sensor
orientation ranges: γx

s = {−5, 0, 5}◦, β
y
s = {−5, 0, 5}◦, and αz

s = {−10, 0, 10}◦. The result-
ing C-space, C2(Rs), was computed by intersecting the constrained space C1( f0, Is, f rs) for
each possible sensor orientation combination, i.e., 33 = 27 sensor orientations (cf. Section 4.1).
The computation time correspond to t(C2(Rs)) = 15 s. Figure A1 visualizes the 6D man-
ifold of the C-space obtained through Boolean intersection operations. Additionally, the
ideal constrained space considering a null rotation is also displayed to show a qualitative
comparison of the reduction of the C-space considering a rotation space in SE(3).



Robotics 2023, 12, 108 23 of 59

For verifying the validity of the computed manifold, four extreme viewpoints and
their corresponding frustum spaces are displayed in Figure A1 considering the following
random orientations:

f rs,1(γ
x
s = 5◦, β

y
s = 0◦, αz

s = 10◦),
f rs,2(γ

x
s = 0◦, β

y
s = −5◦, αz

s = −10◦),
f rs,3(γ

x
s = −4◦, β

y
s = −5◦, αz

s = −8◦),
f rs,4(γ

x
s = 3◦, β

y
s = −3◦, αz

s = −9◦).

Note that while the first two viewpoints consider an explicit orientation within the
given orientation range { f rs,1, f rs,2} ∈ Rs, the sensor orientation of the third and fourth
viewpoints are not elements of { f rs,3, f rs,4} /∈ Rs; however, they lie within the interpolation
range. The frustum spaces prove that all viewpoints can capture f satisfactorily. Although
the sensor poses ps,3 and ps,4 as valid in this case, this assumption cannot be guaranteed
for any other arbitrary orientation. Nevertheless, this confirms that the approximation
condition as given by Equation (20) holds to some extent.

To provide a more quantifiable evaluation of this approximation, the constrained space,
C2, considering finer discretization steps rd

s of 2.5◦ and 1◦ for γx
s and β

y
s was computed.

The total number of computed manifolds corresponds to 5× 5× 3 = 75 C-spaces with
t(C2(2.5◦)) = 40 s for rd

s = 2.5◦ and 11× 11× 3 = 363 C-spaces with t(C2(1
◦)) = 720 s

for rd
s = 2.5◦. The relative volumetric ratio between the computed spaces is given as

follows: Vol(C2(1
◦))/Vol(C2(2.5◦)) = 0.9999 and Vol(C2(1

◦))/Vol(C2(5
◦)) = 0.9995.

These experiments show that the differences between the manifold volume ratios for the
selected steps are insignificant and that the approximation with a step of rd

s = 2.5◦ holds
for this case.

General Notes It is important to note that the validity of the approximation introduced
by Equation (20) must be individually assessed for each individual application, imaging
parameters, and other constraints. Some preliminary experiments showed that when
considering further viewpoint constraints that depend on the sensor orientation, e.g.,
the feature geometry (see Section 4.3), the differences between the spaces using different
discretization steps may be more considerable. A more comprehensive analysis falls
outside the scope of this study and remains to be further investigated. We urge the reader
to perform some empirical experiments for choosing an adequate discretization step and a
good trade-off between accuracy and efficiency.

4.2.4. Summary

Contrary to the previously introduced C-space C1 which is limited to a fixed sensor
orientation, this subsection outlined the formulation and characterization of the C-space
C2 in SE(3) that satisfies the sensor imaging parameters for different sensor orientations.
We demonstrated that the manifold C2 is straightforwardly characterized by intersecting
multiple C-spaces with different sensor orientations.

4.3. Feature Geometry

In many applications, the feature geometry is a fundamental viewpoint constraint that
may considerably limit the space in SE(3) for positioning the sensor. This subsection shows
that the required C-space affected by the feature geometry can be efficiently and explicitly
characterized using trigonometric relationships that depend on the feature geometry, the
sensor’s FOV angles, and the sensor orientation.

4.3.1. Formulation

Taking into account the third viewpoint constraint (see Section 2.8), it can be assumed
that all feature surface points G f (L f ) must be acquired simultaneously. The C-space that
fulfills this requirement can be easily formulated by extending the base constraint of C1 as
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given by Equation (15), considering that all surface points must lie within the frustum space:

C3 ={∀ ps(ts, r f ix
s ) ∈ C3(C1, G f (L f ), r f ix

s , I s)

| ∀ ts ∈ T s, r f ix
s ∈ Rs, G f (L f ) ⊆ I s}.

(21)

4.3.2. Generic Characterization

Taking into account the generic formulation of the C-space C3 from Equation (21), in
the simplest case, it can be assumed that C3 could be obtained by scaling C1. Let the required

scaling vector be denoted by ∆(r f ix
s , L f , θx

s , ψ
y
s ) and depend on the feature geometry, the

sensor rotation, and the FOV angles of the sensor. The generic characterization of the C3
manifold can then be expressed as follows

C3 = C1(∆(r f ix
s , L f , θx

s , ψ
y
s )).

Recalling that the C1 manifold is not symmetrical in all planes, hence, the rotation
variation assumes that the C3 manifold cannot be correctly scaled regarding the same
scaling vector. Thus, a more generic and flexible approach can then be considered by letting

each k vertex of ∀ V C1
v,k ∈ VC1

v be individually scaled. Hence, each vertex of C3 can be
computed with

V C3
k = V C1

k − ∆k(r f ix
s , L f , θx

s , ψ
y
s ), (22)

considering the following generalized vector:

∆k(r f ix
s , L f , θx

s , ψ
y
s ) =




∆x
k (r f ix

s , L f , θx
s , ψ

y
s )

∆y
k(r f ix

s , L f , θx
s , ψ

y
s )

∆z
k(r f ix

s , L f , θx
s , ψ

y
s )


. (23)

The explicit characterization of the scaling vector from Equation (23) requires an
individual and comprehensive trigonometric analysis of each k vertex of C3, which depends
on the chosen sensor orientation. Moreover, since the scaling vector ∆k depends also on
the feature geometrical properties, from now on we will assume the generalization of the
feature geometry as introduced in Section 2.4 to characterize any feature by a square of
the length l f . This simplification contributes to a higher generalization of our models for
different topologies and facilitates the comprehension of the trigonometric relationships
introduced in the following subsections.

4.3.3. Characterization of the C-Space with Null Rotation

The most straightforward scenario to quantify the influence of the feature geometry
on the constrained space is first to consider a null rotation, f r0

s , of the sensor relative to
the feature, i.e., the feature’s plane is parallel to the xy-plane of the TCP and the rotation
around the optical axis equals zero, f r0

s (γ
x
s = β

y
s = αz

s = 0).
First, span the core constrained space, C1, considering the feature position and the null

rotation of the sensor. Then, parting from one vertex of C1, let the I-space be translated in
one direction until I s entirely encloses the whole feature. This step is exemplary, shown in
the x-z plane in Figure 10 at the third vertex of C1, and can be interpreted as an analogy
to the Extreme Viewpoints Interpretation (cf. Section 1) used to span C1. Then, it is easily

understood that to characterize C3 all vertices ∀ V C1
v,k ∈ VC1

v of C1 must be shifted in the x
and y directions by a factor of 0.5 · l f :

∆x
k (r0

s , l f ) = 0.5 · l f
∆y

k(r0
s , l f ) = 0.5 · l f

∆z
k(r0

s , l f ) = 0.
(24)
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C1

Δx
3

C3

Δx
4

Δx
1 Δx

2

Bf

l f
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z
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Δx
1−8 = Δy

1−8 = 0.5 · l f

Figure 10. Characterization of the C-space C3 considering a null rotation f r0
s over the feature f : scale

all vertices of C1 in the x− and y−axes considering the feature geometric length of 0.5 · l f .

4.3.4. Rotation around One Axis

Any other sensor orientation different from the null orientation requires an individ-
ual analysis of the exact trigonometric relationships for each vertex. To break down the
complexity of this problem, within this subsection, we first provide the geometrical rela-
tionships needed to characterize the constrained space C3 while considering an individual
rotation around each axis. The characterization of the constrained spaces follows the same
approach described in the previous subsection, which requires first the characterization of
the base constraint, C1, and then the derivation of the scaling vectors.

• Rotation around z-axis αz
s 6= 0 Assuming a sensor rotation around the optical axis,

f rz
s(α

z
s 6= 0, ϕs(β

y
s , γx

s ) = 0) (see Figure 11), the C-space is scaled just along the vertical
and horizontal axes, using the following scaling factors:

∆x
k (rz

s , l f ) =
l f
2 · (cos(|αz

s |) + sin(|αz
s |))

∆y
k(rz

s , l f ) =
l f
2 · (cos(|αz

s |) + sin(|αz
s |))

∆z
k(rz

s , l f ) = 0.

(25)

The derivation of the trigonometric relationships from Equation (25) can be better
understood by looking at Figure A2.
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1−8 = 0.5 · l f · (cos(|αz
s|) + sin(|αz
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VI s
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Figure 11. Characterization of the vertices of the C-space, C3, considering a rotation around the
optical axis f rz

s(α
z
s 6= 0, ϕs(β

y
s , γx

s ) = 0).
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• Rotation around x-axis or y-axis (γx
s 6= 0Yβ

y
s 6= 0): A rotation of the sensor around the

x-axis, rs(γ
x
s 6= 0, αz

s = β
y
s = 0), or y-axis, rs(β

y
s 6= 0, αz

s = γx
s = 0), requires deriving

individual trigonometric relationships for each vertex of C3. Besides the feature length,
other parameters such as the FOV angles (θx

s , ψ
y
s ) and the direction of the rotation must

be considered.
The scaling factors for the eight vertices of the C-space while considering a rotation
around the x-axis or y-axis can be found in Table A5 regarding the following general
auxiliary lengths for f rs(α

z
s = γx

s = 0, β
y
s 6= 0) (left) and for f rs(α

z
s = β

y
s = 0, γx

s 6= 0)
(right):

ρz,y =
l f

2
· sin(|βy

s |) ρz,x =
l f

2
· sin(|γx

s |)

ρx =
l f

2
· cos(|βy

s |) ρy =
l f

2
· cos(|γx

s |)
ςx =2 · ρz,y · tan(0.5 · θx

s ) ςy = 2 · ρz,x · tan(0.5 · ψy
s )

ςx,y =2 · ρz,y · tan(0.5 · ψy
s ) ςy,x = 2 · ρz,x · tan(0.5 · θx

s )

λx =ρx − ςx λy = ρy − ςy

σx =ρx + ςx σy = ρy + ςy.

The derivation of the trigonometric relationships can be better understood using an ex-
emplary case. First, assume a rotation of the sensor around the y-axis of β

y
s > 0 ∧ γx

s = 0, as
illustrated in Figure 12. The trigonometric relationships can then be derived for each vertex
following the Extreme Viewpoints Interpretation as exemplary and depicted in Figure A3).

Δx
4 = σx

Δz,y
1−4 = ρz,y

Δ4

Δ3
Δ1

C3

Bf

l f

Δ2Δx
1 = ρx

Δx
2 = λx

Δx
3 = ρx

Figure 12. Characterization of the vertices of the C-space, C3, considering a rotation around the y-axis
f ry

s (γ
x
s = αz

s = 0, β
y
s < 0).

4.3.5. Generalization to 3D Features

Although our approach contemplates primary 2D features, the constrained space C3
can be seamlessly extended to acquire 3D features considering a feature height h f ∈ L f .

This paper only considers the characterization of the scaling vectors for concave (e.g.,
pocket, slot) and convex (e.g., cube, half-sphere) features with a null rotation of the sensor,
f r0

s . For instance, the back vertices (k = 1, 2, 5, 6) of C3 to capture a concave feature, as
shown in Figure 13, must be scaled using the following factors:

∆x
k =h f · tan(0.5·θx

s ) + 0.5·l f

∆y
k =h f · tan(0.5·ψy

s ) + 0.5·l f (26)

∆z
k =h f .
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The front vertices are scaled using the same factors as for a 2D feature as given by
Equation (24). For convex features, let all vertices be scaled with the factors given by
Equation (26), except for the depth delta factor of the back vertices, which follows ∆z

k = 0.
Note that the characterization of the C-space, C3, for considering 3D features just

guarantees that the entire feature surface lies within the frustum space. We neglect any fur-
ther visibility constraints that may influence the viewpoint’s validity, such as the maximal
angles for the interiors of a concave feature. Moreover, it should be noted that the scaling
factors given within this subsection hold for just a null rotation. The characterization of
the scaling factors for other sensors orientations can also be derived by extending the
previously introduced relationships for 2D features in Section 4.3.4.

0.5·l f

Δ4

0.5·θx
s

h f

C3

Bf

l f

h f

h f · tan(0.5 · θx
s )

Figure 13. Characterization of the vertices of the C-space, C3, considering a 3D feature and null
rotation f r0

s .

4.3.6. Verification

The verification of the geometrical relationships introduced within this subsection
was performed based on an academic example to acquire a square feature f1 and a 3D
pocket feature f ∗1 . The C-spaces for f1, i.e., C3,1(

f1 rs,1) and C3,2(
f1 rs,2), consider a sensor

orientation of f1 rs,1(α
z
s = β

y
s = 0, γx

s = 30◦) and f1 rs,2(γ
x
s = β

y
s = 0, αz

s = 15◦), while the
C-space C3,3(

f ∗1 rs,3) for f ∗1 considers a null sensor orientation f ∗1 rs,3(α
z
s = β

y
s =, γx

s = 0◦).
All constrained spaces were computed using the imaging parameters of sensor s1 (cf.
Table A6) and geometric parameters of the features from Table A7.

Figure 14 visualizes the scene comprising the C-spaces for acquiring f1 and f ∗1 . All
C3,1−3 manifolds were computed by scaling first the manifold of the frustum space, consid-
ering the scaling factors addressed within the past subsections, and then by reflecting and
transforming the manifold with the corresponding sensor orientation (for C3,1 see Table A5,
for C3,2 see Equation (25), and for C3,3 see Equation (26)).

To verify the geometrical relationships introduced within this subsection, a virtual
camera using the trimesh Library [57] and the imaging parameters of s1 were created. Then,
the depth images and their corresponding point clouds at eight extreme viewpoints, i.e.,
the manifold vertices, were rendered to verify that the features could be acquired from
each viewpoint. The images and point clouds of all extreme viewpoints confirm that the
features lie at the border of the frustum space and can be entirely captured. Figure A4a–c
demonstrate this empirically and show the depth images and point clouds at the selected
extreme viewpoints ( f1 ps,1, f1 ps,2, f ∗1 ps,3) from Figure 14.

Our approach provides an analytical and straightforward solution for efficiently
characterizing the C-space which is limited by the frustum space and feature geometry.
Since the delta factors can be applied directly to the vertices of the frustum space, the
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computational cost is similarly efficient to the computation time of C1 with an average
computation time of 5.8 ms and σ = 3.2 ms.

C3,1(
f1rs,1)f1 ps,1

B f1
= B f ∗1

C3,3(
f ∗1 rs,3)

f1 ps,2
C3,2(

f1rs,2)
f ∗1 ps,3

Figure 14. Characterization of diverse C-spaces in SE(3), considering the feature geometry to capture
a 2D square feature f1 and a 3D pocket feature f ∗1 . The exemplary scene displays two C-spaces for
acquiring feature f1 with two different sensor orientations, C31

( f1 rs,1) and C32
( f1 rs,2), one C-space

C33
( f ∗1 rs,3) for capturing f ∗1 , and the frames of one extreme viewpoint at each constrained space.

4.3.7. Summary

This subsection extended the formulation of the core C-space C1 (see Section 4) to a
C-space C3, taking into account the feature’s geometry dimensions. Using an exhaustive
trigonometric analysis, our study introduced the exact relationships to characterize the
vertices of the required multi-dimensional manifold, considering a generalized model of
the feature geometry, the sensor’s orientation, and its FOV angles. Our findings show that
the characterization of the C-space constrained by the feature geometry can be computed
with high efficiency using an analytical approach.

The trigonometric relationships introduced in this section are sufficient to characterize
the C-space manifold while taking into account the rotation of the sensor in one axis.
Characterizing the explicit relationships for a simultaneous rotation of the sensor in all axes
is beyond the scope of this paper. However, the trigonometric relationships and general
approach presented in this subsection can be used as the basis for their derivation.

4.4. Constrained Spaces Using Scaling Vectors

If a viewpoint constraint can be formulated using scaling vectors, as suggested for
the feature geometry in Section 4.3, then the same approach can be equally applied to
characterize the constrained space of different viewpoint constraints. This subsection
introduces a generic formulation for integrating such viewpoint constraints and proposes
characterizing kinematic errors and the sensor accuracy following this approach.

4.4.1. Formulation

If the influence of an i viewpoint constraint ci ∈ C̃ can be characterized by a scaling
vector ∆(ci) to span its corresponding constrained space, C i, then its vertices V C i can be
scaled using a generalized formulation of Equation (22):

V
C i
k = V C1

k − ∆(ci). (27)

Integrating Multiple Constraints The characterization of a jointed constrained space,
which integrates several viewpoint constraints, can be computed using different
approaches. On one hand, the constrained spaces can be first computed and in-
tersected iteratively using CSG operations, as originally proposed in Equation (12).
However, if the space spanned by such viewpoint constraints can be formulated
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according to Equation (27), the characterization of the constrained space C can be
more efficiently calculated by simply adding all scaling vectors:

V Ck (C̃) = V C1
k − ∑

ci ∈ C̃, i 6=1

∆(ci). (28)

While the computational cost of CSG operations is at least proportional to the number
of vertices between two surface models, note that the complexity of the sum of
Equation (28) is just proportional to the number of viewpoint constraints.

Compatible Constraints Within this subsection, we propose further possible viewpoint
constraints that can be characterized according to the scaling formulation introduced
by Equation (28).

• Kinematic errors: Considering the fourth viewpoint constraint and the assump-
tions addressed in Section 2.8, the maximal kinematic error ε is given by the sum
of the alignment error εe, the modeling error of the sensor imaging parameters
εs, and the absolute position accuracy of the robot εr:

|ε| = |εe|+ |εs|+ |εr|.

Assuming that the total kinematic error has the same magnitude in all directions,
all vertices can be equally scaled. The vertices of the C-space C4(ε) are computed
using the scaling vector ∆(ε):

V C4
k (∆(ε)) = V C1

k − ∆(ε)).

• Sensor Accuracy: If the accuracy of the sensor as can be quantified within the
sensor frustum, then similarly to the kinematic error, the manifold of the C-space
C5(as) can be characterized using a scaling vector ∆(as):

V C5
k (∆(as)) = V C1

k − ∆(as)).

Figure A5 visualizes an exemplary and more complex scenario comprising an indi-
vidual scaling of each vertex. This example shows the high flexibility and adaptability of
this approach for synthesizing C-spaces for different viewpoint constraints according to
the particular necessities of the application in consideration.

4.4.2. Summary

The use of scaling vectors is an efficient and flexible approach to characterizing the
C-space spanned by any viewpoint constraint. Within this section, we considered a few
viewpoint constraints that can be modeled aligned to this formulation. However, it should
be noted that this approach requires an explicit characterization of the individual scaling
vectors and the overall characterization may be limited by the number of vertices of the
base C-space C1(I s). For instance, our model of the I-space considers just eight vertices.
Thus, any viewpoint constraint that requires a more complex geometrical representation
could be limited by this.

Moreover, note that if the regarded viewpoint constraint can be explicitly characterized
as a manifold in SE(3), this C-space can then be directly intersected with the rest of the con-
straints as originally suggested by Equation (12); such an example is given for characterizing
the robot workspace (see Section 4.8.1). However, note that such an approach is generally
computationally more expensive; hence, this study recommends that the characterization
of viewpoint constraints using scaling vectors be prioritized whenever possible.
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4.5. Occlusion Space

We consider the occlusion-free view of a feature (related terms: shadow or bistatic
effect) a non-negligible requirement that must be individually assessed for each viewpoint.
In the context of our framework, this subsection outlines the formulation of a negative
topological space —the occlusion space Coccl

6 — to ensure the free visibility of each view-
point within the C-space. Although other authors [15,18,26] have already suggested the
characterization of such spaces, the present study proposes a new formulation of such a
space aligned to our framework. Our approach strives for an efficient characterization of
Coccl

6 using simplifications about the feature’s geometry and the occlusion bodies.

4.5.1. Formulation

If a feature f is not visible from at least one sensor pose within the C-space, it can be
assumed that at least one rigid body of the RVS is impeding its visibility. Thus, an occlusion
space for f denoted as Coccl

6 ⊂ SE(3) exists and a valid sensor pose cannot be an element of
it ps /∈ Coccl

6 . However, it is well known that the characterization of such occlusion spaces
can generally be computationally expensive. Therefore, it seems inefficient to formulate
Coccl

6 in the special Euclidean group for all possible sensor orientations. For this reason, and
by exploiting the available C-space spanned by other viewpoint constraints, Coccl

6 can be

formulated based on the previously generated C-space, a given sensor orientation r f ix
s , and

the surface models of the rigid bodies κ ∈ K:

Coccl
6 := Coccl

6 ( f , C , r f ix
s , K). (29)

Contrary to all other viewpoint constraint formulations (see Equation (11)), it must
be assumed that the occlusion space is not a subset of the C-space Coccl

6 * C . Hence, let
Equation (12) be reformulated as the set difference of the C-spaces of other viewpoint
constraints and the occlusion space:

C =




j⋂

i=1,i 6=6

C i


\ Coccl

6 . (30)

If the resulting constrained space results in being a non-empty set, C 6= ∅, there
exists at least one valid sensor pose for the selected sensor orientation with occlusion-free
visibility to the feature f .

4.5.2. Characterization

The present work proposes a strategy to compute Coccl
6 , which is broken down into

the following general steps. In the first step, the smallest possible number of view rays is
computed for detecting potential occlusions. In the second step, by means of ray-casting
techniques, view rays are tested for occlusion against all rigid bodies of the RVS. For
the interested reader, we refer to [58,59] for a comprehensive overview of ray-casting
techniques. Then, the occlusion space is characterized using a simple surface reconstruction
method using the colliding points of the rigid bodies and some further auxiliary points. In
the last step, the occlusion space is integrated with the C-space spanned by other viewpoint
constraints, as given by Equation (30).

Algorithm A2 describes more comprehensively all the steps to characterize the occlu-
sion space Coccl

6 , and Figure 15 provides an overview of the workflow and visualization
of the expected results of the most significant steps, considering an exemplary occluding
object κ1. A more comprehensive description of the characterization of the view rays
while using the C-space characterized by other viewpoint constraints can be found in the
Table A6.
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C3

ςg f ,1

g f ,1

g f ,0

g f ,2

ςg f ,2

ςg f ,0

dς

occlusion
body κ

qoccl,κ
f ∈ Qoccl,κ

f

(a) Step 1: A set of view rays (ςg f ,c
)

are computed for each c surface point
using the limits of the C-space C3.
Step 2: The occluding points (qoccl,κ

f )
of a rigid body are found using ray
casting.

g f ,1

ςoccl,κ
g f ,1

ςoccl,κ
g f ,2

g f ,0

ςoccl,κ
g f ,0

g f ,0

g f ,2

∗qoccl,κ
f ∈ ∗Qoccl,κ

f

(b) Step 3: The occlusion rays (ςoccl,κ
g f ,c )

are computed between each c sur-
face point and all occlusion points
(qoccl,κ

f ).

Step 4: An additional point (∗qoccl,k
f )

is selected at each occlusion ray be-
yond the constrained space.

∗qoccl,κ
f ∈ ∗Qoccl,κ

f

qoccl,κ
f ∈ Qoccl,κ

f

C3\ Coccl,κ
6

Coccl,κ
6 = Hhull(Qoccl,k

f , ∗Qoccl,κ
f )

(c) Step 5: The occlusion space is
characterized using the convex hull
spanned by all colliding points and
the additional points lying at the oc-
clusion rays.

Figure 15. Overview of the computation steps of Algorithm A2 for the characterization of the
occlusion space Coccl,κ

6 induced by an occluding rigid body κ.

4.5.3. Verification

For verification purposes, we consider an academic example, which comprises an
icosahedron occluding the sight of feature f1. The dimensions and location of the occluding
object κ1 are described in Table A7. Figure A6 displays the related scene and the manifolds
of the computed occlusion space and corresponding occlusion-free space. In the first
step, the C-space for feature f1, considering its geometry, i.e., C3, and the following sensor
orientation f1 rs(α

z
s = γx

s = 0, β
y
s = 15◦) was characterized. In the second step, the manifold

of the occlusion space, Coccl
6 , was synthesized following the steps described in Algorithm A2.

A discretization step of dς = 0.5◦ was selected for computing the view rays ςg f ,c
.

Figure 16 shows the rendered point cloud and range image at one extreme viewpoint
within the resulting occlusion-free space. The rendered point cloud and image confirm that
although the occluding body lies within the frustum space of the viewpoint, the feature and
its entire geometry can still be completely captured. As expected, the computation of the
collision points using ray casting was the most computationally expensive step with a total
time of t(qoccl,κ

f ,c ) = 0.7 s, and the total time required for characterizing the occlusion-free

space corresponded to t(Coccl,κ
6 ) = 1.32 s.
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ps,1

Coccl,κ
6

C = C3\ C
occl,κ
6C = C3\ C

occl,κ
6

κ

C = C3\ C
occl,κ
6 C = C3\ C

occl,κ
6

Figure 16. Visualization of the occlusion C-space in SE(3) (red manifold) and the occlusion-free
space (blue manifold) to acquire a square feature f1 considering an occlusion body κ (icosahedron
in orange). Verification of occlusion-free visibility: rendered scene (left image), depth image (right
image in the upper corner), and detailed view of the rendered point cloud and object (right image
in the lower corner) at an extreme viewpoint ps,1 /∈ Coccl,κ

6 .

4.5.4. Summary

Within this subsection, a strategy that combines ray-casting and CSG Boolean tech-
niques to compute an occlusion space Coccl

6 was introduced. The present study showed
that the Coccl

6 manifold can be thoroughly integrated with the C-space spanned by other
viewpoint constraints, complying with the framework proposed within this publication.
Moreover, to enhance the efficiency of the proposed strategy, we considered a simplification
of the feature geometry, discretization of the viewpoint space, and the use of a previous
computed C-space.

Due to the aforementioned simplifications, it should be kept in mind that, contrary
to the other C-spaces, the Coccl

6 manifold does not represent the explicit and real occlusion
space and should be treated as an approximation of it. For example, a significant source of
error regarding the accurate identification of all occluding points is the chosen discretizing
step size for the computations of the view rays. This effect is known within ray-casting
applications and can also be observed in Figure 15, where the right corner point of the
colliding body is missed. Within the context of the present study, comprising robot systems,
we assume that such simplifications can be safely taken into consideration if the absolute
position accuracy of the robot is considered for the selection of the step size dς. For example,
assuming a conservative absolute accuracy of a robot of 1 mm and a minimum working
distance of 200 mm, it is reasonable to choose a step size of dς ≈ 0.3◦, using the arc length
formula (1 mm/200 mm) = 0.005 rad. Alternatively, more robust solutions can be achieved
by scaling the occlusion space with a safety factor.

Moreover, special attention must be given when computing the occlusion space as
suggested in Step 5 of Algorithm A2 for rigid bodies with hollow cavities, e.g., a torus. It
should be expected that the result of the occlusion space will be more conservative. A more
precise characterization of the occlusion space falls outside the scope of this paper and
could be achieved using more sophisticated surface reconstruction algorithms [60,61].

Finally, it is important to mention that the characterization of the occlusion space
may lead to a non-watertight manifold, which may complicate the further processing
of the jointed C-space. Thus, we recommend computing the occlusion space as the last
viewpoint constraint.
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4.6. Multisensor

Considering the intrinsic nature of a range sensor, in its minimal configuration, two
imaging devices (two cameras or one camera and one active projector) are necessary
to acquire a range image. Therefore, a range sensor can be regarded as a multisensor
system. Up to this point, it had been assumed that the C-space of a range sensor could
be characterized using just one frustum space I s and that the resulting C-space integrates
the imaging parameters and any other viewpoint constraints of all imaging devices of
a range sensor. On one hand, some of the previous introduced formulations and most
of the related work demonstrated that this simplification is in many cases sufficient for
computing valid viewpoints. On the other hand, this assumption could also be regarded as
restrictive and invalid for some viewpoint constraints. For example, the characterization
of the occlusion-free space as described in Section 4.5 will not guarantee free sight to both
imaging devices of a range sensor.

For this reason, our study assumes that each imaging device can have individual and
independent viewpoint constraints. As a result, we consider that an individual C-space can
be spanned for each imaging device. Furthermore, this section outlines a generic strategy
to merge the individual C-spaces of multiple imaging devices to span a common C-space
that satisfies all viewpoint constraints simultaneously.

To the best of our knowledge, none of the related work has considered viewpoint
constraints for the individual imaging devices of a range sensor or for multisensor systems.
In Section 5, the scalability and generality of our approach while considering a multisensor
system is demonstrated with two different range sensors.

4.6.1. Formulation

Our formulation is based on the idea that each imaging device can be modeled
independently and that all devices must simultaneously fulfill all viewpoint constraints.
First, considering the most straightforward configuration of a sensor with a set of two
imaging devices {s1, s2} ∈ S̃, we can assume that we have two different sensors with
two different frustum spaces I s1

= I0(s1
ps, Is1) and I s2

= I0(s2
ps, Is2) (cf. Section 2.5).

Thus, aligned to the formulation from Section 4.1, the core C-space for each sensor can be
expressed as follows:

Cs1
1 (s1

r f ix
s , I s1

, B f ) and Cs2
1 (s2

r f ix
s , I s2

, B f ).

In a more generic definition that considers all viewpoint constraints of s1 or s2, the
C-space is denoted as Cs1 := Cs1

1 ( f , C̃s1) or Cs2 := Cs2
1 ( f , C̃s2).

Considering that the rigid transformation s1
s2 Ts between the two imaging devices of a

sensor is known, it can be assumed that a valid sensor pose for the first imaging device
exists, if and only if the second imaging device also lies within in its corresponding C-space
simultaneously. The formulation of such condition follows

s1
ps ∈ Cs1 ⇐⇒ s2

ps(
s2
s1 Ts, ps1

) ∈ Cs2 , (31)

supposing that the reference positioning frame for the sensor is the first imaging device s1.
If the condition from Equation (31) is valid, there must exist a C-space for s1 that

integrates the viewpoint constraints of both lenses being denoted as Cs1.2
7 , which formulation

follows:
Cs1,2

7 = Cs1
7 (Cs2) ={s1

ps ∈ C
s1,2
7

| s1
r f ix

s ∈ R f
s , s2

ps(
s2
s1 Ts, s2

ps) ∈ Cs2}.
The joint space can then be integrated with the C-space for s1 employing a Boolean

intersection:
Cs1,2 = Cs1

⋂
Cs1,2

7 .
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A more generic formulation of the C-space of s1 being constrained by all imaging
devices st ∈ S̃ is given:

C S̃1 = Cs1
⋂

st∈S̃

Cs1,st
7 .

Analogously, C S̃2 denotes the space for positioning the imaging device s2 including
the constraints of s1.

4.6.2. Characterization

The C-space C S̃1 , which comprises all constraints of all imaging devices st ∈ S̃, can
be straightforwardly characterized following the five simple steps given in Algorithm A3.
Figure 17 visualizes the interim manifolds at each step to ultimately characterize the
manifold C S̃1 . Finally, Figure 17f shows an exemplary extreme viewpoint, where both
imaging devices frames are within their respective C-spaces s1

ps ∈ C S̃1 and s2
ps ∈ C S̃2 and

the feature geometry lies within both frustum spaces.
The space C S̃2 for the second imaging device can be computed analogously following

the same steps. However, the topology of the resulting C S̃2 will be identical to C S̃1 . Hence,
instead of repeating the steps described in Algorithm A3 for a second imaging device,
a more efficient alternative is to translate the manifold of C S̃1 to the position of s2 at

s2
ps(s2

ts = B f ) using the rigid translation

C S̃2 = translation(C S̃1 , s2
s1 Ts).

Note that if two imaging devices are the same orientation, the resulting C-spaces are
identical, hence C S̃1 = C S̃2 .

Cs1(s1
r f ix

s , �Cs1
v )

I s1

BTCP
s1

= Bf

(a) Step 1: Compute C-space
Cs1 (s1

r f ix
s , C̃s1 ) for imaging device

s1.

I s2

BTCP
s2

= Bf

Cs2(s2
r f ix

s (s1
r f ix

s ), �Cs2)

(b) Step 2: Compute
C-spaceCs2 (s2

r f ix
s (s1

r f ix
s ), C̃s2 )

for imaging device s2.

Cs1

BTCP
s1

s1
pCs2

s
I s2

s2
s1Ts

BTCP
s2

= Bf

Cs2

(c) Step 3: Compute the pose, p f ,s2
s1 ,

that the first sensor takes when
computing Cs2 .

Figure 17. Cont.
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Cs2

Cs1,2
7

(d) Step 4: Duplicate the manifold
Cs2 and translate it to s1

p f ,s2
s . Cs1,2

7
denotes the resulting manifold at
this position.

C �S1 = Cs1
� Cs1,2

7

(e) Step 5: The intersection between
Cs1,2

7 and Cs2 yields the space C S̃1

for sensor s1, which integrates all
viewpoint constraints of s2.

s1
ps s2

ps

C �S1

C �S2

(f) Repeat Steps 1–5 for the second
imaging device or duplicate and
translate manifold C S̃1 for comput-
ing C S̃2 .

Figure 17. Overview of the computation steps of Algorithm A3 to characterize the C-space C S̃1 that
integrates viewpoint constraints of the two imaging devices (s1, s2) from a range sensor.

4.6.3. Verification

The joint constrained spaces C S̃1 and C S̃2 for s1 and s2 were computed according to
the steps provided in Algorithm 1 for acquiring feature f1. The imaging parameters of both
sensors and rigid transformation between them are given in Table A6.

First, the C-spaces of both sensors were spanned considering their imaging parameters
and a null orientation of the first sensor, i.e., f rs,1(α

z
s = β

y
s = γx

s = 0◦). The individual
constrained spaces were computed for each sensor while considering the constrained space
affected by the feature geometry, i.e., Cs1

3 and Cs2
3 . Since the frustum space of the second

sensor always lies within the first one, we additionally considered a fictitious accuracy
constraint for the depth of the second sensor, Cs2

5 (as2(zmin = 500 mm, zmax = 700 mm)), to
limit its working distance.

Figure 18 visualizes the described scene and resulting manifolds of the constrained
spaces. Figure 19 displays the frustum spaces, rendered depth images of both sensors, and
the resulting point cloud at an extreme viewpoint. The rendered images provide a visual
verification of our approach, demonstrating that f1 is visible from both sensors. Note that
the second device represents an active structured light projector (see in Table A6).

The total computation time of the constrained space was estimated at 200 ms. The
computation time depended mainly on the intersection from Step 5, which corresponded
to 100 ms. The computation results only apply to this case. Such analyses are difficult to
generalize since the complexity of Boolean operations depends decisively on the number
of vertices of the manifolds of the occluding objects.
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C S̃1 = Cs1
⋂ Cs1,2

7
Cs2

Cs1

Cs1,2
7

C S̃2 = Cs2
⋂ Cs2,1

7

Figure 18. Characterization of the C-space for the first sensor in SE(3), C S̃1 (blue manifold), being
delimited by the C-space of the second sensor, Cs2 (orange manifold without fill), to acquire a square
feature f1. The C S̃2 (orange manifold) analogously characterizes the C-space for sensor s2, considering
the constraints of s1.

s2
pss1

ps

s1
ps

s2
psI s2

I s1

Figure 19. Verification of occlusion-free visibility at an extreme viewpoint s1
ps ∈ C S̃1 and s2

ps ∈ C S̃2 :
rendered scene (left image), depth images of s1 (right image in the upper corner) and s2 (right
image in the lower corner).

4.6.4. Summary

This subsection introduced the formulation and characterization of a C-space, which
considers the intrinsic configuration of range sensors comprising at least two imaging
devices. Our approach enables the combination of individual viewpoint constraints for each
device and the characterization of a C-space, which fulfills simultaneously all viewpoint
constraints from all imaging devices.

The strategy proposed in Algorithm A3 was demonstrated to be valid and efficient in
characterizing the manifolds of such a C-space. Nevertheless, we do not dispose alternative
approaches for its characterization. For instance, if the frustum spaces are intersected
initially, the resulting frustum space can be used as the base for spanning the rest of
the constraints. However, we consider the steps proposed within this subsection more
traceable, modular, and extendable to consider further constraints, multisensor systems, or
even transferable to similar problems. For example, a variation of the algorithm could be
applied to maximize or guarantee the registration space between two different viewpoints,
which represents a fundamental challenge within many vision applications [62].

4.7. Robot Workspace

This section outlines the formulation of the robot workspace as a further viewpoint
constraint to be seamlessly and consistently integrated with the other C-spaces.
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4.7.1. Formulation

A viewpoint can be considered valid if a sensor pose is reachable by the robot; hence,
it lies within the robot workspace ps ∈ Wr. The formulation of a constraint can then be
straightforwardly formulated as follows:

C8 =Wr = {ps ∈ C ,8 | ps ∈ Wr}. (32)

4.7.2. Characterization and Verification

In our work, we assume that the robot workspace is known and can be characterized
by a manifold in the special Euclidean group SE(3). Considering this assumption, the
constrained space C8 can be seamlessly intersected with the rest of the viewpoint constraints.
Figure 20 shows an exemplary scene for acquiring feature f1 and the resulting constrained
manifold C3

⋂ C8, which considers a robot with a workspace of a half-sphere and a
working distance of 1000 mm–1800 mm and the C-space manifold C3 spanned by the
feature geometry.

C3
⋂ C8

C8

C3

Figure 20. Characterization of the robot workspace as a further C-space C8 and integration with other
C-spaces, e.g., here C3, using a CSG Intersection Operation.

4.7.3. Summary

A more comprehensive formulation and characterization of the robot workspace to
consider singularities requires more detailed modeling of the robot kinematics. Further-
more, our study has not considered the explicit characterization of the collision-free space
of a robot, which had been the focus of exhaustive research in the last three decades. We
assume that an explicit proof for collision must be performed in the last step for a selected
sensor pose within the C-space. Nevertheless, we consider that our approach contributes
substantially to a significant problem simplification by delimiting the search space to
compute collision-free robot joint configurations more efficiently.

4.8. Multi-Feature Spaces

Up to this point, our work has outlined the formulation and characterization of
C-spaces to acquire just one feature. Within this subsection we briefly outline the character-
ization of a C-space,FC , which allows for the capture of a set of features F and the simulta-
neous fulfillment of all viewpoint constraints from all features fm ∈ F with m = 1, . . . , n.

4.8.1. Characterization

The characterization of FC can be seamlessly achieved according to the two steps
described in Algorithm A4. In the first step, the C-space for all n features, fmC , are character-
ized considering a fixed sensor orientation r f ix

s and the individual constraints C̃( fm). Then,
the constrained space FC is synthesized by intersecting all individual constrained spaces.
Figure 21 shows the characterization of such a space for the acquisition of two features.
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f2C

B
f2

Bf1

FC
f1C

Figure 21. The characterization of the C-space spanned by two features is computed by intersecting
its constrained spaces using the same sensor orientation.

4.8.2. Verification

To verify the proposed characterization of a constrained space for acquiring multiple
features, we outlined an exemplary use case comprising two features { f1, f2,} ∈ F (see
Table A7). We computed the space, FC , according to the steps of Algorithm A4, considering
an orientation of f1 rs(α

z
s = β

y
s = 0◦, γx

s = −10◦, ) relative to the feature f1. Figure A7 shows
the described scene and visualizes the resulting joint space. The rendered scene and range
images of Figure 22 confirm the validity of the FC , demonstrating that both features can be
simultaneously acquired at two extreme viewpoints within this space.

ps,1

I s(ps,2)

I s(ps,1)

ps,2
ps,2

ps,1

Figure 22. Verification of the FC at two extreme viewpoints {ps,1, ps,2}∈ FC : rendered scene (left
image) and depth images of ps,1(right image in the upper corner) and ps,2 (right image in the
lower corner).

4.8.3. Summary

Within this subsection, we demonstrated that C-spaces from different features can be
seamlessly combined to span a topological space that guarantees the acquisition of these
features, simultaneously satisfying the individual feature viewpoint constraints.

The current study assumes that the sensor orientation can be arbitrarily chosen and that
the features can be acquired jointly by the sensor. In most applications, such assumptions
cannot always be met and the following fundamental questions arise: which features can
be acquired simultaneously and which is an adequate sensor orientation? These questions
fall outside the scope of this paper and yield the motivation of our ongoing research, which
addresses the efficient combination of C-spaces to tackle the superordinated VPP.

4.9. Constraints Integration Strategy

The integration of viewpoint constraints can be considered to be commutative, i.e., the
order of computation and integration of the constraints do not affect the characterization



Robotics 2023, 12, 108 39 of 59

of the final constrained space. However, due to the diverse computation techniques
that our our framework considers, a well-thought-out strategy may contribute towards
increasing the computational efficiency of the overall process. In this publication, we outline
one possible and simple strategy described in Algorithm A5 to integrate all viewpoint
constraints into a single C-space.

The optimal integration of constraints falls outside the scope of this publication. More-
over, we consider that an optimal and efficient strategy can be tailored just by considering
the individual application and its specific constraints.

5. Results

Within this section, a comprehensive evaluation of the constraint formulations and
their integration is undertaken. First, Section 5.2 verifies the formulations of all regarded
viewpoint constraints of our work based on an academic example. In Section 5.3, the
framework’s broad generality and applicability is evaluated within an industrial RVS
comprising two different sensors.

5.1. Technical Setup

This section provides an overview of the hardware and software used for the character-
ization of the C-spaces within the following sections. We briefly introduce the considered
domains, parameters, and specifications that were employed to verify the individual
formulations of C-spaces presented in Section 4.

5.1.1. Domain Models

• Sensors: We used two different range sensors for the individual verification of the
C-spaces and the simulation-based and experimental analyses. The imaging param-
eters (cf. Section 2.5) and kinematic relations of both sensors are given in Table A6.
The parameters of the lighting source of the ZEISS Comet PRO AE sensor are conserva-
tively estimated values, which guarantee that the frustum of the sensor lies completely
within the field of view of the fringe projector. A more comprehensive description of
the hardware is provided in Section 5.

• Object, features, and occlusion bodies: For verification purposes, we designed an
academic object comprising three features and two occlusion objects with the charac-
teristics given in Table A7 in the Appendix A.

• Robot: We used a Fanuc M-20ia six-axis industrial robot and respective kinematic
model to compute the final viewpoints to position the sensor.

5.1.2. Software

The backbone of our framework was developed based on the Robot Operating System
(ROS) (Distribution: Noetic Ninjemys) [63]. The framework was built upon a knowledge-
based, service-oriented architecture. A more detailed overview of the general conceptualiza-
tion of the architecture and knowledge-base is provided in our previous works [64,65].

Most of our algorithms consist of generating and manipulating 3D manifolds. Hence,
based on empirical studies, we evaluated different open-source Python 3 libraries and used
them according to their best performance for diverse computation tasks. For example, the
PyMesh Library from [66] demonstrated the best computational performance for Boolean
operations. On the contrary, we used the trimesh Library [57] for verification purposes
and for performing ray-casting operations, due to its integration of the performance-
oriented Embree Library [67]. Additionally, for further verification, visualization, and user
interaction purposes, we coupled the ROS kinematic simulation to Unity [68] using the
ROS# library [69].

All operations were performed on a portable workstation Lenovo W530 running
Ubuntu 20.04 with the following specifications: Processor Intel Core i7-4810MQ @2.80 GHz,
GPU Nvidia 3000 KM, and 32 GB Ram.
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5.2. Academic Simulation-Based Analysis

This subsection presents a simple but thorough academic use case that considers all
introduced viewpoint constraints to perform an exhaustive evaluation of the presented
formulations. As stated in the introduction, with this present scenario we aim to provide a
first draft of a much-needed benchmark for other researchers that can be used as basis for
further development, reproducibility, and comparison. The surface models, the resulting
manifolds of the computed C-spaces, and the frustum spaces can be found attached in the
additional material of our publication.

5.2.1. Use Case Description

The exemplary case regards an RVS with two sensors and an object of interest contain-
ing three different features with different sizes and geometries. Table A8 gives a detailed
overview of the considered constraints. In addition to the imaging parameters of both range
sensors, all other parameters can be assumed to be fictitious though realistic. The kinematic
and imaging models corresponds to the real RVS, which is described in Section 5.3.1.

5.2.2. Results

Following the strategy described in Algorithm A5, the joint C-spaces of the four
imaging devices, i.e., FC S̃1 , FC S̃2 , FC S̃3 , and F,C S̃4 , were computed for acquiring all features
and considering all viewpoint constraints from Table A8. Figure 23 shows the complexity
of the described case comprising three features and some of the resulting C-spaces. The
blue manifold FC S̃1 represents the final constrained space of the first imaging device s1.
It can be appreciated that FC S̃1 is characterized by the intersection of all other C-spaces.
Moreover, Figure 23 shows that the FC S̃1 manifold is mainly constrained by the C-space
corresponding to the second range sensor, i.e., FCs1,s3,s4

7 .
To verify the validity of the computed C-spaces, the depth images and point clouds

for all imaging devices at eight extreme viewpoints were rendered. Figure 24 shows the
corresponding rendered scene and resulting depth images for each imaging device at one
extreme viewpoint s1

ps ∈ FC S̃1 . The depth images demonstrate that all imaging devices
can successfully acquire all features without occlusion simultaneously.

The total computation time for characterizing all C-spaces corresponded to t(FC S̃1 , FC S̃2 ,
FC S̃3 , FC S̃4) ≈ 50 s. However, this time comprises other computation steps (e.g., frames
transformation and inverse kinematic operations using ROS-Services) which distort the ef-
fective computation time of the C-spaces. A proper analysis of the computational efficiency
of the whole strategy remains to be further investigated.

B f1
B f3

FCs1,s2
7

B f2

FC S̃1

FCs1
6

FCs1
9 = f1Cs1

3,4
⋂ f2Cs1

3,4
⋂ f3Cs1

3,4

FCs1,s3,s4
7

C8

κ1

κ2

Figure 23. Characterization of the C-space spanned by a set of viewpoint constraints (see Table A8)
for a multisensor scenario to capture a set of features F.
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s2
ps

FC S̃1

s4
ps

I s2I s1

I s4

I s3

s1
ps

s3
ps

Bs1
s

FC S̃2
FC S̃3 FC S̃4

Bs2
s Bs3

s
Bs4

s

Figure 24. (Left): Verification scene visualizing the frames and I-spaces of all imaging devices at the
extreme sensor pose s1

ps ∈ FC S̃1 (s2
ps ∈ FC S̃2 , s3

ps ∈ FC S̃3 , and s4
ps ∈ FC S̃4 ) that fulfills all viewpoint

constraints. (Right): Depth images of all imaging devices at the corresponding sensor pose.

5.2.3. Summary

Despite the complexity of the use case, the framework (models, methods, and integra-
tion strategy) presented within this paper demonstrated its effectiveness in characterizing
a continuous topological space in the special Euclidean, where all defined viewpoint con-
straints could be fulfilled. The simulated depth images and point clouds confirmed that
all selected viewpoints within the characterized C-space satisfied all regarded constraints.
Moreover, the proposed academic example effectively outlines a simple but sufficient
complex scenario to benchmark our and future viewpoint planning strategies.

5.3. Real Experimental Analysis

To assess the usability and validity of our framework within real applications, the
framework presented in this study was utilized to generate automatically valid viewpoints
for capturing different features of a car door using real RVS, i.e., the AIBox from ZEISS. The
AIBox is an industrial measurement cell used to automate different vision-based quality
inspection tasks such as dimensional metrology and digitization, among others.

5.3.1. System Description

The AIBox is an integrated industrial RVS, equipped with a structured light sensor
(ZEISS COMET PRO AE), a six-axis industrial robot (Fanuc M-20ia), and a rotary table for
mounting an inspection object. Moreover, to evaluate the use of our approach considering
a multisensor system, we additionally attached a stereo sensor (rc_visard 65, Roboception) to
the structured light sensor. The imaging parameters of both sensors are given in Table A6.
Figure 25 provides an overview of the reconfigured AIBox with the stereo sensor. We
assume that the inspection object is roughly aligned, e.g., in [70] we presented a CNN fully
trained on synthetic data to automate this task using the RVS sensor.

Figure 25. Overview of the core components of the reconfigured inspection RVS AIBox.
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5.3.2. Vision Task Definition

The validation of our framework was performed on the basis of two vision tasks
while considering diverse viewpoint constraints. For the first task, we considered just
the ZEISS sensor’s ability to acquire the features { f1, f2} ∈ F1, which lie on the outside
of the door and can be potentially occluded by the door fixture. For the second task, we
considered both sensors and the acquisition of two features { f3, f4, f5} ∈ F2 on the inside
of the door. The incidence angle for the first case corresponded to a sensor orientation
of ors2

(αz
s = γx

s = 0◦, β
y
s = −15◦) and for the second of ors1

(αz
s = β

y
s = γx

s = 0◦). To
compensate for any kinematic modeling uncertainties, we consider an overall kinematic
error of ε

x,y,z
s1 = (70.0, 70.0, 50.0)mm for s1 and of ε

x,y,z
s3,4 = (30.0, 30.0, 30.0)mm for s3 and s4.

5.3.3. Results

For both vision tasks, we computed the necessary C-spaces aligned to the strategy
presented by Algorithm A5. The C-spaces of the first inspection scenario for the camera
F1C S̃1 and projector F1C S̃2 of the Comet Pro AE and its corresponding occlusion spaces are
displayed on the left image of Figure 26. To assess the validity of the characterized C-spaces,
we chose diverse extreme viewpoints at the vertices of the F1C S̃1 manifold and performed
real measurements. On the right side of Figure 26, the real monochrome images of the
camera and the resulting point clouds at two validating viewpoints are displayed. The 2D
images and point clouds prove that both features can be successfully acquired from both of
these viewpoints, which confirms the free sight for the sensor and the illumination of both
features without shadows.

s1
ps,1

s2
ps,1

s1
ps,2

s2
ps,2

ps,1

ps,2

F1C S̃1 F1C S̃2

F1Coccl,s2
6

F1Coccl,s1
6

f1
f2

(b)

(c)(a)

Figure 26. (a) Visualization of the characterized C-spaces(F1C S̃1 ,F1C S̃2 ) to capture features f1 and f2

by the COMET ProAE. Right figures: 2D images and corresponding point clouds at two extreme
viewpoints: (b) for s1

ps,1 ∈ F1C S̃1 and (c) for s1
ps,2 ∈ F1C S̃1 .

Moreover, on the left of Figure 27, the constrained spaces of the first imaging device
of each sensor, i.e., F2C S̃1 and F2C S̃3 , are visualized for the second inspection scenario.
Analogously to the first scenario, two extreme viewpoints at the vertices of the manifolds
were selected to assess the validity of the computed C-spaces. As expected, the real
2D images of all imaging devices and the resulting point clouds of both sensors at two
exemplary extreme viewpoints (shown on the right of Figure 26) demonstrate that all
features can be successfully acquired by the four imaging devices of both sensors.
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s1
ps,1

s1
ps,2

s3
ps,2

F2C S̃3

s1
ps,2

s4
ps,2

s1
ps,1

s3
ps,1

s4
ps,1

F2C S̃1

s3
ps,2

s3
ps,2

f3

f5

f4

(b)

(a) (c)

(d)

(e)

Figure 27. (a): Visualization of the characterized C-spaces (F2C S̃1 ,F2C S̃3 ) to capture the feature set
{ f3, f4, f5} ∈ F2 by the COMET ProAE and rc_visard 65. Right figures: 2D images and corresponding
point clouds for both sensors at two extreme viewpoints {s1

ps,1, s1
ps,2} ∈ F2C S̃1 (upper figures (b,d):

Comet Pro AE, lower figures (c,e): rc_visard 65).

5.3.4. Summary

Using an industrial RVS, and regarding real viewpoint constraints, we were able to
validate the formulations, characterization, and application of C-spaces for inspection tasks
in an industrial context. These experiments show the suitability of our framework for an
industrial application on a real RVS with multiple range sensors.

Furthermore, our strategy for merging individual C-spaces to capture more than one
feature proved to be effective for the vision tasks under consideration. However, a more
complex task such as the inspection of all door features requires a more complex strategy,
which considers the search of features that can be acquired together. This question recalls
the overall VPP, which falls outside the scope of this publication and we intend to address
in our future work.

6. Conclusions
6.1. Summary

The computation of valid viewpoints considering different system constraints, named
VGP in this publication, is considered a complex and unsolved challenge that lacks a
generic and holistic framework for its proper formulation and resolution. In this paper,
we outline the VGP as a geometric problem that can be solved explicitly in the special
Euclidean group SE(3) using suitable and explicit models of all related domains of an RVS
and viewpoint constraints. Within this context, much of our effort was devoted to the
comprehensive and systematic formulation of the VGP and the exhaustive characterization
of domains and viewpoint constraints aligned to the formulation of geometric problems.

The core result of this study is the characterization of C-spaces, which can be under-
stood as topological manifolds that span a space with infinite viewpoint solutions to acquire
one feature or a group of features, while considering various viewpoint constraints and
modeling uncertainties. Our approach focuses on providing rather infinite valid solutions
instead of optimal ones. If the entire a priori knowledge of the RVS can be formalized
and integrated into the C-space, then it we can assume that any viewpoint within it is
a local optimum. Our work shows that a handful of viewpoint constraints can be effi-
ciently and simply modeled geometrically and integrated in a common framework to span
such constrained spaces. Finally, based on a comprehensive academic example and a real
application, we demonstrate the usability of such a framework.

6.2. Limitations and Chances

We are aware that the framework proposed in the present study may have some
limitations that may prevent its straightforward application for other RVS or use cases.
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First, it must be acknowledged that our framework can be classified under the category
of model-based approaches. Therefore, in a first step, a priori information to model the
components of the considered RVS must be examined. We consider that an exhaustive
and explicit modeling of the necessary domains is required to deliver solutions that offer a
higher generalization for other applications and systems. For the benefit of generalization,
complexity reduction, and computational efficiency, we addressed various simplifications
which could affect the accuracy of some models and might yield more conservative, though
more robust, solutions.

We firmly believe that the VGP can be efficiently solved geometrically. We demon-
strated that many constraints can be explicitly and efficiently characterized by combining
several techniques, including linear algebra, trigonometry, and geometrical analysis. In
the scope of our experiments, we confirmed that the computation of the C-spaces mani-
folds based on these approaches ran efficiently in linear times. However, we also noted
that algorithms comprising CSG Boolean operations are more computationally expensive,
especially for calculations considering multiple Boolean operations on the same manifold.
Although this limitation can be minimized by filtering and smoothing algorithms for deci-
mating manifolds, this characteristic could still be considered insufficient for some users
and applications. Although the shortcomings of CSG Boolean techniques regarding their
computational efficiency have been mentioned in some prior works, we also believe that
the present available computational performance and paralleling capabilities of CPUs and
GPUs require a new reevaluation of their overall performance. Additionally, our work also
suggests that combined with efficient imaging processing libraries, approaches requiring
heavy use of CSG operations can be efficiently used within many applications. Neverthe-
less, a comprehensive computational efficiency analysis to find a break-even point between
our approach and others remains to be further investigated.

Moreover, we also see room for improvement to increase the efficiency of some of the
algorithms presented. For instance, the computation of the occlusion space and integration
of constraints could also be improved using an alternative strategy and more efficient
algorithms implemented in low-level programming languages. Additionally, we also see
potential for improving the efficiency of some algorithms. For instance, the performance
of many algorithms could enormously benefit of computational optimization techniques
such as parallelization and GPU computation. For replication purposes of our work, we
encourage the reader to make a thorough evaluation of the performance of the state-of-
the-art libraries available at the present time, according to their application needs and
system requirements.

6.3. Outlook

We consider the use of C-spaces appropriate, but not limited to vision tasks that rely
on features. For example, we showed how our concept could be extended to applications
that generally would not consider features and demonstrate its application for an object
detection problem with a certain level of spatial uncertainty. Our ongoing work concentrates
on assessing further applications or systems that may benefit from our approach, e.g.,
feature-based robot calibration or adaption to laser sensors. Further studies should still
be undertaken in this direction to verify the usability and explore the limitations of our
framework within other applications and RVSs.

Recalling that we neglected any sensor parameters that may directly constrain the
C-space, e.g., exposure time, gain, and others, we consider some other lines of research
that integrate such a parameter space in the V-space. For instance, our ongoing study
investigates the combination of a data-based approach to optimize the exposure times and
the use of C-spaces for finding optimized sensor poses.

The most promising future research should be devoted to the overall problem of the
VPP, which could be reformulated based on the present study and its findings. Further
research that will exploit this and comprises a holistic strategy for its resolution is already
in progress.
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We believe that our work will serve as a solid base and guideline for further studies to
adapt and extend our framework according to the individual requirements of their concrete
applications and RVS.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/robotics12040108/s1, Video S1: Viewpoint_Generation_using_
Cspaces_Magana_et_al.mp4, collection of figures and meshes (an overview of the folder structure is
provided at the README file).
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Appendix A. Tables

Table A1. Description of general requirements.

General Requirement Description

1. Generalization The models and approaches used should be abstracted and generalized at the best possible level so that they can be
used for different components of an RVS and can be applied to solve a broad range of vision tasks.

2. Computational Efficiency

The methods and techniques used should strive towards a low level of computational complexity. Whenever pos-
sible, analytical, and linear models should be preferred over complex techniques, such as stochastic and heuristic
algorithms. Nevertheless, when considering offline scenarios, the trade-off between computing a good enough solu-
tion within an acceptable amount of time should be individually assessed.

3. Determinism Due to traceability and safety issues within industrial applications deterministic approaches should be prioritized.

4. Modularity and Scalability The approaches and models should consider in general a modular structure and promote their scalability.

5. Limited a priori Knowledge The parameters required to implement the models and approaches should be easily accessible for the end-users.
Neither in-depth optics nor robotic knowledge should be required.

https://www.mdpi.com/article/10.3390/robotics12040108/s1
https://www.mdpi.com/article/10.3390/robotics12040108/s1
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Table A2. Overview of index notations for variables.

Notation Index Description

x = variable, parameter, vector, frame, or transformation
d = RVS domain, i.e., (s)ensor , (r)obot, (f)eature, (o)bject, (e)nvironment, or d
element of a list or set

r
bxn

d n = related domain, additional notation, or depending variable
r = base frame of the coordinate system Br or space of feature f
b = origin frame of the coordinate system Bb

Notes The indices r and b just apply for pose vectors, frames, and transformations.

Example The index notation can be better understood consider following examples:

• d: Let the geometry of a feature be described by a surface point g f ∈ R3.
• d: If the feature comprises more surface points, then let the point with the

index 2 be denoted by g f ,2 ∈ R3.
• r: Assuming that the position of a surface point g f is described in the

coordinate system of the feature, B f , then it follows: f g f . In case that the
base coordinate frame has the same notation as the domain itself, i.e., r = d,
then just the index for the domain is given: g f =

f g f .
• b: In case that the frame of the surface point is given in the coordinate

reference system of the object Bo, then following notation applies:
og f =

o
f g f .

Table A3. List of the most common symbols.

Symbol Description

General

c Viewpoint constraint
C̃ Set of viewpoint constraints
f Feature
F Set of features
st t imaging device of sensor s
v Viewpoint
ps Sensor pose in SE(3)

Spatial Dimensions

B Frame
t Translation vector in R3

r Orientation matrix in R3x3

V Manifold vertex in R3

Topological Spaces

C C-space for a set of viewpoint constraints C̃
C i i C-space of the viewpoint constraint ci
I s Frustum space
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Table A4. Overview and description of the viewpoint constraints considered in our work.

Viewpoint Constraint Description

1. Frustum Space The most restrictive and fundamental constraint is given by the imaging capabilities of the sensor. This
constraint is fulfilled if at least the feature’s origin lies within the frustum space (cf. Section 2.5).

2. Sensor Orientation Due to specific sensor limitations, it is necessary to ensure that the maximal permitted incidence angle
between the optical axis and the feature normal lies within an specified range; see Equation (5).

3. Feature Geometry This constraint can be considered an extension of the first viewpoint constraint and is fulfilled if all
surface points of a feature can be acquired by a single viewpoint, hence lying within the image space.

4. Kinematic Error
Within the context of real applications, model uncertainties affecting the nominal sensor pose compro-
mise a viewpoint’s validity. Hence, any factor, e.g., kinematic alignment, robot’s pose accuracy, which
affects the overall kinematic chain of the RVS must be considered (see Section 2.6).

5. Sensor Accuracy Acknowledging that the sensor accuracy may vary within the sensor image space (see Section 2.5), we
consider that a valid viewpoint must ensure that a feature must be acquired within a sufficient quality.

6. Feature Occlusion
A viewpoint can be considered valid if a free line of sight exists from the sensor to the feature. More
specifically, it must be assured that no rigid bodies are blocking the view between the sensor and the
feature.

7. Bistatic Sensor and
Multisensor

Recalling the bistatic nature of range sensors, we consider that all viewpoint constraints must be valid
for all lenses or active sources. Furthermore, we also extend this constraint for considering a multisensor
RVS comprising more than one range sensor.

8. Robot Workspace The workspace of the whole RVS is limited primarily by the robot’s workspace. Thus, we assume that a
valid viewpoint exists if the sensor pose lies within the robot workspace.

9. Multi-Feature
Considering a multi-feature scenario, where more than one feature can be acquired from the same
sensor pose, we assume that all viewpoint constraints for each feature must be satisfied within the same
viewpoint.

Table A5. Scaling factors for the vertices of the constrained space V C3
k , considering a sensor rotation

around the x-axis or y-axis relative to the feature frame.

Rotation around y-axis Rotation around x-axis
k Vertex
of V C3

k

f rs(αz
s = γx

s = 0, β
y
s 6= 0) f rs(αz

s = β
y
s = 0, γx

s 6= 0)
∆x

k ∆
y
k ∆z

k ∆x
k ∆

y
k ∆z

k
β

y
s < 0 β

y
s > 0 γx

s < 0 γx
s > 0

1 λx ρx l f
2

l f
2 λy ρy

2 ρx λx l f
2

l f
2 λy ρy

3 σx ρx l f
2 + ςx,y l f

2 + ςy,x ρy σy

4 ρx σx l f
2 + ςx,y

ρz,y
l f
2 + ςy,x ρy σy

ρz,x

5 λx ρx l f
2

l f
2 ρy λy

6 ρx λx l f
2

l f
2 ρy λy

7 σx ρx l f
2 + ςx,y l f

2 + ςy,x σy ρy

8 ρx σx l f
2 + ςx,y l f

2 + ςy,x σy ρy
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Table A6. Imaging parameters of the sensors s1 and s2.

Range Sensor 1 2

Manufacturer Carl Zeiss Optotechnik GmbH, Neubeuern, Germany Roboception, Munich,
Germany

Model COMET Pro AE rc_visard 65

3D Acquisition
Method

Digital Fringe Projection Stereo Vision

Imaging Device st Monochrome Camera: s1 Blue Light LED-Fringe
Projector: s2

Two monochrome
cameras: s3,s4

Field of view θx
s =51.5 ◦, ψ

y
s =35.5 ◦ θx

s =70.8 ◦, ψ
y
s =43.6 ◦ θx

s =62.0 ◦, ψ
y
s =48.0 ◦

Working distances
and near, middle, and
far planes relative to
imaging devices lens.

@400 mm :(396× 266)mm2

@600 mm :(588× 392)mm2

@800 mm :(780× 520)mm2

@200 mm : (284× 160)mm2

@600 mm : (853× 480)mm2

@1000 mm : (1422× 800)mm2

@200 mm : (118× 178)mm2

@600 mm : (706× 534)mm2

@1000 mm : (1178× 890)mm2

Transformation
between sensor lens
and TCP TCP

st
T

TCP
s1

t : (0, 0,−602)mm
TCP

s1
r : (0, 0, 0) ◦

TCP
s2

t : (0, 0,−600)mm
TCP

s2
r : (0, 0, 0) ◦

TCP
s3,4

t : (0, 0,−600)mm
TCP

s3,4
r : (0, 0, 0) ◦

Transformation
between imaging
devices of each sensor
s1
s2 T ,s3

s4 T

s1
s2 t : (217.0, 0, 8.0)mm
s1
s2 r : (0,−20.0, 0) ◦

s3
s4 t : (65.0, 0, 0)mm
s3
s4 r : (0, 0, 0) ◦

Transformation
between both sensors
s1
s3 T

s1
s3 t : (348.0,−81.0, 42.0)mm, s1

s3 r : (0.52, 0.56, 0.34) ◦

Table A7. Overview of features and occlusion objects used for verification steps and simulation-based
analysis.

Feature f0 f1, f ∗1 f2 f3 κ1 κ2

Topology Point Slot Circle Half-Sphere Icosahedron Octaeder

Generalized Topology - Square Square Cube - -

Dimensions in mm l fo = 0
l f1

= 50,
h f ∗1 = 30

l f2 = 20
l f2 = 40,
h f2 = 40

edge length:
≈ 14.0

edge length:
≈ 20.0

Translation vector in object’s frame
to = (xo, yo, zo)T in mm

(
0.0
0.0
0.0

) (
0.0
0.0
0.0

) (
75.0
150.0
20.0

) (
120.0
30.0
0.0

) ( −67.5
0.0

240.0

) (
117.5
100.0
445.0

)

Rotation in Euler Angles in object’s
frame ro(γ

x
s , β

y
s , αz

s) in ◦
(0, 0, 0) (0, 0, 0) (0, 20, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
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Table A8. Overview and description of the viewpoint constraints considered for the simulation-based
analysis.

Viewpoint
Constraint

Description Approach

1 Two sensors(s1, s2) with two imaging devices each: {s1
1, s1

2, s2
3, s2

4} ∈ S̃. The
imaging parameters of all devices are specified in Table A6.

Linear algebra and geometry

2 Relative orientation to the object’s frame: ors(α
z
s = γx

s = 0, β
y
s = 6.64◦). Linear algebra and geometry

3 A planar rectangular object with three different features { f1, f2, f3} ∈ F (see
Table A7). Linear algebra, geometry, and

trigonometry

4–5 The workspace of the second imaging device is restricted in the z-axis to the
following working distance zs2 > 450 mm. Linear algebra and geometry

6 Two objects with the form of an icosahedron (κ1) and a octahedron (κ2) occlude
the visibility of the features. Linear algebra, ray-casting,

and CSG Boolean Operations

7 All constraints must be satisfied by all four imaging devices simultaneously. Linear algebra and CSG
Boolean Operations

8 Both sensors are attached to a six-axis industrial robot. The robot has a
workspace of a half-sphere with a working distance of 1000 mm–1800 mm. CSG Boolean Operation

9 All features from the set G must be captured simultaneously. CSG Boolean Operation

Appendix B. Algorithms

Algorithm A1 Extreme Viewpoint Characterization of the Constrained Space C1.

1. Consider a constant sensor orientation re f r f ix
s to acquire a feature f .

2. Position the sensor so that the k vertex of the frustum space lies at the feature’s origin,

re f ps,k(re f ts(V I s
k = B f ), re f r f ix

s ).

3. Let the coordinates of the k vertex of the constrained space re f C1 be equal to the

translation vector of the sensor frame Bre f
s :

re f V re f C1
k = re f ts(Bre f

s ).

4. Repeat Steps 2 and 3 for all l vertices of the frustum space.
5. Connect all vertices from Vre f C1 analogously to the vertices of the frustum space VI s

to obtain the re f C1 manifold.
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Algorithm A2 Characterization of the occlusion space Coccl
6 .

1. Compute a set of view rays ςg f ,c
(m, n) ∈ Σ for each surface point g f ,c using a set of

direction vectors σm,n:

ςg f ,c
(m, n) = g f ,c + σm,n(σ

x
m, σ

y
n , r f ix

s ).

The direction vectors span a m× n grid of equidistant rays with a discretization step
size dς. The aperture angles of the view rays correspond to the maximal aperture of a
previously characterized C-space C .

2. Test all view rays, ∀ ςg f ,c
(m, n) ∈ Σ, for occlusion against each rigid body κ ∈ K using

ray casting. Let the collision points at the rigid bodies be denoted as:

qoccl,κ
f ∈ Qoccl,κ

f .

3. Shoot an occlusion ray, ςoccl,κ
g f ,c , from each surface point g f ,c to all occluding points of

the set ∀ qoccl,κ
f ∈ Qoccl,κ

f :

ςoccl,κ
g f ,c

(t) = qoccl,κ
f + t · (qoccl,κ

f − g f ,c).

4. Select one point, ∗qoccl,k
f , from each occlusion ray ∀ ςoccl,κ

g f ,c ∈ Σoccl,κ considering that
this must lie beyond the constrained space. Let these points be elements of the set
∗Qoccl,κ

f .
∗qoccl,k

f ∈ (∗Qoccl,κ
f , ςoccl,κ

g f ,c
), ∗qoccl,k

f /∈ C

5. Compute the convex hull spanned by all points of Qoccl,k
f and ∗Qoccl,κ

f . The convex

hull corresponds to the manifold of Coccl,κ
,6 :

Coccl,κ
6 ← Hhull(Q

occl,k
f , ∗Qoccl,κ

f ).

6. Compute the occlusion space, Coccl,κ
6 , for all rigid bodies, ∀κ ∈ K, repeating Steps 2

until 5.
7. The occlusion space for all rigid bodies corresponds to the CSG Boolean Union opera-

tion of all individual occluding spaces:

Coccl
6 =

⋃

κ∈K
Coccl,κ

6 .

8. The occlusion space is integrated with the C-space spanned by other viewpoint con-
straints using a CSG Boolean Difference operation:

C =




j⋂

i=1,i 6=6

C i


\ Coccl

6 .



Robotics 2023, 12, 108 51 of 59

Algorithm A3 Characterization of C-space C S̃1 to integrate viewpoint constraints of a
second imaging device s2.

1. Compute the C-space of the first device, considering a fixed orientation s1
r f ix

s and any
further viewpoint constraints C̃s1 .

Cs1(s1
r f ix

s , C̃s1).

2. Compute the C-space for the second imaging device, taking into account any view-
point constraints and the previously defined orientation of the first imaging device,
using the rigid orientation between both devices s2

r f ix
s (s1

r f ix
s ) = s2

s1 Rs · s1
r f ix:

Cs2(s2
r f ix

s (s1
r f ix

s ), C̃s2).

3. Compute the sensor pose that the first device assumes when computing Cs2 , using
the rigid transformation between both devices:

s1
pC

s2
s = s1

s2 Ts · s2
ps(s2

ts = B f ).

4. Duplicate the manifold of Cs2 and translate it to the position vector of s1
pC

s2
s . The

C-space Cs1,2
7 corresponds to this translated manifold:

Cs1,2
7 = translation(Cs2 , s1

tC
s2

s ).

5. Integrate Cs1,2
7 with the C-space of the first imaging device using a Boolean Intersection

operation:
C S̃1 = Cs1

⋂
Cs1,2

7 .

Algorithm A4 Integration of C-space for multiple features.

1. Compute all n C-spaces for each feature ∀ fm ∈ F with m = 1, . . . , n.

fmC := C (r f ix
s , C̃( fm))

2. Compute the joint C-space by intersecting all n C-spaces:

FC = FC9 =
n⋂

fm ∈ F

fmC
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Algorithm A5 Strategy for the integration of viewpoint constraints.

1. Consider a fixed sensor orientation s1
r f ix

s for the reference imaging device s1.

2. Compute the C-spaces manifolds

fmCst
1−6(st rs(s1

r f ix
s ))

of imaging device st for each feature ∀ fm ∈ F, considering the sensor orientation of
the first device s1

r f ix
s and the viewpoint constraints 1− 6.

3. Compute the C-space of all features for sensor st:

FCst =
n⋂ fmCst

1−6.

4. Repeat Steps 1–3 for all imaging devices ∀st ∈ S̃.
5. Compute the C-space for all u imaging devices, e.g., for s1:

FC S̃1 = FCs1
⋂

st∈S̃

FCs1,st
7 .

6. Intersect the robot workspace to obtain the final C-space b, e.g., for s1:

FC S̃1 = FC S̃1
⋂
C8.

Algorithm A6 Computation of View Rays for Occlusion Space.

1. Considering the simplification of the feature topology (cf. Section 2.4), let a set of view
rays denoted by τ f ,c,l,m ∈ Σc, c = {0, 1, 2, 3, 4} be shot at each feature corner point

g f ,c ∈ R3 with following direction vectors σc,l,m(σ
x
c,l , σ

y
c,m) ∈ R3:

τ f ,c,m,n = g f ,c + σc,m,n(σ
x
m, σ

y
n)

2. The direction vectors are characterized by a grid of equidistant rays, which can be
expressed by means of the aperture angles σx

m and σ
y
n :

−σx
max
2
≤ σx

m ≤
σx

max
2

and − σ
y
max
2

< σ
y
n <

σ
y
max
2

.

The maximal aperture angles σx
max and σ

y
max can simply correspond to the FOV angles

of the sensor. An efficient alternative is to consider the aperture angles C , which
already comprises the FOV angles and other constraints. The total number of rays
depends on the chosen step size dσ for computing the equidistant view rays:

l ∈ [1, . . . ,
σx

max − σx
min + 1

dσ
],

m ∈ [1, . . . ,
σ

y
max − σ

y
min + 1

dσ
].
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Appendix C. Figures
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I s(ps,4)
I s(ps,1)

Figure A1. Characterization of the the C-space, C2(Rs) in SE(3), comprising multiple sensor orienta-
tions Rs.
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Figure A2. Geometrical analysis for rotation around z-axis.
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(a) 1. Vertex of V C3
1 .
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(b) 2. Vertex of V C3
2 .
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(c) 3. Vertex of V C3
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4 .

Figure A3. Derivation of the geometrical relationships for each vertex of the C-space C3, considering
a sensor rotation of f rs(β

y
s > 0, αz

s = γx
s = 0) using the Extreme Viewpoint Interpretation.
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(a) Rendered scene at extreme view-
point: f1 ps,1 ∈ C3,1(

f1 rs,1).
(b) Rendered scene at extreme view-
point: f1 ps,2 ∈ C3,2(

f1 rs,2).
(c) Rendered scene at extreme view-
point: f ∗1 ps,3 ∈ C3,3(

f ∗1 r0
s,3).

Figure A4. Rendered scenes at the extreme viewpoints f1 ps,1, f1 ps,2, and f ∗1 ps,3 for verifying that the
whole feature geometry lies entirely within the corresponding frustum spaces. Each figure displays
the resulting frustum space (manifold with green edges), corresponding rendering point cloud (green
points), and depth image (2D image in color map) at each extreme viewpoint.

Δ3

Δ1

Δ4

Δ2

C3

Bf

l f

Figure A5. Exemplary flexible characterization of the viewpoint constraints (e.g., kinematic errors
and sensor accuracy) using different scaling vectors for each vertex.
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C = C3\ C
occl,κ
6

Coccl,κ
6

κ

Figure A6. Occlusion C-space in SE(3) (red manifold) and the occlusion-free C-space (blue manifold)
to acquire a square feature f1, considering an occlusion body κ (icosahedron in orange).

FC = f1C ⋂ f2C
B f1

f2C

B f2

f1C

Figure A7. Characterization of the C-space, FC , in SE(3) to acquire a set of features { f1, f2,} ∈ F
being characterized by the intersection of the individual C-spaces f1C and f2C .
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