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Abstract: In this paper, the problem of making a safe compliant contact between a human and an
assistive robot is considered. Users with disabilities have a need to utilize their assistive robots for
physical human–robot interaction (PHRI) during certain activities of daily living (ADLs). Specifically,
we propose a hybrid force/velocity/attitude control for a PHRI system based on measurements
from a six-axis force/torque sensor mounted on the robot wrist. While automatically aligning the
end-effector surface with the unknown environmental (human) surface, a desired commanded force
is applied in the normal direction while following desired velocity commands in the tangential
directions. A Lyapunov-based stability analysis is provided to prove both the convergence as well as
passivity of the interaction to ensure both performance and safety. Simulation as well as experimental
results verify the performance and robustness of the proposed hybrid controller in the presence
of dynamic uncertainties as well as safe physical human–robot interactions for a kinematically
redundant robotic manipulator.

Keywords: physical human-robot interaction; hybrid control; passivity-based control; sliding mode
control; lyapunov-based control; nonlinear control

1. Introduction

While assistive robotic devices such as Wheelchair-Mounted Robotic Arms (WMRAs) [1–5]
and Companion Robots [6–10] traditionally help users with object retrieval [11,12] or pick-
and-place tasks [13], they are quite capable of physical human–robot interaction (PHRI) with
the user themselves. Users with disabilities have a need for assistance with activities of daily
livings (ADLs) such hair-grooming, scratching, face-sponging, etc.; these ADLs require
physical interaction with various surfaces on the human body. Under this need, the assistive
robot’s end-effector (tool) has to be able to align with the unknown (human) surface, and
also apply a desired force in the normal direction while following the surface based on
desired velocity profiles that the user can command to the robot. During interaction, it is
paramount to ensure that the assistive robot can establish safe and compliant contact with
the human user.

Researchers have proposed various methods to achieve hybrid position/force control
on a surface. In [14], the author used the exact CAD model for polishing position/force
control. With the CAD/CAM model, they are able to track the desired trajectory, force,
and contact direction. Since it requires an exact CAD model of the environment, this
method will not work for the PHRI problem considered in this paper, which is likely to
be implemented in unmodeled real-world environments. In [15], the authors designed
and implemented a compliant arm to perform bed baths for patient hygiene. A bang-
bang controller was utilized to maintain the z-axis force against the body between 1 and
3 N while a laser range finder was utilized to retrieve the skin surface point cloud of
the skin followed by selection of wiping area by the operator. This method also requires
obtaining the point cloud of the environment. The authors of [16] proposed a contact
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force model for wiping and shaving tasks. They captured the face point cloud and the
force profile of healthy participants performing daily living tasks such as wiping and
shaving. Then, they built a three-parameter trapezoidal force model of each stroke and
the force dependency on the facial area. Besides assuming previous knowledge of the
environment, there are other approaches for unknown environments. In [17], the author
proposed two methods for exploring unknown surfaces with discontinuities by using
only a force/torque sensor. They rotated the direction of the desired motion/force instead
of rotating the end-effector to keep moving and inserting force on an unknown surface;
however, this method cannot be used for certain PHRIs which need continuously variable
alignment between the end-tool and human body, such as during shaving. In [18], the
authors proposed a hybrid position/force sliding mode control for surface treatment such
as polishing, grinding, finishing, and deburring—the end-effector can apply the desired
pressure on the surface and also keep the end-effector orientation perpendicular to the
surface; however, the orientation constraint is not considered for moving along a frictional
environment. In [19], the authors proposed deformation-tracking impedance control for
interacting with unknown surfaces by using an extended Kalman filter to estimate the
parameters of the environment, thereby controlling the interaction force indirectly by
tracking the desired deformation without force sensing. However, this method cannot
estimate the interaction torque; therefore, during the alignment phase of the assembly
task, their desired interaction torque is just determined experimentally. In [20], the authors
proposed an inverse differential kinematics-based position/force control for cleaning an
unknown surface. They utilized a force/torque sensor to provide feedback for the force
control part. However, this velocity-control-based algorithm is not considered safe for
human–robot interaction; furthermore, the evaluation of surface alignment is also missing.

In this paper, we propose a robust hybrid force/velocity/attitude controller which
guarantees passivity of a robot manipulator with respect to unknown environments. By
using measurements of robot states as well as interaction forces/torques at the end-effector,
we are able to reshape the end-effector impedance (namely inertia, damping, and stiffness)
to desired values needed for a safe and compliant interaction. Sliding mode control is
utilized to compensate for exogenous disturbances, model uncertainty, and friction effects
which can otherwise degrade the performance of the impedance controller. Within the
sliding mode controller, we are able to achieve the desired system dynamics with a general
assistive robot, which has a lower cost and less precision than industry collaboration robots.
The resulting controller is able to align the end-effector with the unknown environmental
surface while simultaneously tracking desired force and velocity profiles, respectively, in
the normal and tangential directions. This work is novel in terms of the guarantees of
6-DOF exponential stability and passivity of our hybrid controller while interacting with
an unknown environment.

The remainder of this paper is organized as follows. Sections 2 and 3 deal, respectively,
with the problem statement and the modeling. In Section 4, we present the controller design,
stability analysis, proof of passivity, and simulation results for a frictionless environment.
In Section 5, we present the corresponding control design and stability analysis for a
real environment with friction. Experimental results with a kinematically redundant
collaborative robot are presented in Section 6 (see [21] for visual demonstrations of the
simulations and experiments). Section 7 concludes the paper.

2. Problem Statement

The research objective is to align the robot end-effector with the unknown environ-
ment and apply a desired force in the normal direction while following a commanded
velocity profile along the tangential directions. In order to guarantee safe human–robot
interaction, another research objective is to ensure that the robot acts as a passive system
while transmitting user intent to and during interaction with the environment. To design
and implement our robust impedance control framework, we assume knowledge of the
joint position/velocity measurements as well as the interaction force at the end-effector
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using a wrist-mounted six-axis force/torque sensor. We assume uncertainty in the robot
dynamics and no prior knowledge of the location/orientation of the environmental surface
with respect to the robot coordinate system. While we assume that the surface presents
damping and stiffness in the normal direction and pure damping along the surface, we
assume no prior knowledge of the parameters; being model-free in this sense allows the
controller the ability to interact with a variety of unknown environments.

3. Modeling
3.1. Manipulator Model

The dynamics of an n-degree-of-freedom robot are given by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ + τenv − τf (1)

where M(q) ∈ Rn×n is the symmetric positive-definite inertia matrix, C(q, q̇) ∈ Rn×n is the
matrix of Coriolis and centrifugal torques, G(q) ∈ Rn is the vector of gravitational torques,
q, q̇, q̈ ∈ Rn denote, respectively, the joint angle, joint velocity, and joint acceleration vectors,
τ ∈ R6 is the control input vector of joint torques, τenv = JT Fe,e ∈ R6 is the external torque
registered at the robot joints, Fe,e ,

[
f T
e,e τT

e,e
]T

=
[

fe,x fe,y fe,z τe,x τe,y τe,z
]T ∈

R6 is the interaction force measured with the force/torque sensor mounted on the wrist,
J ∈ R6×n is the Jacobian matrix, while τf ∈ R6 denotes joint friction. The joint velocity and
acceleration for a redundant robot (i.e., n > 6) can be written as follows:

q̇ = J+ ẋ + (I − J+ J)b (2)

q̈ = J+ ẍ− J+ J̇ J+ ẋ− J+ J̇(I − J+ J)b (3)

where ẋ =
[

vT
b ωT

b
]T , ẍ =

[
v̇T

b ω̇T
b
]T ∈ R6 denote end-effector velocity and ac-

celeration vectors, respectively, vb and ωb are the end-effector translation and angular
velocity expressed in the base frame, J+ , JT(J JT)−1 denotes the right pseudoinverse of
the Jacobian matrix, while b ∈ Rn is an arbitrary vector utilized to accomplish secondary
objectives such as joint limit, collision avoidance, etc. For ease of presentation, we choose
b = 0 for the remainder of the paper. After replacing the joint acceleration and velocity
with (2) and (3), we can obtain the task space robot dynamics as follows:

MJ+ ẍ−MJ+ J̇ J+ ẋ + CJ+ ẋ + G− JT Fe,e + τf = τ (4)

To accomplish our velocity tracking objective, we define error e ,
[

ev eω

]T ∈ R6 in the
end-effector frame as follows:

e =
[

vT
e ωT

e
]T −

[
vT

d 01×3
]T (5)

where vd(t) ,
[

vd,x(t) vd,y(t) 0
]T ∈ R3 denotes the desired translational velocity in the

end-effector frame, ve ,
[

ve,x ve,y ve,z
]T

= (R)Tvb and ωe ,
[

ωe,x ωe,y ωe,z
]T

=

(R)Tωb are, respectively, the end-effector translation and angular velocity expressed in the
end-effector frame, while R(t) ∈ SO(3) denotes the rotation matrix between the robot base
frame and the end-effector frame. By utilizing the velocity tracking error expressed in the
end-effector frame, e(t) can be related to the end-effector velocity variables in the base frame
as follows

e =
[

R 0
0 R

]
︸ ︷︷ ︸

R

T[ vb
ωb

]
︸ ︷︷ ︸

ẋ

−
[

vd
03×1

]
︸ ︷︷ ︸

vd

.

By rearranging (5) and taking its time derivative, one can obtain the following expressions
for ẋ(t) and ẍ(t):
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ẋ = Re + Rvd (6)

ẍ = Rė + R
.
vd +

.
Re +

.
Rvd (7)

By substituting (6) and (7) in (4), we can obtain the open-loop error dynamics as follows:

MJ+Rė = τ + τenv − τf − G + Uẋ−MJ+R
.
vd (8)

where U , MJ+ J̇ J+ − CJ+ −MJ+
.
RRT . We denote the best-guess estimates of M, G, and

U, respectively, as M̂, Ĝ, and Û, while M̃ , M− M̂, G̃ , G− Ĝ, and Ũ , U − Û denote
the corresponding uncertainties. Based on these definitions, we can rewrite the open-loop
error dynamics as follows:

M̂J+Rė = τ + τenv − Ĝ + Ûẋ− M̂J+R
.
vd + M̂D (9)

where
D , M̂−1(−G̃ + Ũẋ− M̃J+R

.
vd − τf ) (10)

is a lumped model uncertainty term. Before proceeding further, we are motivated by the
structure of the robot dynamics and the ensuing control development and stability analysis
to assume the existence of the following properties:

Property 1 All kinematic singularities are always avoided and the pseudoinverse of the
manipulator Jacobian, denoted by J+(q), is assumed to always exist.

Property 2 The actual and best estimate values of M, G, U are assumed to be upperbounded
as follows: ‖M‖i∞ ≤ bM, ‖G‖i∞ ≤ bG, ‖U‖i∞ ≤ bU0 + bU1‖q̇‖,

∥∥M̂
∥∥

i∞ ≤ bM̂,∥∥Ĝ
∥∥

i∞ ≤ bĜ,
∥∥Û
∥∥

i∞ ≤ bÛ0
+ bÛ1

‖q̇‖, where ‖·‖i∞ denotes the induced infinity
norm of a matrix while bM, bG, bU0 , bU1 , bM̂, bĜ, bÛ0

, bÛ1
denote known positive

bounding constants [22,23].
Property 3 The inverse of the inertia matrix is assumed to be bounded by a known positive

constant bMinv as
∥∥M−1

∥∥
i∞ ≤ bMinv , where bMinv denotes a known positive

bounding constant [23].
Property 4 Based on Properties 2 and 3, the lumped model uncertainty term D defined

above in (10) can be upper bounded by a function of the joint velocity as
follows:

‖D‖ < bD0 + bD1‖q̇‖+ bD2‖q̇‖2 (11)

where bD0, bD1, and bD2 denote known positive bounding constants.

3.2. Environment Model

We model the environment as a spring-damper which provides the environmental
force in the object (environment) frame as follows:

fe,o = Ke ẑv(zn − zo) + Bevo (12)

where Ke = diag
[

0 0 ke
]
, Be = diag

[
be be 0

]
∈ R3×3 are diagonal matrices of

environment stiffness and damping, respectively, ẑv =
[

0 0 1
]T denotes the standard

basis vector in the z-direction, while zn ∈ R is the z-axis neutral position of the environment
in the object frame, and zo ∈ R is the current z-axis position of the end-effector expressed
in the object frame. Here, vo = Ro

e ve is the velocity of the end-effector with respect to the
object expressed in the object frame, ve is the end-effector translational velocity as defined
earlier, while Re

o is the unknown rotation matrix between the object frame and end-effector
frame. In the end-effector frame, the environmentally exerted torque on the end-effector
can be defined as follows:

τe = re × fe,e (13)
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where re is the unknown position vector from the center of the sensor to the contact point
while fe,e = Re

o fe,o is the environmental force expressed in the end-effector frame. The
model of the interaction between the end-effector and the environment is shown in Figure 1.

Figure 1. Spring-damper environmental model.

We also model the end-tool for the manipulator as a rigid partial sphere as specified in
Figure 2. In the figure, xee denotes the center of the robot wrist where the six-axis force/torque
sensor is mounted, xc denotes the center of the sphere, rR is the position vector from the sphere
center of the end-tool to the contact point, while ro f f is the position vector from the sphere
center to the robot wrist center and is parallel with the end-effector z-axis denoted by ẑe.

Figure 2. End-tool geometry, where fo = Ke(xn − xo) and f f = Bevo are the spring- and damper-
induced forces from the environment.

4. Control Design and Stability Analysis: Non-Dissipative Environment
4.1. Control Design

The proposed control design has an inner and an outer loop. While the inner loop
is a robust controller to compensate for the system uncertainties and linearize the robot
dynamics, the outer loop reshapes the linearized dynamics to the desired dynamics. In
what follows, we discuss the design of control strategies within the two loops that guar-
antee robust stability, convergence, as well as passivity. For lucidity of presentation, we
first demonstrate PHRI stability and passivity when interacting with a non-dissipative
(frictionless) environmental surface.

4.1.1. Design of the Inner Loop

Based on the structure of the open-loop error dynamics in (8) and our desire to
obtain an impedance controller, we first design a computed torque inner-loop controller to
linearize the dynamics as follows:

τ = M̂aj − τenv + Ĝ− Ûẋ + M̂J+R
.
vd (14)
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By substituting (14) into (9), we can obtain

J+Rė = aj − D. (15)

In (14), aj is an auxiliary control term that is designed to compensate for the disturbance
using a sliding mode controller as follows:

aj = J+ax −Qsign(S) (16)

where ax , [ ax,v ax,ω ]T is a yet-to-be-designed auxiliary control term related to the
desired dynamics. Motivated by the bound in (11) and in a manner similar to [22], we
design the gain, Q, for the sign() function (the standard signum) as follows:

Q = bD0 + bD1‖q̇‖+ bD2‖q̇‖2 + α, (17)

where α is a positive design constant, bD0, bD1, and bD2 have been introduced earlier in (11),
while S denotes a sliding surface which is defined as follows:

S , q̇ +
∫ t

0
J+
(

J̇ J+ ẋ− R
.
vd −

.
Re−

.
Rvd − ax

)
dt (18)

such that

Ṡ = J+(Rė− ax)
= −D−Qsign(S).

(19)

Then, we have the following result for the inner loop:

Lemma 1. Given the robot system in (9) under the control law of (14) and (16), the sliding
surface S and its time derivative Ṡ will converge to zero in finite time t1, and remain there for all
subsequent time.

Proof. We define a positive-definite function VS as follows:

VS =
1
2

STS (20)

After time differentiating (20) along (19) and utilizing (11) and (17), we can obtain

V̇S = ST(−D−Qsign(S)) (21)

≤ −
(

Q−
(

bD0 + bD1‖q̇‖+ bD2‖q̇‖2
))
||S||

≤ −α||S|| (22)

Given that sliding mode control [24] has finite convergence time t1, it is easy to conclude
that lim

t→t1
S = 0, lim

t→t1
Ṡ = J+Rė− J+ax = 0⇒ lim

t→t1
Rė− ax = 0.

4.1.2. Design of the Desired Dynamics

To meet our velocity and force control objectives while projecting desired impedance
characteristics on the environment, we propose the following desired dynamics in the
translational axes:

Md ėv + Bdev + Kd

∫ t

0
ev(τ)dτ = e f (23)

where Md , diag{md,xy, md,xy, md,z}, Bd , diag{bd,xy, bd,xy, bd,z}, Kd , diag{kd,xy, kd,xy, 0}
denote desired mass, damping, and stiffness matrices (note all non-zero matrix elements
are positive design constants), while e f ,

[
0 0 fe,z − fd,z

]
denotes the force error with
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fd,z denoting the desired force in the z-direction. In order to achieve the desired dynamics
of (23), the auxiliary control term ax,v can now be designed as follows:

ax,v = R
{

M−1
d

[
−Bdev − Kd

∫ t

0
ev(τ)dτ + e f

]}
(24)

For the angular axis, we design a quaternion-based controller to align the end-effector
with the unknown environment. The rotation between the end-effector z-axis ẑe and
the environmental normal n̂o can be represented by a unit quaternion q(q, q0) where
q0 = cos( θm

2 ), q = sin( θm
2 )n, and θm and n are the angle and the rotation axis between ẑe

and n̂o. The quaternion can be extracted from the torque and force feedback as follows.
Based on the definition of the environment torque from (13) and the geometry of the
end-tool in Figure 2, we can rewrite the environmental interaction torque as follows:

τe = re × fe,e = (Re
orR − ro f f )× fe,e. (25)

Since the environmental surface is assumed frictionless and based on the geometry of the
end-tool shown in Figure 2, it is evident that Re

orR ‖ fe,e ‖ n̂o and ro f f ‖ ẑe, where the
notation ‖ denotes parallel vectors. Then, we can simplify the relationship expressed in
(25) as

τe = fe,e × ro f f = ‖ fe,e‖
∥∥∥ro f f

∥∥∥n̂o × ẑe. (26)

Now, it is possible to calculate the rotation axis n as follows:

n = − n̂o × ẑe

‖n̂o × ẑe‖
= − τe

‖τe‖
. (27)

Since the rotation direction is already contained in the vector n, the range of the angle θm
between n̂o and ẑe is [0, π

2 ). From (26), we can calculate the angle θm between n̂o and ẑe as

θm = arcsin

 ‖τe‖
‖ fe,e‖

∥∥∥ro f f

∥∥∥
. (28)

The dynamics of the unit quaternion q(q, q0) are as follows:

q̇0 = − 1
2 ωT

e q
q̇ = 1

2 (q0ωe + q×ωe)
. (29)

To reshape the angular dynamics in a desired mass/damper form, we begin by designing
the desired rotational dynamics as follows:

Idω̇e + Bdωe = u (30)

where Id , diag{Id,x, Id,y, Id,z} is the desired rotational inertia, while Bd and u are, respec-
tively, a damping matrix and an auxiliary control input which are yet to be designed.
By taking the time derivative of a filtered tracking error r , ωe + K1q (K1 is diagonal
positive-definite) and premultiplying by Id, we obtain

Id ṙ = Idω̇e + IdK1q̇ (31)

which, by substitution of (29) and (30), can be rewritten as

Id ṙ = −Bdωe + u +
1
2

IdK1(q0ωe + q×ωe). (32)

Motivated by the ensuing stability analysis, we design u as follows:
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u = Bdωe −
1
2

IdK1(q0ωe + q×ωe)− Pr− q (33)

such that
Id ṙ = −Pr− q (34)

where P is a positive-definite matrix. Now, it is possible to rewrite the desired rotational
dynamics in the following compact form:

Idω̇e + Bd,ωωe = τa (35)

where Bd,ω , 1
2
(
q0 IdK1 + 2P + [q]×

)
is a positive time-varying damping matrix, while

τa , −(PK1 + I)q =
(PK1 + I)

2‖ fe,e‖
∥∥∥ro f f

∥∥∥q0

τe

is an auxiliary torque vector which is well defined everywhere on the domain of the
problem. Finally, we can design the auxiliary control term ax,ω defined in (16) as follows:

ax,ω = RI−1
d [τa − Bd,ωωe] (36)

The overall proposed controller is shown in Figure 3.

Figure 3. Block diagram of proposed physical human–robot interaction controller.

4.2. Stability Analysis

Before presenting the main results, we state the following lemmas which will be
invoked later.

Lemma 2. The desired dynamics of the angular axis in (35) are locally exponentially stable at
the equilibrium point (ωe = 0, q = 0, q0 = 1) in the sense that ‖q‖ ≤ ‖q(0)‖e−γt, ‖ωe‖ ≤
‖ωe(0)‖e−γt when ‖q(0)‖ ∈

[
0, 1/
√

2
)

, which implies that ωe, q ∈ L1 when the robot is
interacting with a frictionless environment.

Proof. Inspired by [25], we define a non-negative function Vω as follows

Vω = qTq + (q0 − 1)2 + rT Idr (37)

which can be upperbounded as follows

Vω ≤ max{2, λmax(Id)}(‖q‖2 + ‖r‖2) (38)

by utilizing the fact that qTq + q2
0 = 1. After taking the derivative of (37) along (34) and (29)

and canceling common terms, we can obtain

V̇ω = −qTK1q− rT Pr (39)

It is easy to see from (37) and (39) that q, r ∈ L2 ∩ L∞. From this and previous definitions,
it follows that ωe, q̇, ṙ ∈ L∞. Then, one can utilize Barbalat’s Lemma [23] to prove that
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lim
t→∞

q(t) = lim
t→∞

r(t) = 0 which implies that lim
t→∞

ωe = 0, lim
t→∞

q0 = 1. Since V̇ω can be

lowerbounded as follows:

V̇ω ≤ −min{λmin(K1), λmin(P)}(‖q‖2 + ‖r‖2) (40)

it is easy to see from (38) and (40) that V̇ω ≤ −γVω, where γ = min{λmin(K1),λmin(P)}
max{2,

λmax(Id)
2 }

. Thus

we can conclude that the equilibrium point (q0 = 1, q = 0, ωe = 0) is exponentially stable
in the sense specified in the statement of the Lemma.

Lemma 3. The desired dynamics of the translational axes in (23) are globally exponentially stable
(GES) at the equilibrium point (ev = 0, ėv = 0) when the robot is interacting with a frictionless
environment. Furthermore, ve,z, v̇e,z, ėv,xy, ev,xy ∈ L1 ∩ L∞ while fe,o, τe ∈ L∞.

Proof. We begin our analysis in the x- and y-axes. The desired dynamics in the x- and
y-axes are as follows:[

Md,xy ėv,xy
ev,xy

]
=

[
−Bd,xy −Kd,xy

I2 02

][
ev,xy∫ t

0 ev,xy(τ)dτ

]
(41)

where the notation is obvious from context given the previous definitions. Since (41) is

a second-order LTI system with eigenvalues
−bd,xy±

√
b2

d,xy−4kd,xymd,xy

2md,xy
in the strict LHP, the

equilibrium point (ev,xy = 0,
∫ t

0 ev,xydτ = 0) is GES. As for the z-axis, the desired dynamics
of (23) in that direction can be written as follows:

md,zv̇e,z = −bd,zve,z + ẑT
v Re

o fe,o − fd,z. (42)

Since we are assuming no environmental friction, we can simplify (12) as

fe,o = Ke ẑv(zn − zo) = ẑvke(zn − zo) (43)

the time derivative of which can be written as

ḟe,o = −Ke żo = −KeRo
e ve (44)

To facilitate the analysis, we take the time derivative of (42) and obtain the dynamics as

md,zv̈e,z = −bdzv̇e,z − keve,z + G1 (45)

which is a second-order linear system with perturbation G1 defined in (A1) in Appendix A.
By utilizing (A2)–(A4), we can upperbound G1 as follows:

‖G1‖ ≤ max(γ1, γ2, γ3) exp(−γt)‖x‖ (46)

where x ,
[

v̇e,z ve,z 1
]T is a state vector. Given this definition, we rewrite (45) as fol-

lows:
ẋ = Ax + x̂vm−1

d,z G1 (47)

where x̂v ,
[

1 0 0
]T denotes the standard basis vector in the x-direction while A

is a Hurwitz matrix defined in Appendix A. We also define a positive- definite function
V = 1

2 xT Px whose derivative along (47) is

V̇ = −xTQx +
1
2

xT Px̂vm−1
d,z G1 +

1
2
(x̂vm−1

d,z G1)
T Px (48)
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where P and Q are defined in the Appendix A. After utilizing the growth bound of (46), we
can upperbound (48) as follows

V̇ ≤ −

λmin(Q)︸ ︷︷ ︸
κ1

− ‖P‖m−1
d,z max(γ1, γ2, γ3)︸ ︷︷ ︸

κ2

exp(−γt)

‖x‖2

which implies exponential stability of V(t) in the following sense

V(t) ≤ V(0) exp
(
−2(κ1t+κ2γ−1e−γt)

λmin(P)

)[
u(t)− u

(
t− t f

)]
+V(t f ) exp

−2
(

κ1(t−t f )+κ2γ−1e
−γ(t−t f )

)
λmax(P)

u
(

t− t f

) (49)

where t f = max
{

0, 1
γ ln

(
κ2
κ1

)}
and u(t) denotes the unit step function. Therefore, x = 0 is

exponentially stable in the sense that ‖x‖, ‖ve,z‖, ‖v̇e,z‖ ≤ κe−κ1t where κ is a sufficiently
large constant of analysis. Following the same process as in the proof for Lemma 2, it can be
shown that ve,z, v̇e,z, ėv,xy, ev,xy ∈ L1 ∩ L∞, which implies, according to (42), that fe,o, fe,e ∈
L∞ and that lim

t→∞
fe,z = fdz. Since τe = fe,e × ro f f ≤ ‖ fe,e‖

∥∥∥ro f f

∥∥∥ ≤ sup{‖ fe,e‖}
∥∥∥ro f f

∥∥∥ < ∞,

it is evident that τe ∈ L∞.

Remark 1. From Lemma 1, it can be seen that the closed-loop dynamics converge to the desired
dynamics in (23) and (35) such that the desired impedance characteristics can be projected on
the frictionless environment. Based on Lemma 2, the quaternion q (which represents the tool–
environment misalignment) converges to zero, which implies that the robot end-effector aligns with
the frictionless environment. Furthermore, according to Lemma 3, the end-effector can reproduce
the commanded end-effector velocities on the environmental tangential plane while applying the
desired amount of force in a direction normal to the environment.

From the above Lemmas, we can also have the main passivity result for the proposed
controller in the following theorem:

Theorem 1. The proposed control law can ensure the work performed by the robot on the frictionless
environment (human) is bounded in the sense that W =

∫ ∞
0 (Fenv)Tvedt ≤ c < ∞ where Fenv ,[

f T
e,e τT

e,e
]T is the force/torque applied by the robot on the environment.

Proof. We split the work performed by the robot into two phases: (Part a) Work performed
before reaching the desired dynamics: Since the sliding mode control has finite-time
convergence, it will drive the system dynamics to the desired dynamics in finite time t1. So,
the work performed by the robot from t = 0 to t = t1 is as follows:

Wa =
∫ t1

0

[
f T
e,e τT

e,e
][

vT
e ωT

e
]Tdt (50)

Based on the stability analysis of the sliding mode controller, we know that S = [Sv Sω ],
Ṡ = [Ṡv Ṡω ] ∈ L∞. During [0, t1],

Ṡ = J+(Rė− ax) 6= 0.

Therefore, we can write
Ṡv = J+(Rėv − ax,v). (51)

Given the definition of (24), we can rewrite (51) as follows:
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Md ėv + Bdev + Kd

∫ t

0
ev(τ)dτ − e f = MdRT JṠv

which is nothing but a perturbed version of the desired translational dynamics driven
by the additional input MdRT JṠv, which remains bounded between [0, t1] and is zero
thereafter. Since we know from previous analysis that the solution for the desired dynamics
of (23) stays bounded, the solution for the perturbed version driven by a bounded input
over a finite time period will also stay bounded. A similar argument can be made for the
angular velocity desired dynamics. Thus,

Wa ≤ sup
t
{‖ve‖} sup

t
{‖ fe,e‖}t1+

sup
t
{‖ωe‖} sup

t
{‖τe,e‖}t1

≤ ca (52)

where ca is a positive constant of analysis. (Part b) After reaching the desired dynamics:
The work performed by the robot on the environment is denoted by Wb(t), and can be
bounded as follows:

Wb =
∫ ∞

t1

(Fenv)
Tvedt

≤
∫ ∞

t1

∥∥∥[ f T
e,e τT

e,e
]T
∥∥∥∥∥∥[ vT

e ωT
e
]T
∥∥∥dt

≤ sup
t

{∥∥ve,xy
∥∥} ∫ ∞

t1

∥∥ fe,xy
∥∥dt + sup

t
{‖ fe,z‖}

∫ ∞

t1

‖ve,z‖dt

+ sup
t
{‖τe‖}

∫ ∞

t1

‖ωe‖dt (53)

since ve,xy, fe,z, τe ∈ L∞ as previously shown. Since
∥∥ fe,xy

∥∥ =
∥∥AxyRe

o ẑv
∥∥‖ fe,o‖, we can

bound ∫ ∞

t1

∥∥ fe,xy
∥∥dt ≤ sup

t
{‖ fe,o‖}

∫ ∞

t1

(‖2q0q1 + 2q2q3‖

+ ‖2q1q3 − 2q0q2‖)dt

given that fe,o ∈ L∞ and where Axy ,
[

1 0 0
0 1 0

]
. Since ||q|| ≤ 1 and q ∈ L1, it is easy

to see that
∫ ∞

t1

∥∥ fe,xy
∥∥dt < ∞. Since ve,z, ωe ∈ L1 as previously shown, it is clear to see that

Wb ≤ cb < ∞. Therefore, we can conclude that the total work performed by the robot
end-effector during Parts a and b is W = Wa + Wb ≤ ca + cb , c < ∞, which proves
passivity.

4.3. Simulation Results

During the simulation, we choose 0–5 s as the initial alignment phase during which
the commanded velocities in the x- and y-directions are both chosen to be 0 cm/s. Between
5–20 s and 20–35 s, we, respectively, command the desired velocity to be ±1.5 cm/s along
the end-effector y-direction. Finally, between 35 and 40 s, we command 0 cm/s velocity in
the tangential direction of the end-effector. From Figures 4–8, we can see that the proposed
controller can regulate the force error in end-effector z-direction to zero after the initial
alignment process. The end-effector velocity along the tangential directions also tracks
the desired velocity with nearly zero tracking error. As for the alignment, the norm of the
quaternion ‖q‖ and the misalignment angle decrease to 0. To evaluate the alignment, we

define the so-called equivalent lever rtan =
√

F2
z /(τ2

x + τ2
y ), which represents the length of
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projection of the lever arm re in the end-effector x-y plane. When the end-effector is aligned
with the environment, it is clear to see from Figure 8 that rtan also converges to zero.
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Figure 4. External force profile.
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Figure 5. Velocity tracking profile.
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Figure 6. Position tracking profile.
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0

10

20

 (
d
e
g
re

e
)

0 5 10 15 20 25 30 35 40 45

Time (s)

0

0.5

 r
ta

n
 (

c
m

)

Figure 8. Misalignment evaluation: (Top) Misalignment angle between the end-effector z-direction
and the normal of the contact surface. (Bottom) Equivalent lever in end-effector tangential direction.

5. Control Design and Stability Analysis for Dissipative Environment
5.1. Control Design

In the previous section, it is seen that the proposed controller is stable and passive
during interaction with a frictionless environment. In this section, we will introduce the
controller for a dissipative (frictional) environment, which is a better model for the real
world. For the case with friction, we can design the sliding mode control and torque
input as similarly carried out in Section 4.1, but if friction is not compensated for, even
though the equilibrium for the angular axis remains the same (q0 = 1, q = 0, ωe = 0),
the quaternion now represents the rotation between re and fe,e; therefore, the equilibrium
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represents re ‖ fe,e. Since fe,e = fo + f f is the resultant of the friction force f f ∈ R3 and
the normal force fo ∈ R3 from the object, the angle between the environment normal

and re is θo = arctan(

∥∥∥ f f

∥∥∥
‖ fo‖

); as for the geometry of the problem, there exists a non-zero

misalignment angle θm between the end-effector and the environment normal which is
related to the surface friction and the environment normal force. The orientation between
the end-effector and environment can be seen in Figure 9.∥∥∥ro f f

∥∥∥ sin(θm) = ‖re‖ sin(θo)

⇒ θm = arcsin

 ‖re‖∥∥∥ro f f

∥∥∥ sin

arctan


∥∥∥ f f

∥∥∥
‖ fo‖

 (54)

Figure 9. Geometry of the end-tool. Left plot is the general misalignment case for the environment
with friction. Middle plot is the equilibrium of the controller in last section applied to the frictional
environment. The right plot is the desired equilibrium for the frictional environment.

To compensate for the misalignment due to friction, we design a desired torque
τd , rd × fe,e and extract the desired quaternion qd(qd, qd0), which represents the rotation
between the desired lever arm rd , (‖rR‖ −

∥∥∥ro f f

∥∥∥)ẑe and the environment force fe,e.
Similar to the case without friction in Section 4.1.2, we can define q(q, q0) and qd(qd, qd0)
as follows:

q0 = cos(
θc

2
), q = sin(

θc

2
)ne (55)

qd0 = cos(
θd
2
), qd = sin(

θd
2
)nd (56)

where ne =
τe

‖τe‖
, sin(θc) ,

‖τe‖
‖ fe,e‖‖re‖

, θc is the angle between re and fe,e, while nd =

τd
‖τd‖

, sin(θd) ,
‖τd‖

‖rd‖‖ fe,e‖
, where θd is the angle between rd and fe,e. Then, we define the

quaternion error e(e, e0) based on q and qd

e=q−1
d ◦ q (57)

e0 = q0qd0 + qTqd

e = qd0q− q0qd + [q]×qd

The quaternion dynamics are as follows:

ė0 = − 1
2 ωT

e e
ė = 1

2 (e0ωe + e×ωe)
(58)

With a process similar to that in Section 4.1.2, the desired dynamics of the rotation axis are
designed as follows:

Idω̇e + Bd,ω f ωe = τa, f (59)
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where

Bd,ω f =
1
2
(e0 IdK1 + 2P + [e]×)

τa, f = −(PK1 + 1)e

such that the dynamics of r , ωe + K1e can be written as

Id ṙ = −Pr− e (60)

Finally, we design the auxiliary control term ax,ω as follows:

ax,ω = RI−1
d [τa, f − Bd,ω f ωe] (61)

5.2. Stability Analysis

Lemma 4. The desired dynamics of the angular axis in (59) is locally exponentially stable at
the equilibrium point (ωe = 0, e = 0, e0 = 1) when the robot is interacting with a frictional
environment, in the sense that ‖e‖ ≤ ‖e(0)‖e−γt, ‖ωe‖ ≤ ‖ωe(0)‖e−γt for ‖e(0)‖ ∈ [0, 1/

√
2)

and a positive constant γ. Furthermore, the states of the angular axis ωe, e ∈ L1.

Proof. For the environment with friction, our sliding mode control remains the same, but
the desired dynamics in the angular axis are different. Based on the desired dynamics in
(59) and the dynamics of quaternion error in (58), we can define a positive function similar
to (37) as follows

Vω = eTe + (e0 − 1)2 + rT Idr (62)

where r = ωe + K1e. After taking the time derivative of (62) along (58) and (60) and
simplifying, we can obtain

V̇ω = −eTK1e− rT Pr

With a process akin to that followed in the proof of Lemma 2 in Section 4.2, it is easy to see
that the angular axis is exponentially stable at the equilibrium point (e0 = 1, e = 0, ωe = 0)
such that we can have ‖e‖ ≤ ‖e(0)‖e−γt and ‖ωe‖ ≤ ‖ωe(0)‖e−γt, which clearly implies
that ωe, e ∈ L1.

Lemma 5. The desired dynamics of the translational axis in (23) are globally exponentially stable at
the equilibrium point (ev,e = 0, ėv,e = 0) when the robot is interacting with a frictional environment.
Furthermore, ve,z, v̇e,z, ėxy, exy ∈ L1 ∩ L∞, while fe,o, τe ∈ L∞.

Proof. The analysis for the x- and y-axes remains the same as in Section 4.2 but the model
of the environmental force has the damping term due to non-zero Be as shown in (12). The
time derivative of the the desired dynamics of (23) in the z-axis can be written as follows:

md,zv̈e,z = −bdzv̇e,z + zT
v Ṙe

o fe,o + zT
v Re

o ḟe,o (63)

Given that ḟe,o can be written as

ḟe,o = −KeRo
e ve + Be(Ro

e v̇e + Ro
e [ωe]×ve)

the second-order dynamics can of (63) can be compactly written after algebraic manipula-
tions as follows:

md,zv̈e,z = −bdzv̇e,z − keve,z + G1 + G2

where G1 has been previously defined while G2 is an additional term defined and bounded,
respectively, in (A7) and (A8). It is now clear to see from (46) and (A8) that G1 + G2 can be
norm-bounded as follows:

‖G1 + G2‖ ≤ max(γ1, γ2, γ3, γ4)‖x‖



Robotics 2023, 12, 116 15 of 26

where γ4, γ5, γ6 are positive constants. It is now possible to follow the analysis as pursued
in Section 4.2 for the non-dissipative case to obtain exponential stability in the sense
that ‖x‖, ‖ve,z‖, ‖v̇e,z‖ ≤ ρe−ρ1t, where ρ and ρ2 are positive constants of analysis. Since
ve, vo, v̇e,z ∈ L∞, it can be seen from (42) and (12) that ẑT

v Re
o ẑvke(zn − z0) ∈ L∞, from which

it is clear that ke(zn − z0) ∈ L∞ since ẑT
v Re

o ẑv > 0 as shown in the Appendix A. This implies
from (12) and (13) that fe,o, fe,e, τe ∈ L∞. It can now be seen from (23) that lim

t→∞
fe,z = fdz.

Remark 2. To summarize the analysis for the dissipative case, Lemma 1 shows that we can project
the desired impedance on the frictional environment, which is then followed up by Lemmas 4 and
5, which show that the robot end-effector aligns with the environment and tracks the end-effector
velocity along the environmental tangential axes while also applying the desired amount of force in
the environmental normal direction.

Given the above Lemmas, the passivity result for the proposed controller can be stated
in the following theorem:

Theorem 2. The proposed control law can ensure the work performed by the robot over and above the
dissipation expected from relative motion at the desired surface velocity between the end-effector and
the frictional environment(human) is limited in the sense that W =

∫ ∞
0

(
(Fenv)Tve − vT

d Bevd
)
dt ≤

c < ∞ where BevT
d,xyvd,xy ≥ 0 is the essential power expended.

Proof. As similarly carried out in the proof of Theorem 1, we split the work performed by
the robot into two phases: (Part a) Work performed before reaching the desired dynamics:
Proof is identical to that for the frictionless environment shown earlier. (Part b) After reach-
ing the desired dynamics: The work performed by the robot on the frictional environment
is denoted by Wb(t), and can be bounded as follows:

Wb =
∫ ∞

t1

f T
e,xyve,xydt +

∫ ∞

t1

f T
e,zve,zdt +

∫ ∞

t1

τT
e ωedt

=
∫ ∞

t1

f T
e,xy

(
ev,xy + vd,xy

)
dt +

∫ ∞

t1

f T
e,zve,zdt

+
∫ ∞

t1

τT
e ωedt (64)

≤
∫ ∞

t1

f T
e,xyvd,xydt + sup

t

{∥∥ fe,xy
∥∥} ∫ ∞

t1

∥∥ev,xy
∥∥dt

+ sup
t
{‖ fe,z‖}

∫ ∞

t1

‖ve,z‖dt (65)

+ sup
t
{‖τe‖}

∫ ∞

t1

‖ωe‖dt (66)

since fe,xy, fe,z, τe ∈ L∞ as previously shown. After some algebraic manipulations as shown
in the Appendix A, we can bound the first time in the above inequality as follows∫ ∞

t1
f T
e,xyvd,xydt ≤

∫ ∞
t1

vT
d Bevddt + be

∥∥∥vd,xy

∥∥∥ ∫ ∞
t1

∥∥ev,xy
∥∥dt

+
∥∥∥vd,xy

∥∥∥∥∥Axy
∥∥ sup

{(
‖Be‖‖ve‖+ ‖ fe,o‖2

)} ∫ ∞
t1
‖H2‖dt

(67)

Since H2, ev,xy, ve,z, ωe ∈ L1, we can clearly see from (65) and (67) that Wb +
∫ ∞

t1
vT

d Bevddt ≤
c < ∞. Putting together the results from Part a and Part b proves the passivity result as
stated in the statement of the theorem.

5.3. Simulation Results

In order to closely mirror experimental reality, we add joint friction, measurement
noise, imperfect gravity compensation, and imperfect robot inertial matrix to the simulation
studies. The joint friction model utilized is as follows
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τf = Fcsng(qi)[1− exp(
−q̇2

i
vs

)] (68)

+ Fsisng(q̇i) exp(
−q̇2

i
vs

) + Fv q̇i

where Fc, Fs, Fv are the Coulomb, static, and viscous friction coefficients, while vs is the
Stribeck parameter. We also add measurement noise which follows a normal distribution
with µ = −0.0001, σ = 0.0315. We assume there is 3% imperfect gravity compensation in
the simulation. As for the imperfect robot inertial matrix, we assume there is a constant
20% error in the inertial matrix for the last three joints. We assume a planar surface for
the simulation. We also replace the sign(S) function in the sliding mode control with a
continues function tanh(S) to mitigate the chattering phenomenon. The parameters utilized
for each joint are listed in Table 1.

Table 1. Simulation parameters.

Fc = diag[ 0.07 0.07 0.07 0.07 0.014 0.014 0.0035 ]

Fs = diag[ 0.14 0.14 0.14 0.14 0.028 0.028 0.007 ]

Fv = diag[ 0.13 0.13 0.13 0.13 0.026 0.026 0.013 ]

vs = diag[ 0.01 0.01 0.01 0.01 0.01 0.005 0.005 ]

Md,v = diag[ 1 1 10 ]

Id = diag[ 0.3 0.3 0.3 ]

Bd,v = diag[ 10 10 70 ]

Kd = diag[ 30 30 0 0 0 0 ]

Q = diag[ 24 48 48 60 72 72 84 ]

P = diag[ 4 4 4 ]

K1 = diag[ 10 10 10 ]

Ke = diag[ 0 0 506 ]

Be = diag[ 100 100 0 ]

During implementation, we treat θc and θd defined in (55) and (56) as immeasurable
since is impractical to assume that the lever arm re (as shown in Figure 2) is measurable.
Instead, we replace the unknown value of ‖re‖ with a known upperbound ‖rm‖ and
redefine q(q́, q́0) and qd(q́d, q́d0) as follows:

q́0 = cos(
θ́c

2
), q́ = sin(

θ́c

2
)ne (69)

q́d0 = cos(
θ́d
2
), q́d = sin(

θ́d
2
)nd (70)

where ne and nd have been previously defined, while sin(θ́c) , k1 sin(θc) = ‖τe‖
‖rM‖‖ fe,e‖ ,

k1 , ‖re‖
‖rM‖

, sin(θ́d) , k2 sin(θd) =
‖τd‖

‖rM‖‖ fe,e‖ , k2 , ‖rd‖
‖rM‖

. Here, k2 ≤ 1 is a constant, while
k2 ≤ k1 ≤ 1 is a function of θc. While the proof using the redefined quaternions is beyond
the scope of this manuscript, it can be easily shown (see Appendix A) that the exponential
convergence of θ́c to θ́d implies the exponential convergence of θc to θd.

From Figures 10–14, we can see similar performance as obtained with the frictionless
environment. The force error in the z-axis is regulated within 0.5 N. The force in the y-axis
is the friction force from the environment surface. The quaternion error is also regulated
to within 0.01, which means that the relative attitude between the end-effector z-axis and
environment normal converges to (e = 0, e0 = 1). Alignment results from Figure 13 show
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that the misalignment angle converges to 0. The velocity and position tracking in the x- and
y-axes also perform as expected and the tracking error is regulated to within 0.2 cm. From
Figure 14, we can see that the sliding mode control signal compensates for the disturbance,
thereby converging the system dynamics to the desired dynamics.
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Figure 10. Force tracking profile for frictional environment.
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Figure 11. Quaternion error tracking profile for frictional environment.
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Figure 12. Velocity tracking profile for frictional environment.
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Figure 13. Alignment evaluation for frictional environment.
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Figure 14. SMC performance for frictional environment.

6. Experiment
6.1. Implementation

For experimentation, the Baxter robot from Rethink Robotics was used as the testbed.
The ATI Mini45 force/torque sensor was mounted on the wrist of the Baxter to sense the
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interaction force/torque. The sensor was covered with soft rubber to lower the stiffness
of the end-tool. As for the signal processing, we utilized an averaging filter with a 45-
sample window on the 1000 Hz Baxter status publish node. For ease of implementation,
we modified the controllers (16) and (61) as follows:

aj = J+ax − KS−Q tanh(S) (71)

ax,ω = RI−1
d [−Bdωωe + eτ ] (72)

where eτ , τe− τd, τd , rd× fe,e, K is a constant diagonal matrix, while Id , diag{id, id, id} >
0 and Bdω , diag{bd,ωx, bd,ωy, bd,ωz} > 0 denote desired rotational inertia and damping
matrices.

6.2. Experimental Results

The following experiments were conducted: (1) alignment of the end-effector with a
yoga ball, (2) moving the end-effector along the yoga ball, and (3) moving the end-effector
along the back of a mannequin.

The first experiment focused on the alignment and stabilization of the end-effector
with respect to the environment in order to highlight the critical role of sliding mode control
(SMC). Here, we commanded 0 cm/s desired x and y velocities to the end-effector and
10(1− e−0.2t)N as the desired force in the end-effector z-direction. From Figures 15–19, it
can be seen that use of SMC leads to the interaction force along the end-effector z-direction
being regulated to around 10N with ±0.5 N error while the position error was less than 0.2
cm after the end-effector aligned with the surface. The figures also show that the system
does not converge without application of SMC. The interaction torque was seen to decrease
to less than 0.005 N ·m, and the equivalent lever converged to around 0.3 mm; both results
clearly illustrate that the end-effector aligned along the yoga ball surface with high fidelity
through the course of the experiment.
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Figure 15. External force for ball alignment.
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Figure 16. External torque for ball alignment.
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Figure 17. Velocity tracking for ball environment alignment experiment.
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Figure 18. Position tracking and error for ball environment alignment experiment.
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Figure 19. Alignment evaluation for ball environment alignment.

In the second experiment, we commanded 10(1− e−0.2t)N as the desired force in the
end-effector z-direction and the desired velocity was set to 0 from 0–10 s for the initial
alignment and ±1.5 cm/s along the end-effector x-direction during the movement. The
movement of the manipulator is shown in Figure 20.

Figure 20. Video frames from the experiment on the yoga ball environment.

From Figures 21–25, it can be seen that the force along the end-effector z-direction was
regulated around 10 N while moving on the yoga ball with the desired velocity/position.
It can be noticed that there was a minuscule torque error on the pitch axis of around
±0.015 N ·m during movement. Since the controller design assumes a level environment,
this torque error drives the end-effector to perform a constant angular velocity to align
with the curvature of the surface during the movement.
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Figure 21. External force for moving on ball environment.
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Figure 22. External torque profile for moving on ball environment.
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Figure 23. Velocity tracking for moving on ball environment.
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Figure 24. Position tracking for moving on ball environment.
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Figure 25. Alignment evaluation for moving on ball environment.

For the third experiment, we replaced the ball environment with a mannequin with an
irregular surface typical of the back of a human torso. The movement of the manipulator is
shown in Figure 26. From 0 to 10 s, we commanded the same force along the end-effector
z-direction. Then, we set vdx = 0 cm/s, vdy = 0.15 cm/s for 10–30 s, vdx = 0.05 cm/s,
vdy = 0 cm/s for 30–50 s, vdx = 0 cm/s, vdy = 0 cm / s for 50–55 s, and then commanded
the same velocities in the opposite direction. From Figures 27–31, it can be seen that the
overall position/velocity tracking and force regulation performance was close to expected.
However, the performance was comparatively degraded with respect to the results in the
second experiment due to the high stiffness and the sharp curvature changes in the surface
of the mannequin. During the time periods when the end-effector moved over the sharp
curvature regions on the mannequin back, such as 13–18 s, 40–45 s, 70–73 s, and 88–93
s, the force tracking and position tracking and alignment were affected. The force in the
end-effector z-direction reduced to 4 N for about 0.1 s, the position error increased to 0.6 cm,
the equivalent lever also increased to between 1 and 1.5 cm, but the degradation was seen
to happen for short periods and the force and position/velocity tracking profiles recovered
each time.
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Figure 26. Video frames from the experiment on the mannequin environment.
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Figure 27. External force profile for moving on mannequin back. During initial alignment (0–10 s),
force error is less than 0.5 N. During movement, force error stays less than 2 N except when end-
effector moves on regions of sharp curvature where force error goes to 4 N for less than 0.2 s.
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Figure 28. External torque profile for moving on mannequin. To orient end-effector during changes
in surface curvature, torque error increases up to 0.1 N·m, otherwise it remains regulated to within
0.05 N·m.
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Figure 29. Velocity tracking for moving on mannequin back.
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Figure 30. Position tracking and error profile for moving on mannequin back.
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Figure 31. Equivalent lever in the tangential plane of end-effector. At 13 s, 41 s, 70 s, and 88 s,
end-effector moves on regions of sharp curvature on mannequin which affects alignment during the
transient, but the controller always recovers alignment in steady-state.

7. Conclusions

In this paper, a robust hybrid controller has been implemented relying on the wrist
force/torque and robot joint position/velocity feedback. A Lyapunov-based stability anal-
ysis is provided to prove both the convergence as well as passivity of the interaction to
ensure both performance and safety. Simulations as well as experimental results verify
the performance and robustness of the proposed impedance controller in the presence of
dynamic uncertainties as well as the safety compliance of physical human–robot interac-
tions for a redundant robot manipulator. The design and implementation of verifiably safe
PHRI controllers is important for deploying such controllers in the real world without the
need for specialized hardware (sensors and/or actuators), which can be expensive. This is
especially important for assistive robotics applications where cost is among the most critical
factors in technology adoption. Our future work will be focused on adapting impedance
parameters during interaction to limit force amplitudes.
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Appendix A

Appendix A.1. Definition and Growth Bound of G1(t)

The time derivative of (42) can be written as

md,zv̈e,z = −bdzv̇e,z + ẑT
v Ṙe

o fe,o + ẑT
v Re

o ḟe,o

= −bdzv̇e,z − ẑT
v [ωe]×Re

o ẑvke(zn − zo)

− ẑT
v Re

oKeRo
e ve

= −bdzv̇e,z − ẑT
v Re

oKeRo
e ve

− ẑT
v [ωe]×Re

o ẑv
md,zv̇e,z + bdzve,z + fd,z

ẑT
v Re

o ẑv

where we have utilized (42) and (43) to substitute for ke(zn − zo) as well as the identity that
Ṙe

o = −[ωe]×Re
o. By utilizing the identity that Re

o = I + H, we can simplify

md,zv̈e,z = −bdzv̇e,z − keve,z + G1
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where

G1 = −ke ẑT
v HTve − ke ẑT

v Hẑvve,z − ke ẑT
v Hẑv ẑT

v HTve

− ẑT
v [ωe]×Re

o ẑv
md,zv̇e,z + bdzve,z + fd,z

ẑT
v Re

o ẑv
(A1)

and
H = −2qTqI + 2qqT − 2q0[q]×

which can be bounded as

‖H‖ ≤ 4‖q‖2 + 2‖q0‖‖q‖ ≤ 6‖q‖

which is an exponential bound owing to the exponential boundedness for q from Lemma 2.
By decomposing ve as

ve = ẑvve,z +
[

vx vy 0
]T︸ ︷︷ ︸,

ve,xy0

we can rewrite the perturbation system (A1) as follows

G1 = G11 + G12 + G13

where
G11 = −ẑT

v [ωe]×Re
o ẑv

md,zv̇e,z

ẑT
v Re

o ẑv

G12 = −ke ẑT
v HT ẑvve,z − ke ẑT

v HAve,z

−ke ẑT
v Hẑv ẑT

v HT ẑvve,z − ẑT
v [ωe]×Re

o ẑv
bdzve,z

ẑT
v Re

o ẑv

G13 = −ke ẑT
v Hẑv ẑT

v HTve,xy0 − ke ẑT
v HTve,xy0

− ẑT
v [ωe]×Re

o ẑv
fd,z

ẑT
v Re

o ẑv
.

The denominator term ẑT
v Re

o ẑv in G11, G12, and G13 can be lowerbounded as follows:

ẑT
v Re

o ẑv = 2q2
0 − 1 + 2q2

3

≥ 2q2
0(0)− 1 > 0

since ‖q0(0)‖ ∈
(

1/
√

2, 1
]

and q0 converges exponentially to 1. Since ωe and H converge
exponentially to the origin, we can upperbound G11, G12, G13 as follows:

‖G11‖ ≤ γ1(md,z) exp(−γt)‖v̇e,z‖ (A2)

‖G12‖ ≤ γ2(ke, bdz) exp(−γt)‖ve,z‖ (A3)

‖G13‖ ≤ γ3(ke) exp(−γt) (A4)

where γ1(md,z), γ2(ke, bdz), γ3(ke) are system-parameter-dependent constants.

Appendix A.2. Definitions of A, P and Q

The matrices A, P, and Q are defined as follows:

A , A =

 −
bdz

md,z
− ke

md,z
0

1 0 0
0 0 −γ


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P , P =

 md,z εmd,z 0
εmd,z ke 0

0 0 1

 > 0 (A5)

Q ,

 bdz − εmd,z
1
2 εbdz 0

1
2 εbdz εke 0

0 0 γ

 > 0 (A6)

for sufficiently small ε.

Appendix A.3. Definition and Linear Growth Bound of G2(t)

G2 = − ẑT
v [ωe]×Re

o ẑv ẑT
v Re

oBeRo
e ve

ẑT
v Re

o ẑv
− ẑT

v [ωe]×Re
oBeRo

e ve

+ẑT
v Re

oBeRo
e [ωe]×ve + ẑT

v HBev̇e + ẑT
v HBeHT v̇e

+ẑT
v BeHT v̇e

(A7)

Since ωe and H converge exponentially to the origin and vx, vy ∈ L∞, G2 can be norm-
bounded (in a manner akin to G1) as follows

‖G2‖ ≤ γ4(Be) exp(−γt)‖x‖ (A8)

where γ4(Be) is a system-parameter-dependent constant.

Appendix A.4. Bound for
∫ ∞

t1
− f T

e,xyvd,xydt

∫ ∞

t1

− f T
e,xyvd,xydt

=
∫ ∞

t1

−
(

Axy(I + H2) fe,o
)Tvd,xydt

=
∫ ∞

t1

−vT
e (I + H2)Bevd,xydt−

∫ ∞

t1

f T
e,o HT

2 AT
xy fe,ovd,xydt

=
∫ ∞

t1

−(vd + ev)
T Be AT

xyvd,xydt−
∫ ∞

t1

vT
e H2Be AT

xyvd,xydt

−
∫ ∞

t1

f T
e,o HT

2 AT
xy fe,ovd,xydt

=
∫ ∞

t1

−vT
d Bevddt−

∫ ∞

t1

eT
v Be AT

xyvd,xydt

−
∫ ∞

t1

vT
e H2Be AT

xyvd,xydt−
∫ ∞

t1

f T
e,o HT

2 AT
xy fe,ovd,xydt

=
∫ ∞

t1

−vT
d Bevddt−

∫ ∞

t1

beeT
v,xyvd,xydt

−
∫ ∞

t1

vT
e H2Be AT

xyvd,xydt−
∫ ∞

t1

f T
e,o HT

2 AT
xy fe,ovd,xydt

≤
∫ ∞

t1

−vT
d Bevddt + be

∥∥∥vd,xy

∥∥∥ ∫ ∞

t1

∥∥ev,xy
∥∥dt

+
∥∥∥vd,xy

∥∥∥∥∥Axy
∥∥ sup

{(
‖Be‖‖ve‖+ ‖ fe,o‖2

)} ∫ ∞

t1

‖H2‖dt

where we have utilized the fact that Re
o = I−2eTeI + 2eeT − 2e0[e]×︸ ︷︷ ︸ .

H2

Appendix A.5. Exponential Convergence of θ́c to θ́d Implies Exponential Convergence of θc to θd

Based on the relation between θ́c, θ́d, and θc, θd, we can write
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e = qd0q− q0qd + [q]×qd

= cos(
θd
2
) sin(

θc

2
)n− cos(

θc

2
) sin(

θd
2
)nd

+ sin(
θc

2
) sin(

θd
2
)n× nd

=

 cos( θd
2 ) cos( θ́c

2 )

k1 cos
(

θc
2

)
cos( θ́d

2 )

 cos(
θ́d
2
) sin(

θ́c

2
)n

−

 cos( θc
2 ) cos( θ́d

2 )

k2 cos( θ́c
2 ) cos( θd

2 )

 cos(
θ́c

2
) sin(

θ́d
2
)nd

+

 cos( θ́c
2 ) cos( θ́d

2 )

k1k2 cos( θc
2 ) cos( θd

2 )

 sin(
θ́c

2
) sin(

θ́d
2
)n× nd (A9)

Since 0 < k2 ≤ k1 ≤ 1,and θ́c, θ́d, θc, θd ∈ [0, π
2 ), it is easy to see that all the bracketed terms

in (A9) can be bounded by constants λ1, λ2, λ3 such that

‖e‖ ≤ λ1 cos(
θ́d
2
) sin(

θ́c

2
) + λ2 cos(

θ́c

2
) sin(

θ́d
2
)

+ λ3 sin(
θ́c

2
) sin(

θ́d
2
)

≤ max{λ1, λ2, λ3}‖é‖

which clearly shows that the exponential convergence of é to the origin implies the same
convergence result for e.
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