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Abstract: This paper develops a three-degree-of-freedom sagittal-plane hybrid dynamical systems
model of a Groucho-style bounding quadrupedal run. Simple within-stance controls using a modular
architecture yield a closed-form expression for a family of hybrid limit cycles that represent bounding
behavior over a range of user-selected fore-aft speeds as a function of the model’s kinematic and
dynamical parameters. Controls acting on the hybrid transitions are structured so as to achieve a cas-
cade composition of in-place bounding driving the fore-aft degree of freedom, thereby decoupling the
linearized dynamics of an approximation to the stride map. Careful selection of the feedback channels
used to implement these controls affords infinitesimal deadbeat stability, which is relatively robust
against parameter mismatch. Experiments with a physical quadruped reasonably closely match the
bounding behavior predicted by the hybrid limit cycle and its stable linearized approximation.

Keywords: legged robots; modular control architectures; simplified models

1. Introduction

Legged robots exhibit an increasingly successful steady state [1–4] and
transitional [3,5–7] behaviors. Today’s most popular gait control methods for high-degree-
of-freedom legged machines generally appeal to numerical optimization [8–10] and deep
neural networks [11,12]. On the other hand, the project of composing more compli-
cated, higher-degree-of-freedom behaviors from the analytically tractable, lower-degree-of-
freedom constituents pioneered by Raibert nearly four decades ago [13] remains unfinished.
Compositional operators with formal properties offer a historically established path to safe
behavioral programming in robotics [14]. Even well short of such comprehensive goals,
interim success in this endeavor promises both intuitive insight backed by formal rigor
and stable gait controllers with functional dependence on task and environment parame-
ters that specify the operating characteristics of useful legged machines. Such results are
fundamentally hard owing to the non-integrability of legged machines’ high-dimensional
nonlinear hybrid dynamics, and thus prior results of this nature are rare even for three-
degree-of-freedom mechanisms [15–18]. The authors are not aware of any complete stability
result for three- or higher-degree-of-freedom models of quadrupedal bounding (while a
few contemporary three-degree-of-freedom stability results exist, e.g., [18], they are unable
to describe a bounding gait).

This paper presents a parametrized family of controllers that stabilize a hybrid dy-
namical systems model of Groucho-style quadrupedal bounding arising from a simple
three-degree-of-freedom sagittal-plane representation of a legged robot. The stability guar-
antees extensions over a specified range of variations in body mass, length, and moment
of inertia that dictate the achievable range of commanded forward running speeds and
thereby, in turn, the full set of controller parameters. These formal results arise from key
approximations and a controller structure that exploits them to afford a decomposition of
the full model into the cascade of a two-degree-of-freedom in-place bounding component
forward coupled to drive a one-degree-of-freedom fore-aft component. In essence, this
amounts to working closely with the double-integrator model as introduced in [19]. This
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model and the resulting controller are simple in the sense that they encode ground reaction
force laws resulting in trivial continuous body dynamics, and they achieve the family of
asymptotically stable limit cycles representing the desired steady-state gait using propor-
tional control on the hybrid transitions. Nevertheless, the model is sufficiently faithful
and the controller is sufficiently robust as to permit empirical implementation over many
repeated trials (accumulating hundreds of body lengths) on a physical robot, Inu [20], dis-
played in Figure 1. Notably, we choose stance force commands to effect trivial continuous
dynamics such that the state-space contraction provided by our imposed feedback laws
occurs exclusively on the hybrid guards and resets. This choice affords an analytically
tractable path to our formal stability proof and allows for a linearized version of deadbeat
control that we believe is better conditioned to parametric and state uncertainty for use in
an experimental setting than full deadbeat control.

Figure 1. The controller presented in this work is empirically demonstrated on the Inu robot [20].
Empirical bounding corresponding to the analytically predicted limit cycles derived in Proposition 1,
using the simplified dynamics of Section 2.3, is documented in Section 5.

1.1. Groucho Running

Groucho running [21]—also called called grounded running or flightless running—is
a form of running in which the duration of ballistic flight either approaches or is equal to
zero [22]. Such gaits are used by a wide range of animals for rapid legged locomotion
(including birds, insects, arachnids, and mammals), over a varied number of size scales
(from ants to elephants) and leg numbers (2, 4, 6, and 8) [23–28]. Theories for the utility of
Groucho running include reducing viscera vertical oscillation, lowering peak leg forces, and
increasing stability over uneven terrain—which can (but not always [29]) come at the cost of
producing external mechanical work [30]. Beyond its intrinsic interest for biology, the focus
of this paper on Groucho running is motivated by the limited peak leg force production of
our experimental test platform Inu (as detailed in Section 5.1) that precludes any significant
ballistic flight phase when running at full speed. More generally, the locomotion of force-
limited legged machines is inherently important for engineers: any platform carrying a
sufficiently heavy payload will be force-limited yet may nevertheless be able to achieve a
rapid gait by running without an aerial phase.

1.2. Cascade Compositions

The use of simplified models for the control of legged running has a rich history of
empirical [2,13,31] and analytical [32–34] success. We are particularly interested in modular
approaches that can offer an analytically tractable path to formal results, as they decouple
the stability problem into a composition of lower-dimensional subproblems. For example,
“parallel composition”—approximation in terms of modules operating simultaneously in
isolation—was pioneered empirically with great success by Raibert [13], and has been for-
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mally redeveloped in recent years for bipedal [15], quadrupedal [35], and more general [36]
legged systems. While empirically very effective, this formal analysis of legged parallel
composition uses the framework of hybrid dynamical averaging [37], requiring not only
that the neglected “crosstalk” between modules be sufficiently small but that potentially
deleterious components (that cannot be averaged away) be identified and compensated
by feedback.

In this paper, we introduce a cascade composition (1) to control quadrupedal bounding,
which—in contrast to parallel compositions—allows for arbitrarily large feedforward
signals from one module to another cascaded module. From the analytical perspective, the
cascade also achieves an eigenvalue separation property in the stride-map’s Jacobian that
guarantees the local stability of coupled modules so long as they are stable in isolation,
providing a separation of concerns to the designer. Cascade compositions have long
been used to reduce the complexity of adding dimensionality to both continuous-time
systems [38,39] and iterated maps [40]. However—to the best of our knowledge—their
formal consideration for simplified models of dynamic quadrupedal locomotion has only
been used to “extract” away fast actuator dynamics [41] or for similar situations with
multiple timescales [42] that reduce to feedforward cascades in Fenichel normal form [43].

We say an iterated map P : Rn × Rm → Rn × Rm is a cascade composition if it is of
the form

P(x, y) =
(

P1(x)
P2(x, y)

)
, (1)

where x ∈ Rn, y ∈ Rm, P1 : Rn → Rn, P2 : Rn×Rm → Rm. Such a system has the following
block-triangular Jacobian:

DP =

(
DxP1 0
DxP2 DyP2

)
, (2)

in which the eigenvalues of DP consist of the eigenvalues of the smaller (n× n) matrix
DxP1 and (m×m) matrix DyP2. The task of showing that the spectral radius of DP has a
modulus less than unity for a linearized stability analysis then reduces to establishing the
same property individually for the smaller constituent matrices, DxP1 and DyP2, which is
generally a much easier task.

1.3. Controlling on Hybrid Transitions

The long-practiced tradition of achieving control through shaping a hybrid dynam-
ical system’s guards and resets (the hybrid transitions) has been used since the earliest
days of empirically successful dynamical robots when Raibert used the fact that a robot
leg’s angle in flight could be freely set to affect touchdown conditions and thereby con-
trol forward running speed [13], inspiring many similarly conceived subsequent speed
controllers [33,35,44]. This insight was generalized by Seyfarth [45], initiating a body of
“swing-leg retraction” literature (e.g., [46,47]) that brought about two fundamental observa-
tions that bear on our work. First, minimally sensed stabilization is not only achievable by
control on hybrid transitions [48,49], but can afford deadbeat performance as well with only
a bit more sensing (here, deadbeat control refers to a strategy resulting in exact correction
to perturbations in a finite – typically minimum – number of steps [50]). Specifically, as
shown numerically [51] and analytically [52], proper feedforward servoing of sagittal leg
angle in flight affords control over the apex height with no sensing required other than
the detection of the apex and touchdown events, even when running over uneven terrain.
Second, the implicit function theorem provides sufficient conditions for the existence of
deadbeat control given a sufficiently expressive input vector using full state feedback [50].
Studies in humans [53] and birds [54–56] document some combination of feedforward and
feedback hybrid transition control strategies during biological running, further motivating
their study by roboticists.

Previous results on hybrid transition control (particularly the deadbeat literature) are
limited in several ways. The majority of results are limited to simulation, and preliminary
experimental work in this area [57] suggest performance is very sensitive to state estimation
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error or perhaps model parametric uncertainty, conceivably limiting the application of
deadbeat results to robots in controlled environments such as motion capture feedback
systems. For the purposes of this work, we do not consider control strategies to be deadbeat
if they rely primarily on proportional-derivative continuous within-stance perturbation
correction such as [58,59], since they do not formally satisfy our definition of exact correc-
tion. Differences between these approaches are discussed in Section 6.2, but real-world
implementation obviously would benefit from a combination of these strategies. Even
methods requiring no sensing aside from the detection of an apex suffer from the fact that
the apex event is difficult to precisely detect in practice without motion capture data.

Aiming for greater robustness and avoiding the need to detect the apex event, we
forgo deadbeat control for a linearized version of it and additionally use a combination of
feedforward and feedback control-—only using feedback on states that can be accurately
measured onboard the robot. We also take inspiration from Blickhan’s studies indicating
that humans vary both their leg angle and leg length in flight to affect touchdown condi-
tions [60,61] and utilize our hybrid transition controller to vary both of these quantities.
Moreover, we allow our hybrid transition controller to affect liftoff conditions. In these
ways, we more fully leverage the affordance inherently provided by making and breaking
contact in sagittal running.

1.4. Outline

Section 2 introduces a simplified hybrid dynamical systems model (3) representing a
bounding quadruped, with a rigid-bar body and massless legs that exert ground reaction
forces at the toes. Ground reaction force laws and hybrid transition behaviors are specified
to produce the dynamics of a cascaded composition of two hybrid dynamical system
modules. Simplifying assumptions (shown in Section 3 to be approximately valid) give
these modules trivial dynamics. Section 3 formulates a stride map for a bounding gait,
and factors it into a more easily analyzable half-stride map. A fixed point representing a
hybrid periodic orbit is found in Proposition 1, and its properties are examined. Section 4
formulates control on the hybrid transitions to make the aforementioned periodic orbit
an attracting limit cycle. Control weights are chosen in Proposition 2 so that the stride
map representing the orbit is infinitesimally deadbeat. Section 5 details the empirical
instantiation of the controlled model on the Inu robot. Experimental results indicate
reasonably close correspondence with the theoretically predicted behavior of the simplified
model. Section 6 provides a brief discussion about the ideas in the paper, and Section 7
provides concluding remarks. Proofs and lemmas are given in the appendices as well
as a table of the symbols used in this work (given in Appendix A). Note that we rely
heavily on forward references in this work to aid in matching initially stated assumptions
to their consequences in the subsequent models (largely found in association with the
corresponding figures) and analysis (focused mainly on their mathematical implications).

2. Model

This section introduces the simplified model shown in Figure 2 of a quadrupedal
robot bounding in the sagittal plane. The model consists of a rigid bar representing a
robot body with massless legs protruding from the hips that are able to generate ground
reaction forces at the toes. This basic model has historically been used to describe sagittal
quadrupeds since Raibert’s work in the 1980’s ([13], p. 139), typically using torques and
radial forces generated at the hips (equivalent to ours through a change in coordinates).
It has been used more recently with commanded Cartesian ground reaction forces to
model both steady-state and transitional empirical behaviors [2,19]. In these studies, it is
well established that this model is—for the purposes of achieving useful controllers—a
sufficiently good approximation of the sagittal dynamics of physical bounding robots with
a mass center roughly halfway between their hips and leg inertia sufficiently less than that
of the body [2,13,35,62].
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Section 2.1 gives a description of the model’s hybrid dynamical system for a non-
aerial bound (because of the actuator limits described in Section 5.1) as depicted in
Figure 3. Section 2.2 constrains the ground reaction force laws (20) and (21) and hybrid
transitions (25) and (30) to enact a cascade composition. Section 2.3 introduces dynamical
simplifications in the form of Approximations 1 and 2, and (34), that—together with the
previous modeling choices—give the cascaded system the trivial dynamics depicted in
Figure 4. These modeling and control choices yield simple closed-form expressions for the
flow on the hybrid modes, (35) and (36), which in turn allow a closed-form expression for
the targeted bounding limit cycles in Section 3 and a tractable stability analysis in Section 4.

2.1. Hybrid Dynamical System Description

Following the convention of [63], we define the hybrid system H representing the
sagittal-plane massless-leg robot model depicted in Figures 2 and 3 as the tuple

H := (J , T ,D ,F ,G ,R). (3)

The set
J := {F, D, R} (4)

represents the hybrid modes corresponding to front single-support F, double-support
D, and rear single-support R, respectively. No flight mode is given due to the actuator
constraints of the Inu robot as explained in Section 5.1, but a similar analysis is possible by
replacing the double-support phase with a flight phase—indeed, we will enforce Hamilto-
nian double-support dynamics (depicted in Figure 4) which, when compared to ballistic
flight, are identical in the pitch degree of freedom (ϕ̈ = 0) and topologically equivalent
in the vertical degree of freedom (ÿ = const). By choosing Hamiltonian double-support
dynamics, on which there can be no within-mode state convergence à la Liouville’s theo-
rem ([64], p. 69), we give up the “full-actuation” of the hybrid mode both for the energetic
benefits — still conjectural as outlined in Section 6.2—and to suggest the viability of our
control scheme for use in the underactuated flight modes that would be accessible to a
more highly powered robotic platform.

Figure 2. The simplified massless-leg representation of a quadrupedal robot bounding in the sagittal
plane. The model’s configuration is shown in blue and is given by the body’s location in SE(2) with
mass-center position (x, y) and body pitch ϕ, as well as the horizontal location of the front and rear
toes encoded either by their toe positions xi or splay distance ∆xi from the mass center, i ∈ { f , r}.
The physical parameters shown in green are the body’s mass m and moment of inertia I about its
mass center, the body length d, and gravity’s acceleration g. Each leg in contact with the ground
imparts a vertical (uy) and horizontal (ux) mass-specific ground reaction force law at each toe shown
in red. Purple values relate to control parameters. The value l0 is a nominal vertical leg length at the
touchdown and liftoff events (used as a control parameter in (26)).

The allowed hybrid transitions are given by

T := {(F, D), (D, R), (R, D), (D, F)}. (5)
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Figure 3. The hybrid dynamical system (3) representing the model shown in Figure 2.

The set of continuous domains is given by

D := ti∈J Di, (6)

where—to aid with the decoupling introduced in Section 2.2—we decompose each continu-
ous domain into the product

Di := DI
i × DH

i , (7)

for the “in-place” and “horizontal” respective state components that will form the basis for
a cascaded composition (1), where

DI
i := T(R× S)×R, DH

i := T(R)×R2, (8)

with state

xi =

(
xI

i
xH

i

)
, (9)

where xI
i represents the “in-place” state components relating to vertical and pitching mo-

tions, and xH
i represents the “horizontal” state components relating to horizontal motions.

We will drop the mode subscripts when appropriate.
The in-place state xI is given by

xI :=

qI

q̇I

τ

, qI :=
(

y
ϕ

)
, (10)

representing the configuration and velocity of the mass center’s height y and body pitch ϕ
as depicted in Figure 2, as well as the integrated mode duration τ which is appended to
the state so we can use mode duration as a state variable in the guard events, (26) and (58).
Intuitively, these components represent the state of the robot when it is bounding in place.

The horizontal state xH
i in mode i ∈ J is given by

xH
F =


x
ẋ

∆xr

x f

, xH
D =


x
ẋ
xr

x f

, xH
R =


x
ẋ
xr

∆x f

, (11)
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where—as depicted in Figure 2—x and ẋ, respectively, represent the mass center’s horizon-
tal position and velocity; x f and xr, respectively, represent the front and rear foot position;
and ∆x f and ∆xr, respectively, represent the relative distance of the front and rear toe to
the mass center according to

∆x f = x f − x, ∆xr = xr − x. (12)

The reason for switching between the ∆xi and xi state representations is simply
mathematical convenience as it allows us to represent the continuous evolution of the foot
with a zero vector field in (14), where in stance a hip’s toe position xi does not move and in
flight a hip’s toe position relative to its mass center ∆xi can be controlled to not change.

The continuous dynamics of the system are shown in Figure 3. To represent them as
first-order vector fields, we define the hybrid vector field as follows:

F : D → TD (13)

which restricts to the vector fields Fi := F |Di
for each i ∈ J such that

Fi(x) :=



q̇I

uyi(x)− g
m
I uϕ i(x)

1
ẋ

uxi(x)
0
0


, (14)

where

uϕF(x) = y uxF(x) + ∆x f uyF(x), (15)

uϕR(x) = y uxR(x) + ∆xr uyR(x),

uϕD(x) = y uxD(x) + ∆x f uy
f
D(x) + ∆xr uy

r
D(x),

In Section 2.3, uyi(x) and uϕ i(x) will be set to be constant throughout each of the stance
modes. Until then, we use the more general functional form to illustrate in Section 2.2
that we can achieve a cascaded composition without requiring constant values. Note that
uxD(x) is the sum of the double-support force components from each leg; how this force
burden is distributed to the legs is an implementation detail. The experiments of Section 5
used an even distribution.

For simplicity, we approximate the height value as it appears in the pitching accelera-
tion uϕ i(x) of (15) to be constant.

Approximation 1. In the pitching acceleration components (15), we take the stance height terms
y to be the constant ȳ ∈ R+.

Approximation 1 has the effect of replacing y with ȳ in the horizontal force law that
will be introduced with (21). This assumption is approximately valid in the experiments of
Section 5 as shown by the nearly constant height in the experimental data of that section.
Note that the model is still three degrees of freedom since the robot’s vertical state (height
and vertical velocity) remains variable in the translational compartments of the model (14).
We have merely approximated the coupling of the mass-center height into the pitching
dynamics (15) as constant. This, along with Approximation 2 and (34), will allow an explicit
representation of a relevant hybrid periodic orbit derived in Section 3. Further implications
of this assumption are discussed in Section 3.3.

The model’s physical parameters are the body length d, gravity’s acceleration g, the
body mass m, and moment of inertia I. We also later introduce ∆xAvg (22), a (24), and l0
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(26) as pseudo-physical parameters chosen by the user for the controller that are strongly
influenced by the physical parameters.

The vertical and horizontal (mass-specific) force laws are, respectively,

uyi : Di → (
g
2

, g), (16)

uxi : Di → R,

which we later set in (21) and (34). The interval bounds on the codomain of uyi(·) are
artificially imposed both to take into account actuator constraints (discussed in Section 5.1)
and to specify the range of vertical forces over which the hybrid periodic orbit result
described in Proposition 1 holds.

The collection of guards is
G := t(i,j)∈T Gi,j, (17)

where Gi,j ⊂ Di for each (i, j) ∈ T . We assume that the robot’s hip is able to retract its
legs in stance to force a flight event and similarly protract its legs in flight to influence
the timing of a stance event, according to intersection with a guard set. The guards are
considered part of the controller and are further specified in (25), (26), and in Section 4.1.

Finally, the hybrid reset map is given by

R : G → D , (18)

which restricts to

Ri,j := R|Gi,j
, Ri,j : Gi,j → Dj, (19)

for each (i, j) ∈ T . The resets—considered part of the controller and specified in (30)
and Section 4.2—move the horizontal state of the toes instantaneously in flight (taking
advantage of the assumption of massless legs) and reset the mode timer component τ to
zero. To avoid physically unrealistic situations, we require that the resets give all other
states continuous motion across hybrid transitions as these states have associated mass.

2.2. Cascaded Composition

We impose a cascaded composition (Section 1.2) with the following choice of force laws
and hybrid transitions. We first decouple the horizontal state from the in-place continuous
dynamics by choice of horizontal and vertical force laws, giving the in-place acceleration
components ci(·) the form ci(x) = ci(xI) ∀i ∈ J . To do so, we specify the vertical force
law to be only a function of in-place state:

uyi(x) = uyi(xI), ∀i ∈ J (20)

(which will be set to the constant uyi(xI) = uy in Section 2.3), and let the horizontal force
law be given by the following (note that the smallest value of y is physically bounded by
the kinematics to be far from zero so the quotient in (21) would never create a problem):

uxF(x) =
uy(xI)

ȳ
(
∆xAvg − ∆x f ), (21)

uxD(x) = −1
ȳ

(
uy

f
D(xI) ∆x f + uy

r
D(xI) ∆xr

)
,

uxR(x) =
uyR(xI)

ȳ
(
− ∆xAvg − ∆xr),



Robotics 2023, 12, 109 9 of 40

which makes the pitch dynamics act as if the only torque on the body were from a vertically
applied uyi(xI) associated with a leg splay of

∆xAvg ∈ R. (22)

We choose to set ∆xAvg to equal d
2 , representing pitch dynamics that mimic the toes

being directly below the hips—a choice that maximizes the platform’s achievable running
speed as discussed in Section 3.5. In principle, any ∆xAvg could be chosen, and so for
generality we do not fix ∆xAvg in our mathematical results. The resulting pitch dynamics
from the force law (21) are

ϕ̈F =
2uyF(xI)

da
, ϕ̈D = 0, ϕ̈R = −

2uyR(xI)

da
(23)

(which in Section 2.3 become the constants ϕ̈F =
2uy
da , ϕ̈D = 0, and ϕ̈R = − 2uy

da with the
choice uyi(xI) = uy), where

a :=
I

m d
2 ∆xAvg

(24)

is a dimensionless generalized Murphy number ([13], p. 193) induced by the leg splay
∆xAvg and body parameters. When the leg splay distance ∆xAvg goes to d

2 , then our
definition agrees with Raibert’s presentation of the Murphy number, which he represented
by the symbol j: “Murphy found that when j < 1 the attitude of the body can be passively
stabilized in a bounding gait. When j > 1, stabilization is not so easily obtained” ([13], p.
193). We use a generalized version of Murphy’s result because we feel that accounting for
a toe not being directly under the hips when bounding in place is important, as the user
may want to use an arbitrary leg splay. See Section 4.3 for a visual depiction of the Murphy
number as it relates to this paper’s simplified model.

We next decouple the horizontal state from the in-place hybrid transitions. To do so,
we first let only the in-place state components determine the guard intersections:

Gi,j := {x ∈ Di | xI ∈ GI
i,j}. (25)

If instead we allowed the horizontal state to enter into the form of the guards, then the
horizontal flow could influence the mode transitions via the time-to-guard-impact map
and thereby affect the in-place state components, violating the feedforward dependence
we are constructing.

Specifically, the model’s left and right hip height are given by the function yjhip : DI →
R, j ∈ { f , r}. We define the mode guard by setting GI

i,j as the set of states in which a hip’s
height is moving in the correct direction for a mode change and is equal to some value
l0 ∈ R+ plus the value of a control function g(xI) : DI → R:

GI
F,D := {xI ∈ DI

F | yrhip(xI) = l0 + gTD(xI) (26)

∧ ẏrhip(xI) < 0},

GI
D,R := {xI ∈ DI

D |y fhip(xI) = l0 + gLO(xI)

∧ ẏ fhip(xI) > 0},
GI

R,D := {xI ∈ DI
R | bI(xI) ∈ GI

F,D},
GI

D,F := {xI ∈ DI
D | bI(xI) ∈ GI

D,R},

where the guard GI
F,D represents the rear leg’s touchdown event that initiates double

support, GI
D,R represents the front leg’s liftoff event that initiates rear stance, GI

R,D represents
the front leg’s touchdown event that initiates double support, and GI

D,F represents the rear
leg’s liftoff event that initiates front stance.
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In (26), the function bI : DI → DI is an involutory symmetry map intended to enforce
a symmetric bound:

bI(xI) := (y,−ϕ, ẏ,−ϕ̇, τ)T , (27)

and the functions gLO, gTD represent the control functions used to modify the touchdown
or liftoff hip height from the nominal value of l0 as a function of state so as to achieve
the desired gait. The control functions are chosen in (58) of Section 4.1, but for now
we require that they go to zero when the state lies on the desired gait and that their lie
derivatives satisfy

LFI
F

gTD ≥ 0, LFI
D

gLO ≤ 0, (28)

so that the hip height at which touchdown occurs is never decreasing in time during
flight and the hip height at which liftoff occurs is never increasing in time during stance—
conditions that will be used in the proof of Proposition 1 to guarantee the existence of a
specific hybrid periodic orbit. Here, FI

F and FI
D represent the in-place components of the

vector field (14) in modes F and D, respectively. The value l0 represents the leg length at
touchdown and liftoff on the hybrid limit cycle and should be chosen to be sufficiently far
from the workspace singularity as to have room to implement gLO, gTD to stabilize the gait.

Approximation 2. We use a small-angle approximation on the robot pitch for the purpose of
checking guard intersections.

Thus, in the representation of the guards in (26), we take the hip heights to be

yrhip(xI) := y− d
2

ϕ, y fhip(xI) := y +
d
2

ϕ, (29)

ẏrhip(xI) := ẏ− d
2

ϕ̇, ẏ fhip(xI) := ẏ +
d
2

ϕ̇.

We expect this to be reasonably valid at lower levels of pitching such as those observed
in the experiments of Section 5, but expect its validity will deteriorate if limiting behavior
with high pitch is commanded.

Finally, we give the resets Ri,j in the following cascaded form (1):

Ri,j(xI, xH) =

(
RI

i,j(xI)

RH
i,j(xI, xH)

)
. (30)

There is relatively little choice in how to reset the state components since they are
largely physically determined; however, we are free to reset the mode timers τ as they are
non-physical and to reset the horizontal toe positions in flight.

Specifically, we define the in-place resets as

RI
i,j : GI

i,j →DI
j (31)

(qIq̇I, τ) 7→(qIq̇I, 0)

for each (i, j) ∈ T I, where RI
i,j ≡ RI simply zeros the timer component of the state. The

horizontal resets represent the ability to stabilize the horizontal components of the model
for a bounding gait, in the same manner as the guards for the in-place state components. In
placing the foot horizontally ahead of or behind a nominal touchdown configuration accord-
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ing to some control function, it functions much like Raibert’s neutral-point controller [13].
This is defined as

RH
F,D :


x
ẋ

∆xr

x f

 7→


x
ẋ

x + ∆xr + rF,D(xH
F )

x f

, (32)

RH
R,D(xH

R ) = bH ◦ RH
F,D ◦ bH(xH

R ),

RH
D,R :


x
ẋ
xr

x f

 7→


x
ẋ
xr

∆xNom + rD,R(xH
D)

,

RH
D,F(xH

D) = bH ◦ RH
D,R ◦ bH(xH

D),

where

bH : R4 → R4 (33)

:


x1
x2
x3
x4

 7→


x1
x2

x4 − 2∆xAvg

x3 + 2∆xAvg


is an involutory symmetry map intended to enforce a symmetric bound. The control func-
tions rF,D(xH

F ), rD,R(xH
D) (chosen in (63) of Section 4.2) modify the horizontal foot placement

in flight prior to touchdown, and—like gLO, gTD—we require that they go to zero when the
state lies on the desired gait. The constant value ∆xNom ∈ R (chosen in (51) of Section 3.3)
represents a nominal touchdown leg splay magnitude.

Having removed all influence of the horizontal state from the in-place hybrid dynam-
ics, we have endowed a feedforward structure in which the in-place state alone determines
the in-place hybrid execution and which feeds forward into the horizontal dynamics, mak-
ing any suitably chosen Poincaré map for the system have the cascaded architecture (1).

2.3. Dynamical Simplification

To further simplify the dynamics, we choose the (mass-specific) vertical force compo-
nent generated at each foot to be the constant uy:

uyi(xI) = uy ∀i ∈ J , (34)

giving the in-place state components a mode-i flow φt
i (xI) of the form

φt
i (xI) =

 I tI 0
0 I 0
0 0 1

xI +

 t2

2 ci
tci
t

, (35)

cF =

(
uy − g

2uy
da

)
, cD =

(
2uy − g

0

)
, cR =

(
uy − g
− 2uy

da

)
.
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Approximations 1 and 2 and (34) result in the simplified cascaded dynamics depicted
in Figure 4. In particular, the choice of a constant vertical force gives rise to affine horizontal
continuous dynamics with mass-center forward acceleration given by

Mode F: ẍ =
uy

ȳ
(

∆xAvg − ∆x f ),
Mode D: ẍ = −

uy

ȳ
(

∆x f + ∆xr),
Mode R: ẍ =

uy

ȳ
(
−∆xAvg − ∆xr),

and the corresponding mode-i horizontal-component flow φ̂t
i (xH

i ) of the form

φ̂t
F(xH

F ) = (36)
eCFt

(
x
ẋ

)
+
(
eCFt − I

)
CF
−1

(
0

uy
ȳ

(
∆xAvg − x f

))
∆xr

x f

,

φ̂t
D(xH

D) =
eCDt

(
x
ẋ

)
+
(
eCDt − I

)
C−1

D

(
0

− uy
ȳ

(
xr + x f

))
xr

x f

,

φ̂t
R(xH

R ) =
eCRt

(
x
ẋ

)
+
(
eCRt − I

)
C−1

R

(
0

uy
ȳ
(
−∆xAvg − xr)

)
xr

∆x f

,

where

CF =

(
0 1
uy
ȳ 0

)
CD =

(
0 1

2uy
ȳ 0

)
CR =

(
0 1
uy
ȳ 0

)
. (37)
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Figure 4. Cascaded hybrid dynamics achieved through the choice of force laws and hybrid guards
and resets as well as Approximation 1. The choice of force laws (20) and (21) decouple the continuous
dynamics of the hybrid system (3) into the cross product of “in-place” and “horizontal” vector fields
representing the behavior of the “in-place” vertical and pitching states xI as well as the “horizontal”
fore-aft mass-center and toe position states xH. The isolated continuous dynamics—along with the
hybrid guards being purely dependent on the in-place states (25) and the hybrid reset maps having a
cascaded form (30)—endows a feedforward relationship between the in-place states and horizontal
states in which a linearized stability analysis of a hybrid periodic orbit’s Poincaré map Jacobian has
the separation-of-eigenvalues property indicated by (2), allowing for a more tractable analysis. A
stable limit cycle is achieved by controlling the hybrid guards and the resets via (26), (31) and (32).
In the vertical states, this is accomplished on the guards by vertically retracting the leg in stance to
transition to flight and similarly by protracting the leg in flight to affect the onset of stance. In the
horizontal states, this is accomplished on the resets by placing the toe position horizontally in flight
in a similar fashion to Raibert’s neutral-point algorithm [13].

3. Hybrid Periodic Orbit

The explicit flow representation (35), (36)—combined with guards (26) and resets (32)—
yields expressions for the mode maps which are derived in Section 3.1 and composed in
Section 3.2 to form a stride map for the model. We take advantage of symmetry to derive
a simpler half-stride Poincaré map, and in Section 3.3 express a closed-form fixed point
(Proposition 1) representing a hybrid periodic orbit. With the form of the hybrid periodic
orbit in mind, Section 3.4 revisits the validity of Approximation 1, Section 3.5 discusses
a forward-running speed limit associated with the kinematic limitations of a physical
machine, and Section 3.6 discusses the actuator cost to enforce the cascaded decoupling of
Section 2.2.

3.1. Choice of Poincaré Section

We now introduce a symmetry that expresses the dynamics of the mode F and its
transition into the mode D as a mirror image of mode R and its corresponding transition to
D. By restricting attention to only symmetric bounds, this observation affords a factorization
of the resulting Poincaré map modeling a stride cycle as comprising a pair of successive
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half strides. These considerations in turn motivate our choice of a Poincaré section (with
coordinates denoted by a ∼ superscript) as described below.

Each hybrid mode has an associated map taking a starting state to its value along
the forward flow intersecting a guard. For convenience, we pre-compose this with the
appropriate reset map, so that the hybrid mode-reset composition—which we refer to as
the mode map and denote by Φi,j—maps a starting state in mode i to the reset of where the
forward flow intersects the guard Gi,j. Specifically,

Φi,j :

(
UI

i,j

DH
i

)
⊂ Di → Dj, (i, j) ∈ T , (38)

(
xI

xH

)
7→

 RI ◦ φ
TI

i,j(xI)

i (xI)

RH
i ◦ φ̂

TI
i,j(xI)

i (xH)

,

(recalling the forms of the resets RI (31), RH
i (32), the in-place flow φi (35), and the horizontal

flow φ̂i (36)) where we denote the separate components of Φi,j as

Φi,j(xI, xH) =

(
ΦI

i,j(xI)

ΦH
i,j(xI, xH)

)
, (39)

and where

TI
i,j : UI

i,j → R+ (40)

xI 7→ min{t ∈ R+|φt
i (xI) ∈ GI

i,j}

denotes the implicit time-to-impact map of the flow with the guard. Here UI
i,j represents

the largest subset of DI
i over which TI

i,j(·) is defined and over which the forward flow does
not first intersect another guard. We show in the proof of Proposition 1 the existence of
points x̄I

F0,D ∈ UI
F,D, x̄I

D0,R ∈ UI
D,R, bI(x̄I

F0,D) ∈ UI
R,D, and bI(x̄I

D0,R) ∈ UI
D,F; hence, the sets

UI
i,j are non-empty.

The involutory “bounding” symmetry map is defined as follows:

b : D → D (41)(
xI

xH

)
7→
(

bI(xI)
bH(xH)

)
,

where bI is given by (27) and bH is given by (33). The map b induces a flow conjugacy
between FF and FR, as well on flows in FD. This, together with the guard symmetry (26)
and reset symmetry (32), results in b inducing a topological conjugacy between ΦF,D and
ΦR,D, as well as between ΦD,R and ΦD,F.

The reduced domains D̃i are defined as equal to the domain Di without mode-timer
τ or forward position x components, so as to be of use in defining a stride map whose
Poincaré section has the property τ = 0 and does not contain an x component so as to
permit stride map fixed points at speed. Specifically, let

D̃i := D̃I
i × D̃H

i , i ∈ J , (42)

D̃I
i := T(R× S), D̃H

i := R3

(where we sometimes drop the mode subscripts when appropriate) and the reduced state
x̃ ∈ D̃ as

x̃ :=

(
x̃I

x̃H

)
, x̃I ∈ D̃I, x̃H ∈ D̃H. (43)
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Specifically, passage between D̃ and D occurs according to the projection Π : D → D̃ and
lift Σ : D̃ → D maps:

Π(x) :=
(

ΠI(xI)
ΠH(xH)

)
, (44)

ΠI(xI) :=
(

qI

q̇I

)
, ΠH :


x1
x2
x3
x4

 7→
 x2

x3
x4 − x1

,

Σ(x) :=

(
ΣI(x̃I)

ΣH(x̃H)

)
,

ΣI(x̃I) :=

qI

q̇I

0

, ΣH :

x1
x2
x3

 7→


0
x1
x2
x3

.

3.2. Stride Map

We are interested in the asymptotic behavior of a bounding gait with a periodic hybrid
mode sequence (F, D, R, D, ...). To this end, the stride map S is defined:

S :
(

ṼI

D̃H

)
⊂ D̃ → D̃, (45)

x̃ 7→ Π ◦ΦD,F ◦ΦR,D ◦ΦD,R ◦ΦF,D ◦ Σ,

and is local to some fixed point in the interior of the domain, where ṼI ⊂ ΠI(UI
F,D) is the

largest subset of ΠI(UI
F) over which SI is defined. We show in the proof of Proposition 1

the existence of such a fixed point of SI, so ṼI is not empty.
To simplify the analysis, we use the fact that the stride map factors according to

S =Π ◦ΦD,F ◦ΦR,D ◦ΦD,R ◦ΦF,D ◦ Σ (46)

=Π ◦ (bH ◦ΦD,R ◦ bH) ◦ (bH ◦ΦF,D ◦ bH)◦
ΦD,R ◦ΦF,D ◦ Σ

=Π ◦ bH ◦ΦD,R ◦ΦF,D ◦ bH ◦ΦD,R ◦ΦF,D ◦ Σ

=Π ◦ bH ◦ΦD,R ◦ΦF,D ◦ (Σ ◦Π) ◦ bH◦
ΦD,R ◦ΦF,D ◦ Σ

=(Π ◦ bH ◦ΦD,R ◦ΦF,D ◦ Σ)◦

(Π ◦ bH ◦ΦD,R ◦ΦF,D ◦ Σ)

=H2,

where H :
(

ṼI

D̃H

)
→ D̃, such that

H := Π ◦ b ◦ΦD,R ◦ΦF,D ◦ Σ (47)

represents a “flipped” (by b) half stride of the stride map.

3.3. Stride Map Fixed Point

A stable fixed point of H is a stable fixed point of S, so we focus our attention on the
asymptotic behavior of H , which is simpler. We note that we are interested in a symmetric
bound, so any fixed points of S that we are discarding by virtue of not being fixed points of
H via the symmetry b are not symmetric.
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Proposition 1. The maps H and S have a fixed point at

˜̄x :=

( ˜̄xI

˜̄xH

)
, ˜̄xI :=


ȳ
ϕ̄
˙̄y
˙̄ϕ

, ˜̄xH :=

 ˙̄x
¯∆xr

¯∆x f

, (48)

where 
ȳ
ϕ̄
˙̄y
˙̄ϕ

 =


l0 −

uy(g−uy)

4a(2uy−g) T̄2
F,D

− uy(g−uy)

2ad(2uy−g) T̄2
F,D

g−uy
2 T̄F,D
− uy

ad T̄F,D

, (49)

and

¯∆x f =

(
0 1

)(
eCFT̄F,D − I

)(∆xAvg

˙̄x

)
(
0 1

)(
eCFT̄F,D − I

)(1
0

) , (50)

¯∆xr = ¯∆x f − 2∆xAvg +
(
1 0

)(
eCDT̄D,R + I

)−1

(
eCDT̄D,R − I

)(
eCFT̄F,D + I

)(∆xAvg − ¯∆x f

˙̄x

)
,

where (recall (37)) CF =

(
0 1
uy
ȳ 0

)
and CD =

(
0 1

2uy
ȳ 0

)
.

The fixed point ˜̄xH is parametrized by the physical parameters of the system, the duration
T̄F,D ∈ R+ of the periodic orbit’s evolution in mode F (equal to its duration in mode R), and the
forward speed component ˙̄x of the fixed point. The term ∆xNom in (32) is given by

∆xNom = ¯∆xr + 2∆xAvg, (51)

and the duration T̄D,R = T̄D,F of the periodic orbit’s evolution in mode D is equal to

T̄D,R = T̄F,D
g− uy

2uy − g
. (52)

Additionally, on the periodic orbit at the end of D before the reset is applied, the front and rear
leg splays (to be used in used in (63)) are

¯∆xr
D = ¯∆x f − 2∆xAvg,

¯∆x f
D = − ¯∆xr.

Proof. See [65] in Appendix D.

The form of the fixed point does not give much insight into the nature of the resulting
orbit and how parameter choices (particularly uy and T̄F,D) affect it. As such, we give the
minimum and maximum state variable values along the orbit associated with ˜̄x in Table 1 as
well as numerical traces of the orbit in Figure 5. Recall that uy ∈ ( g

2 , g) (16) and T̄F,D ∈ R+,
where the interval constraint on uy guarantees a physically realistic double-support phase
on the hybrid periodic orbit to capture the actuator constraints of Section 5.1. Additionally,
the mass-center height varies by a value of

T̄2
F,D

8
g− uy

2uy − g
uy (53)
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along the orbit.

Table 1. Minimum and maximum state values along the hybrid periodic orbit associated with the
fixed point ˜̄x of Proposition 1.

State Min Value on Orbit Max Value on Orbit

y l0 + 1
8 T̄2

F,D
g−uy

2uy−g (ζ − uy) l0 + 1
8 T̄2

F,D
g−uy

2uy−g ζ

ζ = 2uy(1− a−1)− g

ϕ − guy T̄2
F,D

4ad(2uy−g) ,
guy T̄2

F,D
4ad(2uy−g)

ẏ − g−uy
2 T̄F,D, g−uy

2 T̄F,D

ϕ̇ − uy
ad T̄F,D, uy

ad T̄F,D

|ẋ|
√

˙̄x2 − ξ, | ˙̄x|

ξ =
uy
ȳ ·max

{
(∆xAvg − ¯∆x f )2, 1

2 (∆xNom − ¯∆x f )2}
∆xr −∆xNom, −(2∆xAvg − ∆xNom)

∆x f 2∆xAvg − ∆xNom, ∆xNom

The “user-specified” terms in the form of the hybrid periodic orbit (the terms not
determined by the physical robot parameters) are uy, T̄F,D, and ˙̄x. The (mass-specific)
applied vertical force at the toe uy can be thought of as analogous to a spring constant:
increasing uy decreases vertical height and pitch oscillations (the reason that increasing
the stance force uy decreases height y and pitch ϕ variations in the orbit is because the
total stance time (54) is reduced by an increase in uy, giving the system configuration less
time to change in stance – and while the variations in y and ϕ decrease with increasing uy,
the total energy of the orbit increases), as well as total hip stance time (by decreasing the
double-support time T̄D,R (52)), where the total hip’s stance time T̄Stance is equal to

T̄Stance := T̄F,D + 2T̄D,R = T̄F,D

(
g

2uy − g

)
. (54)

The value of T̄F,D directly sets the single-support stance duration (equal to a hip’s flight
duration) and can be thought of as the dominant determiner of a hip’s total stance time
T̄Stance in cases with shorter double support T̄D,R. Our regime of operation involves a short
double-support time T̄D,R; however, the double-support time would be longer for very
low vertical forces just barely supporting the weight of the robot – in this case, a change
of variables of total support time might be more insightful. Larger values of T̄F,D increase
vertical height and pitch oscillations. Smaller values of T̄F,D leave less time for the leg to
reset its position in flight, and sufficiently small values will be prohibitive for the actuators.
The value of ˙̄x sets the desired speed at mode transitions.
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Figure 5. Traces of the predicted hybrid periodic orbit over a full stride using the parameters of
Table 2 at a commanded speed of 1 m/s are provided so as to give the reader an early intuition
of what the periodic orbits will look like in the later experimental section. These state variable
traces characterize a useful steady-state bounding gait with realistically small oscillations in body
height and forward speed. The readers will notice that the traces of the hybrid dynamical system are
smooth everywhere except for points corresponding with the guards and resets in the next mode.
The background color indicates the mode (4). Green is F, blue is D, and yellow is R. In the ∆x graph,
the blue trace gives ∆xr while the orange trace gives ∆x f (12). Notice that deviations in body height
y and forward speed ẋ are quite small, indicating a valid Approximation 1 as discussed in Section 3.4
and a small value of ξ from Table 1.

Table 2. Parameter values used in experiments. As explained near the end of Section 4.3, the nine
control weights were used to place seven poles at the origin according to (A8), (A11) and (A4), fully
determining both kI

F and kH while leaving kI
D constrained to a hypersurface. Having achieved in-

finitesimal deadbeat stability, we chose the remaining control parameters according to the constrained
optimization procedure given in Appendix C to optimize various other performance metrics.

Numerical Parameters Symbol Value

Physical and pseudo- d 0.47m
physical parameters l0 0.22m

a 1
∆xAvg d

2
ȳ 0.21m
g 9.81 m

s2

Fixed-point parameters uy 8.5 m
s2

T̄F,D 0.15s
˙̄x Varies by experiment

Control weights kI
F (0.544, −0.082, 0.299)T

kI
D (0.427, 0, −0.314)T

kH (0.207, −0.126, 0 )T

3.4. Constant Stance Height Approximation in Pitching Dynamics

With an explicit representation for the hybrid periodic orbit’s mass-center height
variation (53) in hand, we revisit Approximation 1’s usage of a constant stance height in
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the pitching acceleration components of the dynamics (15). Approximation 1 will hold on
the hybrid periodic orbit for height variation values of (53) that are small compared to the
height of the robot.

For Inu, using the experimental parameters of uy = 8.5 m/s2 and T̄F,D = 0.15 s as
indicated in Table 2, the height variation in the mass center along the desired limit cycle
is equal to a deviation of 4 mm; thus, the height is only expected to change 1% from its
nominal value of 0.21 meters during the periodic orbit, which begins to approach the
noise floor on our sensors and is thus more than sufficient for a constant approximation
assumption. This is illustrated in the experimental traces of Inu running in Section 5.2,
where the mass-center height is approximately constant both in the experimental data and
in the desired limit cycle.

More generally, the validity of this approximation is strongly dependent on the du-
ration of the hip’s stance but—for the following reasons—we expect it to hold for a large
class of machines. In terms of the duration of the hip’s stance (equal to 205 ms on Inu with
the parameters of Table 2), the mass center’s height deviation is equal to

1
8

T̄2
Stance
g2 uy(g− uy)(2uy − g),

which is maximized by uy when uy = g
6 (3 +

√
3) ≈ 0.79g, resulting in a mass-center height

deviation of gT̄2
Stance

48
√

3
. Stance durations of approximately 300 ms or less—where 300 ms is a

relatively long stance duration for robots of Inu’s mass scale—result in mass-center height
deviations of 1 cm or less—a small value compared to Inu’s nominal mass-center height of
0.21 meters while running. In biology, the duration of stance has a strong scale dependence:
it generally increases with body mass and animals up to the size of horses have been
documented as having stance times of 300 ms or less [66]. In this study, ground contact
time was found to be generally proportional to M0.19±0.06 for animals with body mass M.
If the same results were to hold for robots, even when using our antagonistic value of uy,
we would expect that larger robots would satisfy Approximation 1 and that smaller robots
(with much shorter stance times) would have an even smaller height deviation for their
size. Of course, one could design a robot with an artificially long stance duration to break
the validity of Approximation 1, but this would result in a severely speed-limited robot as
discussed in Section 3.5. One would also need to reconsider the use of this approximation
when using a much more energetic gait that has a significant flight phase, but this would
assume a difference hybrid mode sequence than that considered in this work.

3.5. Speed Limit

The inherently limited workspace of a leg’s kinematic linkage induces a speed limit
on running [67]. In our case, the leg linkage workspace must accommodate the maximum
and minimum values of the leg splays ∆xr and ∆x f in Table 1 to physically instantiate
the periodic orbit associated with the fixed point ˜̄x. This results in a horizontal leg sweep
distance of δx̄Stance = |2(∆xNom − ∆xAvg)|, where recall ∆xNom is speed-dependent (51).
The sweep distance has a complicated form in terms of the model parameters as ∆xNom

involves the complicated expression ¯∆xr (50); however, we can understand the dominant
terms using a simple approximation.

The average forward speed in stance is approximated by ˙̄x, which is valid given a
small value of the term ξ in Table 1 relative to ˙̄x2. This applies to Inu as indicated by
the small speed deviations in both the hybrid periodic orbit in Figure 5 and the robot’s
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instantiation of those orbits as presented in Section 5.2. Then, the mass center’s (and thus
the hip’s) horizontal sweep distance in stance δx̄Stance is

δx̄Stance ≈ ˙̄x(T̄F,D + 2T̄D,R) (55)

= ˙̄xT̄F,D

(
g

2uy − g

)
(54)
= ˙̄xT̄Stance.

A robot with a horizontal leg stroke distance that is kinematically limited to δxMax
Stance

and with a stance time T̄Stance (limited from below by a value of uy achievable by the
actuators) would physically be able to instantiate an orbit with a maximum running speed
magnitude ˙̄xMax of

˙̄xMax ≈
δxMax

Stance
T̄Stance

= δxMax
Stance

2uy − g
gT̄F,D

, (56)

a value of 1.6 m/s for Inu as explained in Section 5.1.
We now revisit our decision in Section 2.2 to set ∆xAvg to equal d

2 so as to maximize
the forward running speed. The horizontal interval that the legs sweep when operating
on the periodic orbit is centered at a distance of ∆xAvg from the mass center as calculated
from Table 1. Assume that the leg linkage workspace permits an interval of horizontal
reach centered at the hip. The horizontal leg sweep interval must be contained in the
leg workspace interval for a physically realizable gait. The maximum speed that can
be physically realized occurs when the horizontal leg sweep interval and leg workspace
interval are identical, which requires that they be centered at the same point, which requires
∆xAvg to equal d

2 .

3.6. Cost of Enforcing a Cascade

Proposition 1 allows us to revisit the cost of enforcing the cascade composition of
Section 2.2 with the horizontal force law (21) along the hybrid periodic orbit. Very often in
robotics, a disadvantage of canceling the natural system dynamics using control is that it
requires significant actuation affordance. However—as we argue below—at lower speeds
the horizontal forces needed to achieve this dynamic decoupling are quite small; they are
only a fraction of the applied constant vertical force.

We quantify this by considering the maximum horizontal leg force magnitude en-
countered during a stride on the periodic orbit. This maximum value is obtained when
the horizontal length from the toe to the mass center is furthest from ∆xAvg (21). When
operating on the hybrid periodic orbit, recall that the leg sweeps an interval of length
δx̄Stance centered at a distance ∆xAvg from the mass center (Section 3.5), thus reaching out
at a maximum distance of 1

2 δx̄Stance from the centered distance of ∆xAvg and giving the
horizontal force the following maximum stance magnitude:

|uxMax| =
1
2
|δx̄Stance|

uy

ȳ
.

The given maximum horizontal force is really a conservative upper bound, as it corresponds
to the double-support mode and a sensible user would not program both the front and
rear legs to generate opposing internal forces of this magnitude; rather, they could achieve
the same total horizontal force on the body with much smaller horizontal toe forces to
decrease internal forces. The user’s choice of front/rear force distribution in double support
is elaborated on near the end of Section 2.1.

Putting this in terms of forward running speed using the approximation (55) gives

|uxMax| ≈
1
2
| ˙̄x|T̄Stance

uy

ȳ
. (57)
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This force would be briefly equal to the applied specific vertical force uy in stance
at an average stance speed of ˙̄x = 2ȳ

T̄Stance
. Using a duration of hip stance of T̄Stance = 0.2

seconds and an average mass-center stance height of 0.21 meters (Inu’s experimental
parameters derived from Table 2) results in a speed of 2.1 m/s, where the maximum
horizontal and vertical forces are briefly equal. Inu is kinematically limited to a running
speed of approximately 1.6 m/s, so the platform cannot approach the high-cost-of-cascade-
enforcement regime. On a quadruped that is not kinematically limited, higher speeds than
˙̄x = 2ȳ

T̄Stance
require that the toes reach out sufficiently in front of or behind the hips to the

point of causing the horizontal cascade-enforcement force to briefly eclipse the vertical at
the beginning and end of stance. In these cases, we can consider the cascade enforcement
to be “expensive” for the actuators. A shorter stance duration (54) would mitigate this cost;
achieving this through reducing T̄F,D would increase the actuator cost of resetting the leg’s
position in flight, and achieving this through increasing uy would also tax the actuators.

The approximate cost of enforcing the cascade is linear in speed (57), going to zero
when bounding in place. Thus, at low speeds and small horizontal forces, we believe that
the natural dynamics are themselves “almost” a feedforward cascade of the in-place module
with the horizontal bead-on-a-wire dynamics, and that our choice of a horizontal force
law represents only a slight “nudge” to the dynamics so as to complete this decoupling
(Figure 4) and provide us with a tractable stability analysis.

4. Controller

Control of the system to achieve a symmetric bound occurs on the hybrid guards and
resets. Recall from Section 2.2 that cascading the dynamics naturally places the in-place
control gains in the guards and the horizontal control gains in the resets. A summary of
our control strategy is as follows.

The in-place controllers perform feedback on the mode timers and hip heights, as
time and kinematic configuration are the most accurately measured aspects of the state as
discussed in Section 6.1. Instead of controlling the continuous value of the hip heights, we
only control their value at the start of the mode. This has the practical benefit of providing
hip height measurements for the controller even when the hip is in flight (having measured
its value at liftoff), as well as the algebraic benefit of simplifying the stability calculations
in Section 4.3 as the hip height values being controlled do not change over the course of a
mode. The fact that six easily measurable quantities exist per half stride (two modes, each
with one timer and two hip height measurements) results in six control gains. Four of the
gains are used to place the four poles of the stride map corresponding to the four in-place
components (recall that the presence of the timer coordinate in the dynamics gives four
in-place Poincaré map components, not three), and the remaining two gains are used for
optimization to meet other performance criteria.

The reset controllers perform feedback on the system’s forward speed and the two
toe positions. This gives three gains (rather than six, as the controllers can only set the
horizontal toe position in flight and not in stance) to place the three poles of the stride map
corresponding to the three horizontal components. In principle, the horizontal controller
could be chosen to take in additional inputs and thereby allow the user to optimize it for
other performance criteria, for example the in-place mode timers and hip heights; how-
ever, we found that performance was reasonable without needing to introduce additional
feedback paths.

Section 4.1 specifies the controller on the guards, which stabilizes the in-place state
components. Section 4.2 specifies the controller on the resets, which stabilizes the hor-
izontal state components. Section 4.3 presents the central stability result of the paper.
Specifically, we present a choice of control weights that makes the Poincaré map Jacobian
evaluated at the fixed point nilpotent (Proposition 2), making the closed-loop dynamics
infinitesimally deadbeat.
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4.1. Hybrid Guard Control

Recall that the hybrid guards intersections (25) and (26) require an appropriate hip
height equal to some nominal value l0 plus a (to-be-specified) state-dependent guard
control function gLO, gTD : DI → R. We choose to use guard controllers that are functions
of the mode timers and hip heights—giving six control gains as shown below in (58)—as
mode time and kinematic configuration (hip height) are the most accurately measured
aspects of the in-place state by our robot as discussed in Section 6.1. Specifically, we use
guard control functions of the following form:

gTD(xI) := kI
F

T

yrhip
F0
(xI)− yrhip(x̄I

F0,D)

y fhip
F0
(xI)− y fhip(x̄I

F0,D)

τ − T̄F,D

, (58)

gLO(xI) := kI
D

T

yrhip
D0
(xI)− yrhip(x̄I

D0,R)

y fhip
D0
(xI)− y fhip(x̄I

D0,R)

τ − T̄D,R

,

where the vectors kI
F, kI

D ∈ R3 represent control weights, y fhip , yrhip : DI → R give the
front and rear hip heights (29), and the functions yrhip

i0
, y fhip

i0
: DI

i → R, i ∈ J I give the
mode’s initial hip heights (according to the hip heights that occurred when τ = 0) via

yrhip
i0
(xI) := yrhip ◦ φ−τ

i (xI), (59)

y fhip
i0
(xI) := y fhip ◦ φ−τ

i (xI).

The values of x̄I
i0,j in (58) are set as follows and represent “target” states for the

controller to track; we choose them so that the control functions vanish by design along the
hybrid orbit associated with a privileged fixed point of H . Denote the lift (44) of the stride
map fixed point ˜̄x in Proposition 1 from D̃ to DF by

x̄ =

(
x̄I

x̄H

)
:= Σ(˜̄x), (60)

and set x̄I
i0,j in (58) to equal the in-place component of the state of the hybrid execution

initialized at x̄ as it periodically enters mode i before entering mode j according to

x̄I
F0,D := x̄I, x̄I

D0,R := ΦI
F,D(x̄I). (61)

Finally, let T̄F,D and T̄D,R in (58) agree with the durations of the hybrid trajectory in
modes F and D, respectively.

Let kI
Fi and kI

Di denote the i’th components of the control parameter vectors kI
F and

kI
D, respectively. We impose the requirement that

kI
F3 ≥ 0, kI

D3 ≤ 0, (62)

so that the hip height necessary for touchdown is not decreasing in time and the hip height
necessary for liftoff is not increasing in time, satisfying (28).

Intuitively, the guard control functions (58) act as proportional controllers and modify
the nominal touchdown or liftoff hip heights according to a weighted sum of errors between
scalar-valued functions of the state and constant “target” values. These scalar-valued
functions consist of the hip height values at the start of the mode execution (calculated
by back-flowing the state until the component τ coincides with 0 and examining the hip
heights at that time instance, and physically implemented by measuring the state variables
at the start of the mode) and the current mode duration according to τ. The “target”
states were chosen to force the control functions to zero at the hybrid transitions along the
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privileged periodic orbit of Proposition 1 by setting them to equal the state along the orbit
when the evolution initially enters mode i as it evolves to mode j. The control weights
kI

F, kI
D will be chosen in Section 4.3 and Appendix B to make the periodic hybrid trajectory

associated with ˜̄x a stable hybrid limit cycle.

4.2. Hybrid Reset Control

Recall that the in-place components of the hybrid resets simply zero the mode timer
variable τ, while the horizontal components of the reset place the foot horizontally in flight
using a nominal value according to control functions rF,D, rD,R : DH → R (32). We choose
reset control functions of the following form:

rF,D(xH
F ) := kH

F (ẋ− ˙̄x), (63)

rD,R(xH
D) :=

(
kH

D,1, kH
D,2

)(∆xr − ¯∆xr
D

∆x f − ¯∆x f
D

)
,

where

kH :=
(

kH
F kH

D,1 kH
D,2

)T
∈ R3, (64)

are control weight constants that will be chosen to stabilize the horizontal components of
the gait in Section 4.3 and Appendix B. The values of ˙̄x, ¯∆xr

D, ¯∆x f
D ∈ R are equal to the

values in Proposition 1 so that the control functions vanish along the privileged fixed point
of the stride map (on the periodic orbit’s intersection with GD,R, ¯∆xr

D equals (xr − x) and
¯∆x f

D equals (x f − x)).
Intuitively, the reset control functions (63) act as proportional controllers—much

like the guard control functions—to place the foot horizontally in flight so as to control
the horizontal state components. Note that the reset RH

F,D takes place at the touchdown
event, at which time the toe cannot move horizontally without undesirable slipping. Thus,
in the physical implementation of RH

F,D, one should apply the control function rF,D(xH
F )

continuously in flight (as in [52]) so that when touchdown does occur the toe is in the
correct position to satisfy RH

F,D.

4.3. Controller Stability Analysis

In the half-stride map H (47), the horizontal states have no influence on the in-place
components of H , giving the map the following cascade form:

H(x̃) =

(
HI(x̃I)

HH(x̃I, x̃H)

)
, (65)

and endowing a block-diagonal Jacobian (2) whose structure we will now take advantage
of. The Jacobian of H is given by

DH = DΠ · Db · DΦD,R · DΦF,D · DΣ, (66)

where

DΠ =

(
DΠI 0

0 DΠH

)
, Db =

(
DbI 0

0 DbH

)
,

DΣ =

(
DΣI 0

0 DΣH

)
,
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with in-place components

DΠI =

(
I 0 0
0 I 0

)
, DbI =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

, (67)

DΣI =

 I 0
0 I
0 0

,

and horizontal components

DΠH =

 0 1 0 0
0 0 1 0
−1 0 0 1

, DbH =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

,

DΣH =


0 0 0
1 0 0
0 1 0
0 0 1

.

The mode-map Jacobians have the form

DΦi,j

∣∣∣
x
=

(
DxI ΦI

i,j 0
DxI ΦH

i,j DxH ΦH
i,j

)∣∣∣
x
,

where DxI ΦI
i,j ≡ DΦI

i,j is given by (recalling the structure of the flow (35) and reset (31)):

DΦI
i,j =

 I Ti,j(xI
i)I 0

0 I 0
0 0 0

+

q̇ + ciTi,j(xI
i)

ci
0

∂Ti,j

∂xI , (68)

and where ΦH
i,j(x) = RH

i,j ◦ φ̂
TI

i,j(xI)

i (xH) (38), with resets RH
i,j (32) and (63), and horizontal

flow φ̂t
i (36). Note that all the factors of DH are lower block-triangular.

The half-stride map Jacobian DH
∣∣˜̄x has the form

DH
∣∣˜̄x =

(
Dx̃I HI 0
Dx̃I HH Dx̃H HH

)∣∣∣˜̄x , (69)

indicating the eigenvalue separation property discussed in Sections 1.2. Four of the eigen-
values are determined from Dx̃I HI

∣∣˜̄x ≡ DHI
∣∣˜̄xI , given by

DHI
∣∣∣˜̄xI = DΠI · DbI · DΦI

D,R

∣∣∣
ΦI

F,D(x̄I)
· DΦI

F,D

∣∣∣
x̄I
· DΣI, (70)

where ΦI
F,D(x̄I) simplifies to

(
ȳ, ϕ̄, − ˙̄y, − ˙̄ϕ, 0

)T . The remaining three eigenvalues
are from Dx̃H HH

∣∣˜̄x ≡ DHH
∣∣˜̄x , which has the form

DHH∣∣˜̄x =DΠH · DbH · DxH RH
D,R · DxH φ̂

T̄D,R
D ·

DxH RH
F,D · DxH φ̂

T̄F,D
F · DΣH, (71)
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where

DxH φ̂
T̄F,D
F =

eCFT̄F,D (eCFT̄F,D − I)
(

0 −1
0 0

)
0 I

,

DxH φ̂
T̄D,R
D =

eCDT̄D,R 1
2 (e

CDT̄D,R − I)
(
−1 −1
0 0

)
0 I

,

DxH RH
F,D =

 I 0(
1 kH

F
0 0

)
I

,

DxH RH
D,R =

 I 0(
0 0

−(kH
D,1 + kH

D,2) 0

) (
1 0

kH
D,1 kH

D,2

),

and CF and CD are given in (37).

We can further simplify the Jacobian block DHI
∣∣∣˜̄xI . By multiplying the values of ΠI, ΣI,

(70) simplifies to

DHI
∣∣∣˜̄xI = Db̃I · DΦ̃I

D,R

∣∣∣
ΦI

F,D(x̄I)
· DΦ̃I

F,D

∣∣∣
x̄I

, (72)

where

DΦ̃I
i,j =

(
I Ti,j(xI

i)I
0 I

)
+

(
q̇ + ciTi,j(xI

i )

ci

)
∂Ti,j

∂x̃I , (73)

Db̃I =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

,

and—as specified in (72)—the points of evaluation for the terms
∂Ti,j

∂x̃I all have in common

that τ = 0. The form of
∂Ti,j

∂x̃I is given in Lemma A1.
We now have explicit expressions for all terms in the iterated map Jacobian DH (66)

and can begin an analysis of the map’s local stability at ˜̄x. It remains to choose weights
kI

F, kI
D in the hybrid guards (26), (58) and weights kH (64) in the hybrid resets (32), (63)

such that the spectral radius of DH
∣∣˜̄x (69) is less than unity.

Given the unwieldy form of the Jury stability criteria for fourth-order polynomials,
we instead opt to obtain an infinitesimally deadbeat solution, by which we mean that all the
eigenvalues of the Jacobian of the iterated map evaluated at the fixed point are equal to
zero, a choice further discussed in Section 6.1.

Proposition 2. For any operating point ˜̄x (48), there exists a choice of gains kI
F, kI

D (58), and
kH (64), that—conjectured on the conditions (A10)—make the associated Poincaré map Jacobian
DH

∣∣˜̄x (69) nilpotent, endowing the operating point with infinitesimal deadbeat stability.

Proof. The Dx̃I HI component of DH
∣∣˜̄x in (69) is made nilpotent through the choice of

gains kI
F and kI

D given in Lemma A2 (via the change in coordinates (A2)), assuming
the invertibility of the matrix (A7) which we conjecture to be generically invertible (we
numerically verified invertibility of (A7) when using the values from Table 2). The Dx̃H HH

component of DH
∣∣˜̄x is made nilpotent through the choice of gains kH given in Lemma A3.

The eigenvalues of the block-triangular DH
∣∣˜̄x are given by the union of the eigenvalues

of the diagonal blocks Dx̃I HI and Dx̃H HH. These diagonal blocks are nilpotent, and so
DH

∣∣˜̄x is nilpotent.
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The procedure for choosing gains for infinitesimal deadbeat stability is algorithmic in
the sense that the gain choices for kH and kI

F are explicitly given by Equation (A8) (via the
change in coordinates (A2)) and (A11), respectively; and Equation (A4) constrains kI

D to a
hypersurface (a hyperplane constraint in the coordinates of (A1)).

There still exists some freedom in choosing the control parameters as only a hypersur-
face constraint on the three-dimensional kI

D is required for infinitesimal deadbeat stability
(nine control gains were used to place seven poles). We chose the remaining control pa-
rameters according to the procedure given in Appendix C. We found that selecting control
parameters kI

D with parametric robustness and transients in mind was important; naively
selecting values during the experiments resulted in poor performance. The numerical
values chosen are shown in Table 2.

Slices of the numerically derived basin of attraction for the in-place components
of the control scheme are depicted in Figure 6, using parameters given in Table 2 and
enforcing the desired hybrid mode sequence. An enforced hybrid mode sequence is
a conservative assumption compared to physical implementation on our robot where
transient hybrid mode sequences are perfectly acceptable, and so we suspect that the actual
basin of attraction without enforcing the hybrid mode sequence is larger.

The robustness of the in-place components of the control scheme to parametric un-
certainty is indicated in Figure 7. While we can measure the majority of the physical
parameters of the robot quite well, we have a difficult time accurately measuring the body’s
moment of inertia, which is folded into the generalized Murphy number a, as well as
the stance-specific vertical force uy. Here, we show the spectral radius of the Jacobian
of HI when the “true” parameter values are varied from the parameter values used by
the controller, evaluated at the fixed point that results from this parameter perturbation.
The results of Figure 7 show that the controller will only destabilize when our error in
estimating these two parameters is very large.

Figure 6. Two slices of the numerically computed basin of attraction when the hybrid mode sequence
is enforced, using parameters given in Table 2 (left—in the (ϕ, y) plane; right—in the (ϕ̇, ẏ) plane).
The blue region indicates the basin, and the center orange dot corresponds with the fixed point x̄I of
the map HI. The enforcement of the hybrid mode sequence is a very conservative assumption for
real-world implementation, as the ability to move through transient hybrid mode sequences is an
inherent affordance of legs that provides robustness and motivates their use on machines.



Robotics 2023, 12, 109 27 of 40

Figure 7. Robustness of deadbeat solution to perturbations in the parameters uy and the unitless
a, as indicated by the value of the spectral radius of the Jacobian of HI when the true parameter
values are varied from the parameter values used by the controller in Table 2, evaluated at the fixed
point that results from this parameter perturbation. To give the reader an intuition on the range
of a displayed, below the graph are cartoon representations of the robot for a generalized Murphy
value a of 0.6, 1.0, and 1.4, assuming all the robot mass is equally distributed at two point masses
along the robot. The controller becomes unstable when the spectral radius exceeds unity, indicated
by the red line. The parameters a and uy are the two parameters which are difficult to measure on the
physical robot. The large distance from the unperturbed case (indicated by the orange dot) to the
onset of destabilizing perturbations (indicated by the red line) suggests a large degree of robustness
to uncertainty in these parameters.

The basin of attraction for the horizontal components of the controller is global, as
the iterated dynamics HH are affine in x̃H. Of course, because HH is also a function of x̃I,
convergence in x̃H is only guaranteed by our local stability analysis once x̃I approaches its
limiting value. We can think of the dynamics of the combined system H as containing an
attracting invariant submanifold given by x̃I = ˜̄xI, on which the dynamics globally attract
to x̃H = ˜̄xH.

We see from Figure 8 that the horizontal control scheme has a reasonable degree of
robustness to parametric variation. Unlike the in-place control scheme, the horizontal
does not have any free control parameters to optimize performance metrics other than for
achieving infinitesimal deadbeat stability. Thus, this control scheme is hostage to whatever
transients emerge as a result of the deadbeat control law Lemma A3, although we did not
observe large transients in the experiments of Section 5. If we had, we could increase the
number of state variables and control coefficients appearing in the input of the control
functions (63)—for example, by introducing in-place state components—and then perform
an optimization similar to the in-place control scheme to limit transients; however, this
would come at the cost of added feedback paths along which noise and the negative effects
of measurement uncertainty would grow.
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Figure 8. Slices of the Jacobian spectral radius of HH evaluated at the appropriate fixed point with
parametric perturbations in the parameters ȳ, T̄F,D, and uy—the only parameters entering into the
Jacobian. This analysis uses numerical parameter values given in Table 2 as the unperturbed values.
Here, the control is performed using the unperturbed parameters, showing the robustness of the
control scheme to parametric uncertainty. The distance from the orange dot in the lower-left plot
(representing the unperturbed parameter values) to the red line (indicating slices of the edge of
stability) demonstrates that the controller can withstand sizable perturbations in parameter space
before becoming unstable.

5. Empirical Demonstration of Controller

This section documents the implementation of the controller from Section 4 on the Inu
robot. Section 5.1 describes the experimental setup and Section 5.2 gives the experimen-
tal results.

5.1. Setup

We demonstrate the controller of Section 4 implemented on the Inu robot [20], a direct-
drive quadruped that has an articulated spine [68] (held rigid in these experiments). While
the experiments of this paper do not utilize Inu’s flexible spine, we hope in future work
to cascade another module that encapsulates an added degree of freedom representing
a bendable back to the modeling composition and thus chose this robotic platform for
continuity with future work.

The robot’s lack of gearing in the legs necessitates operating the actuators far from
their operating point of maximum power (although the lack of gearing provides benefits
such as proprioceptive ground contact detection [69,70]), which manifests itself in actuator
saturation preventing the platform from achieving an aerial phase when running at faster
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speeds. We decided to forgo an aerial phase at slower speeds as well—hence the choice of
hybrid modes (4)—to demonstrate consistent behavior across all feasible running speeds,
and chose commanded vertically applied force and mode durations (uy and T̄F,D in Table 2)
according to what the actuators could achieve at higher speeds.

Inu’s parametric correspondence with the simplified model is given in Table 2. While
most of the simplified model parameters are easily measurable to a high degree of accuracy,
calculating the robot’s moment of inertia about its mass center (and hence its generalized
Murphy number a) and the mass-specific vertically applied force uy is more difficult. Our
lab does not have the equipment to accurately measure these two parameters; however,
Figure 7 indicates a wide basin of stability to combined perturbations of these parameters and
so we do not expect to see instability arise from our lack of good measurement capability.

The robot is kinematically limited to a horizontal leg stroke distance of 32 cm when
using a nominal touchdown height of 22 cm. Since the hip’s stance time along the limit
cycle (55) is equal to 205 ms, we know (as discussed in Section 3.5) that the forward running
speed is theoretically limited to approximately 1.6 m/s.

Inu executed a bounding run at several speeds to demonstrate the viability of the
controller on physical hardware, using only its onboard MPU-6000 IMU (https://www.
sparkfun.com/products/retired/11234, accessed on 24 July 2023) and motor encoders for
sensing. A Vicon motion capture system (https://www.vicon.com/, accessed on 24 July
2023) was used to log experimental kinematic data of Inu’s mass-center and body-pitch
trajectories and compare them with the predicted periodic orbits of the reduced-order
model. The raw (unfiltered) trajectory data from motion capture are provided. In an effort
to demonstrate the behavior of the in-place dynamics HI(x̃I) (65) in isolation, we first ran
the robot without implementing the horizontal reset speed controller—instead using a
simple PD loop to dampen out horizontal movement. In a second set of experiments, we
used the full controller to test the behavior at speeds up to the theoretical limit. A simple
feedforward yaw controller was implemented on the robot to steer during running: the
user gives a joystick yaw input which the robot adds to the horizontal forces applied by the
right toes and subtracts from the horizontal forces applied by the left toes. We found that
adding a small amount of active damping in the controller implementation—specifically
in the vertical and horizontal applied stance forces—was useful but not necessary to
mitigate the effects of unmodeled friction [15]. Our controller’s implementation in C++ has
been provided as Supplementary Material under the filenames VirtualPogostick.cpp and
VirtualPogostick.h.

5.2. Results

The results of the experiments are summarized in Figures 9 and 10. The in-place
controller was run on Inu over the course of approximately 30 strides as shown in Figure 9,
demonstrating a good empirical correspondence between the robot and the predicted
orbit of the in-place controller. The full controller’s implementation in Figure 10 shows a
reasonable agreement with the desired limit cycle at lower speeds, although the addition of
the forward speed controller introduces more noise into the orbits as compared with the
in-place controller. The predicted behavior was reliably repeatable over dozens of trials at
many horizontal speed set points, ˙̄x, in the range allowed by (56). At higher speeds, we
see the orbit of the pitch degree of freedom inconsistently sag during negative pitch values
corresponding to when the front is in stance. This is due to the motors of the front body
segment saturating when running at speed; the front is slightly inertially disadvantaged
compared to the rear due to the battery weight being carried by the front. Inu can still run
without falling when approaching the speed limit imposed by Inu’s kinematics; however,
the legs are commanded to lift off prematurely when they near their kinematic singularity
as shown in Figure 11, which results in inconsistent trajectories.

https://www.sparkfun.com/products/retired/11234
https://www.sparkfun.com/products/retired/11234
https://www.vicon.com/
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Figure 9. The in-place component of the controller implemented on the Inu robot shows good
correspondence between the actual (blue) and analytically predicted (red) behavior of the robot over
approximately 30 strides (10 s) of motion capture data. Here, the horizontal toe position is maintained
through the use of a simple PD controller with relatively high-magnitude derivative term to dampen
out fore-aft oscillations.

Figure 10. Depicted are the actual (blue) and desired (red) orbits and trajectories under motion
capture using the full controller of Section 4 on the Inu robot over various running speeds up to Inu’s
kinematic speed limit. As further discussed Sections 5.2, we see a reasonable agreement with the
desired limit cycle at lower speeds (top). At higher speeds (middle), we see the orbit of the pitch
degree of freedom inconsistently sag during negative pitch values corresponding to when the front is
in stance, as the front is slightly heavier than the rear. Approaching the speed limit imposed by Inu’s
kinematics (bottom), Inu’s legs are commanded to lift off prematurely when they near their kinematic
singularity as shown in Figure 11, which results in inconsistent trajectories. The lower time durations
of the faster experiments are the result of the robot running faster through the motion capture area.
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Inu is able to run up to its theoretical kinematic running speed of 1.6 m/s, but Figure 11
demonstrates that Inu is at the limit of its available workspace at this speed. The robot was
not able to exceed speeds higher than this, and commanding it to do so resulted in the legs
hitting their kinematic singularity earlier in stance. This resulted in the robot stumbling,
the onset of which lowered the running speed substantially. To run faster, either longer legs
would be needed to increase the workspace (which would require greater motor torques via
the increased lever arm) or a shorter stance duration would be required through increasing
the applied vertical stance force. Both are precluded by Inu’s inherently torque-limited
actuation. In future work, we will investigate the addition of a spine morphology to provide
this added workspace without detracting from the hip’s torque generation affordance.

Figure 11. Toe kinematic trajectories for the front legs in the local hip frame show that at running
speeds of 1.6 m/s, the leg linkage is close to singularity. This represents a constraint on maximum
running speed, as the leg runs out of workspace to sweep the leg backwards in stance. Faster running
could be achieved by either using longer legs to increase the workspace or by achieving shorter stance
durations through increasing the applied vertical stance force. In future work, we will investigate the
addition of a spine morphology to provide this added workspace without detracting from the hip’s
torque generation affordance.

6. Discussion
6.1. Infinitesimally Deadbeat Nature of Our Result

Our stability result is not one that is deadbeat, but rather infinitesimally deadbeat
as a result of achieving a nilpotent stride map Jacobian at the fixed point. As such, local
convergence to the fixed point is not in a finite number of steps but rather super-exponential
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due to the vanishing of linear terms in the Taylor approximation of the k-th iteration of
the stride map at the fixed point for some k ∈ N. We believe that finite step convergence
often comes with the price of an increased control burden that—as suggested by the current
general lack of deadbeat results “in the wild” without utilizing motion capture—is poorly
conditioned to state/parameter uncertainty.

Specifically, a k-step deadbeat control law requires the cancellation of all nonlinear
terms in the Taylor series of a system’s k-times composed Poincaré map local to the fixed
point. Regarding state uncertainty, the canceling of the combined effect of these nonlinear
terms can be worse-conditioned to errors in state measurement than only canceling the
linear terms (sometimes much worse). We avoided the possibility of this ill conditioning by
both choosing not to cancel the nonlinear terms and by designing feedback paths in our
control law to only use states that we find we can accurately measure—time, kinematic
configurations, and forward speed—thus eschewing the common method of detecting a
hip’s apex event in flight as it is typically estimated from the hip’s vertical liftoff velocity,
which we have difficulty measuring in stance due to its quickly changing nature. We are
wary of using these feedback paths for deadbeat stability as the state measurement error
inherent to operation in the physical world is still present in states that we can “accurately”
measure, and an ill-conditioned canceling of dynamics can still magnify their adverse effects
to result in a controller with poor empirical performance. Regarding parametric uncertainty,
deadbeat control amounts to inverse dynamics and it is known that the cancellation of
inertial terms can lead to poor parametric robustness. Rather, the empirical performance
depicted in Figures 9 and 10 demonstrates a reasonable degree of robustness to the state
measurement error inherent to operation in the physical world and Figures 7 and 8 indicate
a reasonable degree of parametric robustness.

6.2. Controlling on the Hybrid Transitions

In controlling on the guards and resets, we are exploiting a natural affordance pro-
vided by the use of legs. The control affordance provided by hybrid transitions is important
because it is in some sense independent of actuator power constraints: we achieve arbi-
trarily good pole placement with only modest control gains (Table 2). Instead, it is our
specification of the (more or less highly energetic nature of the) desired hybrid periodic
orbit (Proposition 1, Section 3.3) that depends strongly on actuator performance as shown
in Section 3.6, but this is almost entirely independent of the stabilizing controller gains
(Section 4). As we attempt to explain more precisely below, we believe that controlling
the hybrid transitions frees scarce actuator power resources from the task of shaping the
continuous dynamics into the proper “funnel” [71] required for stability, allowing their
application to instead access dynamical regimes of higher energy operation. Settings rich
in hybrid interactions are ripe for this style of control, and as such the intrinsic necessity
of making and breaking contact that accompanies legged robots is an opportunity for
exploiting the natural hybrid nature of the dynamics to achieve stability.

The costs inherent to our control formulation are twofold. First, the actuator cost is
equal to the enforcement of the (piecewise) Hamiltonian dynamics through generating
conservative potential field force laws at the toes. In the vertical, this is a constant force
(20), in the horizontal the force is affine with respect to the leg horizontal toe position (21).
Due to the simple and transparent nature of these force laws (constant and affine), a user
can easily evaluate if they are prohibitively costly at any point in the workspace and—as
long as the transients in state are not bad—should not expect that operation near the hybrid
periodic orbit would be suddenly costly for the actuators. The fact that the Inu robot used
in the experiments is inherently force-limited (Section 5.1), yet can tolerate using the force
laws even as perturbations are corrected, suggests that the costs associated with it are
not prohibitive.

Second, our hybrid transition control scheme consists of displacing the toe from some
nominal location using proportional control. Practically, the toes can only tolerate so much
displacement from the controllers (legs being limited in workspace, or perhaps needing to
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avoid a corner of the workspace with unfavorable actuator performance), which we relate
to the tolerable state error as follows. If one puts interval constraints on the values that a
control function gTD, gLO, rF,D, or rD,R (58), (63) may take, this is equivalent to being able to
—on the hybrid transitions—tolerate perturbations from the periodic orbit that satisfy two
halfspace constraints (whose hyperplanes are parallel and offset). For example, specifying
that rD,R ∈ (δrMIN, δrMAX) in (63) is equivalent to the requirement that

δrMIN < kH
D

T
(

∆xr − ¯∆xr
D

∆x f − ¯∆x f
D

)
< δrMAX,

allowing the user to quantify the state errors tolerable by the leg mechanisms.

6.3. Cascade Compositions as Attracting Invariant Submanifolds

Stable fixed points of cascaded iterated maps necessarily have an attracting invariant
submanifold. Let D1 and D2 be (respectively) n- and m-dimensional differentiable man-
ifolds, and suppose the iterated map P : D1 × D2 → D1 × D2 is a cascaded composition

P(x, y) =

(
P1(x)

P2(x, y)

)
(1) with a stable fixed point (x̄, ȳ). Then, x̄ × D2 is an invariant

submanifold, and is attracting due to x̄ being attracting in P1. In our system, the attracting
invariant submanifold is given by the horizontal dynamics along the in-place limit cycle.
It is interesting to note that in the language of templates and anchors [72], traditionally
the dynamics on the attracting invariant submanifold, called the template dynamics, drive
the hybrid transitions, while in our case it is the dynamics that collapse to the attracting
invariant submanifold—called the anchor dynamics—that do so.

7. Conclusions

This paper considered the problem of stabilizing a three-mechanical-degree-of-freedom
simplified model of Groucho-style quadrupedal bounding in the sagittal plane. By using
the continuous stance forces to effect trivial continuous dynamics and a cascade dynamical
decoupling giving a useful eigenvalue separation condition in the stride map Jacobian,
we analytically showed local stability by controlling the guards and resets to obtain an
“infinitesimal” deadbeat result that we believe is better conditioned to parametric and state
uncertainty than full deadbeat control for practical use in an experimental setting. The
model, while simple, well approximates physical robot experiments implementing the run-
ning controller. Aside from the contribution of the running controller, we hope this paper
motivates further progress in the analytical stability results of three-degree-of-freedom
(and higher) legged locomotion models—a currently underdeveloped area of the literature
that has the potential to greatly enhance the empirical performance of legged machines.
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Appendix A. Table of Symbols

Table A1 provides the reader with a description of the main symbols used in this
manuscript.

Table A1. Main symbols used in this work with reference to their equations of introduction.

Symbol Description

H := (J , T ,D ,F ,G ,R) Hybrid system (3), (5), (6), (13), (17), (18)
F, D, R Hybrid modes (4)

Di, Gi,j, Ri,j, Fi Mode domains (7), guards (25), resets (30), vector fields (14)
t, y, ϕ, τ Time, mass-center height, body pitch, mode timer (10), Figure 2
x, x f , xr Mass-center and front/rear toe horizontal positions (11), Figure 2

∆x f = x f − x, ∆xr = xr − x Front, rear horizontal leg splay distance with regard to the mass-center (12)

xi := (xI
i
T , xH

i
T
)T Mode i state (9), with in-place (10) and horizontal (11) components

xI := (qI, q̇I, τ)T , qI := (y, ϕ)T In-place state, configuration (10)
m, I, g, d Physical model parameters (Figure 2)

∆xAvg, a, l0 Pseudo-physical simplifying parameters (22), (24), (26), Figure 2
GI

i,j In-place components of the guard set (25), (26)

y fhip (xI), yrhip (xI) Front/rear hip heights (29)
gTD(xI

F), gLO(xI
D) Guard “control” functions for touchdown, liftoff events (26), (58)

kI = (kI
F

T
, kI

D
T
)T In-place guard control weights (26)

y fhip
i0
(xI), yrhip

i0
(xI) Front and rear initial hip height in mode i (59)

b = (bIT , bHT
)T “Bounding” symmetry map (41), (27), (33)

L f V(x) := ∂
∂x V(x) · f (x) Lie derivative (28) of scalar field V along vector field f at point x

RI
i,j, RH

i,j In-place (31), horizontal (32) reset function components

rF,D(xH
F ), rD,R(xH

D) Reset “control” functions (32), (63)
kH := (kH

F , kH
D,1, kH

D,2)
T ∈ R3 Reset control weights (64)

∆xNom Nominal touchdown leg splay for front leg (32)
ȳ Mass-center height Approximation 1 in pitching dynamics

uy ∈ (
g
2 , g), uxi(x) Vertical (16), (20), (34), horizontal (16), (21) mass-specific

ground reaction force applied from each hip
φt

i (xI), φ̂t
i (xH) In-place (35), horizontal (36) mode-i flow

ci (y, ϕ) simplified acceleration vector for mode i (35)
CF, CD, CR Matrix components used in the description of φ̂t

i (xH) (36)
Φi,j, ΦI

i,j, ΦH
i,j Mode i-to-j map (38), with in-place, horizontal components (39)

TI
i,j(xI) Mode i time-to-impact map (40) with guard GI

i,j
D̃i := D̃I

i × D̃H
i Reduced Di domain with horizontal, in-place components (42)

x̃ := (x̃IT , x̃HT
)T State on D̃i with in-place and horizontal components (43)

Π(x), Σ(x̃) Projection and lift maps (44)
ΠI(xI), ΣI(x̃I), ΠH(xH), ΣH(x̃H) In-place, horizontal projection, and lift maps (44)

S, H Stride (45) and “flipped” half-stride (47) maps˜̄x = (˜̄xIT , ˜̄xHT
)T ∈ D̃F

Fixed point of H (48)
¯∆x f , ¯∆xr Leg splay components of ˜̄xH (50)

T̄Stance, δx̄Stance Total hip stance duration (54), leg-sweep distance (55) on the
hybrid periodic orbit associated with ˜̄xH

x̄ = Σ(˜̄x) ∈ DF Lift of ˜̄x (60)
T̄i,j, x̄I

i0,j Mode i’s duration (52) and initial state (61) as it evolves into

mode j under the hybrid execution from x̄I

b̃I, DΦ̃I
i,j Simplified factors of H ’s in-place component (73)
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Appendix B. Controller Stability Lemmas

This Appendix contains results related to the choice of control gains in Proposition 2,
guaranteeing the infinitesimal deadbeat stability of the half-stride map H (47) at the operating

point (48). Lemma A1 gives the explicit form of the time-to-impact map Jacobians ∂TF,D

∂x̃I

∣∣∣
τ=0

and ∂TD,R

∂x̃I

∣∣∣
τ=0

. The control weight change in coordinates (A1) is given to assist in expressing

the deadbeat gain expressions, which are presented in Lemmas A2 and A3 below.

Lemma A1. The relevant Jacobians of the time-to-guard-impact functions in (73) are given by

∂TF,D

∂x̃I

∣∣∣
τ=0

=
1

kI
F,3 − sF


1− kI

F,1 − kI
F,2

(−1 + kI
F,1 − kI

F,2)
d
2

T̄F,D
− d

2 T̄F,D


T

,

sF = ẏ− d
2

ϕ̇ +
(
(1− a−1)uy − g

)
T̄F,D,

∂TD,R

∂x̃I

∣∣∣
τ=0

=
1

kI
D,3 − sD


1− kI

D,1 − kI
D,2

(1 + kI
D,1 − kI

D,2)
d
2

T̄D,R
d
2 T̄D,R


T

,

sD = ẏ +
d
2

ϕ̇ + (2uy − g)T̄D,R.

Proof. See [65] Appendix E.

We introduce the following coordinate change to simplify the form of the time-to-
guard-impact Jacobians above. Let

k̃
I
F =

k̃I
F,1

k̃I
F,2

k̃I
F,3

 =
1

kI
F,3 − sF

 1− kI
F,1 − kI

F,2
(−1 + kI

F,1 − kI
F,2)

d
2

T̄F,D

, (A1)

k̃
I
D =

k̃I
D,1

k̃I
D,2

k̃I
D,3

 =
1

kI
D,3 − sD

 1− kI
D,1 − kI

D,2
(1 + kI

D,1 − kI
D,2)

d
2

T̄D,R

,

such that

∂TF,D

∂x̃I

∣∣∣
τ=0

= k̃F
IT

MI
F, MI

F =

1 0 0 0
0 1 0 0
0 0 1 − d

2

,

∂TD,R

∂x̃I

∣∣∣
τ=0

= k̃D
IT

MI
D, MI

D =

1 0 0 0
0 1 0 0
0 0 1 d

2

.

This transformation is invertible via

kI
F =

T̄F,D

d k̃I
F,3

− d
2 1 0
− d

2 −1 0
0 0 0

k̃
I
F +

 1
0

sF +
T̄F,D

k̃I
F,3

, (A2)

kI
D =

T̄D,R

d k̃I
D,3

− d
2 1 0
− d

2 −1 0
0 0 0

k̃
I
D +

 0
1

sD + T̄D,R

k̃I
D,3

,

where
k̃I

F,3 6= 0, k̃I
D,3 6= 0. (A3)
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Lemma A2. The following choice of k̃
I
F and k̃

I
D make DHI

∣∣∣˜̄xI nilpotent assuming the conditions

given in (A10) can be satisfied. Choose k̃
I
D such that

k̃D
IT

 − ˙̄y
− ˙̄ϕ

2uy − g

 = −1, (A4)

which zeros one eigenvalue of DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I)
and hence of DHI

∣∣∣˜̄xI . Denote the resulting Jordan

decomposition of DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I)
by

DΦ̃I
D,R

∣∣∣
ΦI

F,D(x̄I)
= VIΛIVI−1

, (A5)

where the zero eigenvalue is placed in the upper-left element of ΛI and the explicit form of VI and
ΛI is given in Equation (95) of [65] Appendix F. Let

AI = TIΛIVI−1
(

I IT̄F,D
0 I

)
Db̃IVITIT

, (A6)

dI = TIΛIVI−1


− ˙̄y
− ˙̄ϕ

uy − g
− 2uy

da

, TI =

0 1 0 0
0 0 1 0
0 0 0 1

,

and
RI =

(
dI AIdI AI2dI

)
. (A7)

Then choose

k̃
I
F = −

(
0 0 1

)
RI−1

AI3(
MI

FDb̃IVITIT)−1
. (A8)

Along with the hyperplane constraint (A4), we require that the choice of k̃
I
D satisfy

k̃I
D,1 6= 0,− 1

2 ˙̄y
, k̃I

D,2 6=
d
2

k̃I
D,1, k̃I

D,3 6= 0, (A9)

k̃D
IT

 ˙̄y
− ˙̄ϕ

2uy − g

 6= −1, det(RI) 6= 0,

k̃I
F,3 6= 0, (dependent on k̃

I
D via (A8)),

according to (A3), (A8), and Equations (96), (98) in [65], and to guarantee the invertibility of RI

(A7). We leave as a conjecture that the constraints from (A9)

det(RI) 6= 0, k̃I
F,3 6= 0 (A10)

do not produce an empty set of feasible choices for k̃
I
D.

Proof. See [65] Appendix F.

We numerically verified (A9) when using the values from Table 2.
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Lemma A3. The following choice of kH = (kH
F , kH

D,1, kH
D,2)

T makes Dx̃H HH
∣∣˜̄xI nilpotent. Let

kH
D,2 = 0 and

(
kH

F
kH

D,1

)
=

 cosh
(

T̄F,D

√
uy
ȳ

)
0

−
√

uy
ȳ sinh

(
T̄F,D

√
uy
ȳ

)
1

−1

(A11)

{( k̃H
F

k̃H
D,1

)
−

√ ȳ
uy

sinh
(

T̄F,D

√
uy
ȳ

)
1− cosh

(
T̄F,D

√
uy
ȳ

) },

where
(

k̃H
F

k̃H
D,1

)
= −

(
RH−1 AH2

)T
(

0
1

)
, and

RH =
(

dH AHdH
)

, dH =

(
0 1
−1 0

)
eCD T̄D,R

(
− 1

2
0

)
+

(
0
1
2

)
.

AH =

(
0 1
−1 0

)
eCD T̄D,R

{
eCF T̄F,D

(
0 −1
1 0

)
+

(
0 1

2
0 0

)}
−
(

0 0
0 1

2

)
. (A12)

Proof. See [65] Appendix G.

Appendix C. Control Gain Selection Procedure

The choice of control gains (A4), (A8), (A11) that grant the system infinitesimal dead-
beat stability fully constrains kH and kI

F and constrains kI
D to a hypersurface. We chose

where to place kI
D on this hypersurface as follows. We chose to fix kI

D,3 as a function of
kI

D,1 and kI
D,2 via (A4), explicitly:

kI
D,3 =

−1 + ˙̄ykI
D,1 + ˙̄ϕkI

D,2

2uy − g
.

We then chose to set the value of kI
D,2 to zero, severing a feedback path in (58) that corre-

sponds to the hip’s usage of its own vertical height measurement in determining liftoff
height. Setting kI

D,2 to zero was observed in the experiment to improve performance. It
is likely that this feedback path made the controller very sensitive to the sagging of the
front body segment due to actuator saturation when running at faster speeds (depicted in
Figure 10). We chose kI

D,1 using the following constrained optimization problem in an effort
to reduce transients and control gain magnitudes, and to increase parametric robustness:

min
kI

D,1

c1||kI||2 + c2

∣∣∣∣∣∣DHI|˜̄xI

∣∣∣∣∣∣2
F
+ c3

∣∣∣∣∣∣ ∂

∂k̂I
p(k̂I)

∣∣∣∣∣∣2
F

s.t. kI
D,2 = 0

kI
D,3 =

−1 + ˙̄ykI
D,1 + ˙̄ϕkI

D,2

2uy − g

kI =

(
kI

F
kI

D

)

k̂I =
(

kIT
g d a l0 uy T̄F,D

)T
,

which are additionally subject to the constraints (A4), (A8), (A11) granting infinitesimal

deadbeat stability, and where p(k̂I) equals the coefficient vector for the characteristic

polynomial of DHI
∣∣∣˜̄xI . The terms associated with c1 are intended to keep the control inputs
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relatively small, the terms associated with c2 are intended to reduce transients, and the
terms associated with c3 are intended to increase robustness to parametric uncertainty and
measurement errors when applying control. We used c1 = 500, c2 = 1.1, and c3 = 1.5 and
numerically verified that the resulting control weights satisfied (A9). The numerical values
chosen are shown in Table 2.
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