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Abstract: The most important research area in robotics is navigation algorithms. Robot path planning
(RPP) is the process of choosing the best route for a mobile robot to take before it moves. Finding an
ideal or nearly ideal path is referred to as “path planning optimization.” Finding the best solution
values that satisfy a single or a number of objectives, such as the shortest, smoothest, and safest
path, is the goal. The objective of this study is to present an overview of navigation strategies for
mobile robots that utilize three classical approaches, namely: the roadmap approach (RM), cell
decomposition (CD), and artificial potential fields (APF), in addition to eleven heuristic approaches,
including the genetic algorithm (GA), ant colony optimization (ACO), artificial bee colony (ABC), gray
wolf optimization (GWO), shuffled frog-leaping algorithm (SFLA), whale optimization algorithm
(WOA), bacterial foraging optimization (BFO), firefly (FF) algorithm, cuckoo search (CS), and bat
algorithm (BA), which may be used in various environmental situations. Multiple issues, including
dynamic goals, static and dynamic environments, multiple robots, real-time simulation, kinematic
analysis, and hybrid algorithms, are addressed in a different set of articles presented in this study. A
discussion, as well as thorough tables and charts, will be presented at the end of this work to help
readers understand what types of strategies for path planning are developed for use in a wide range
of ecological contexts. Therefore, this work’s main contribution is that it provides a broad view of
robot path planning, which will make it easier for scientists to study the topic in the near future.

Keywords: robot path planning (RPP); shortest path; smoothness; dynamic goals; multiple robots;
kinematic analysis; hybrid algorithms

1. Introduction

A robot is a machine that is able to react to its surroundings and collect information
(from sensors) about its environment to perform different types of tasks safely. Autonomous
robots can operate and move by themselves without a human directly controlling them.
Unlike the robots used in manufacturing plants, where the environment is tightly controlled
and completely known, autonomous robots cannot always be programmed to perform pre-
defined actions because it is impossible to predict the various situations that the robot may
encounter. Moreover, the environment could be unpredictable or change over time, which
would mean that the robot’s movements would have to be changed quickly online [1].
Autonomous robot applications include couriers in hospitals, security guards, military
surveillance, aerospace research, monitoring the environment, cleaners, and lawn mowers.
Generally, one of the most important applications is the use of autonomous mobile robots
in hazardous fields, such as minefields or the inside of nuclear plants. Due to the inherent
autonomy of mobile robots, a number of challenges must be overcome, including uncer-
tainty, sensing errors, planning, learning, reliability, and real-time responses [2]. Robots
need to dynamically respond to changes and adapt to their environment.

The inception of the discipline of robotic path planning can be traced back to the
mid-1960s. The problem of planning paths for robots, commonly known as robot path
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planning (RPP), is a crucial concern in the field of mobile robot navigation. The objec-
tive is to determine the optimal path that is free from any collisions within a specified
environment, starting from a predefined location and ending at a target destination. In
general, there are numerous ways for a robot to move to its destination, but the best route
is actually chosen in accordance with a set of rules. The most widely used criteria are the
shortest distance, the least amount of energy used, or the shortest time with the shortest
distance. Since the goal of path planning is to find the shortest path while keeping in mind
constraints such as the given environment and collision-free motion, it can be viewed as
an optimization problem [3]. Maps, locations, and navigation for mobile robots can be
aided by environmental models. However, the volume of data in these models needs to
be manageable and able to meet the demands of real-time computing. A very difficult
problem in the field of robotics is the planning of robot paths. The main goal is to find a
route from where you start to where you end without hitting anything. Three key issues
must be taken into consideration when solving the robot navigation problem: efficiency,
safety, and accuracy. Efficiency requires that the algorithm avoid having the robot take extra
steps or stop and turn repeatedly, which wastes time and energy, in order to determine the
shortest distance in the shortest amount of time. Safety and accuracy depend on finding
a path that will not hit anything while staying close to that path [4]. Robot navigation
problems can be categorized into localization, path planning, motion control, and cognitive
mapping, as illustrated in Figure 1. Path planning is possibly the most important aspect of
robot navigation [5].
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planning faces a number of challenges, including sensor reading errors, sensor con-
straints, variable environmental conditions, robot dynamics, location estimation, and 

Figure 1. Robot navigation problem.

Depending on where they are located [6], RPPs fall into one of two categories:

(a) The RPP with fixed obstacles in a static environment.
(b) The RPP, when faced with both still and moving obstacles in a dynamic environment.

Each of these two categories could be further subdivided into a subgroup. Global
path planning, where robots in environments can plan their overall paths (offline) before
they begin to move because they have complete information about the stationary obstacles,
and the trajectory of the moving obstacles is known in advance. Because it is challenging
to set up a new map, the cost of an environmental change in global navigation is very
high, especially in dynamic environments. The inability to plan a local route with complete
environmental knowledge is one limitation of local path planning. As it moves through
the environment, a mobile robot uses sensors to gather information (online). The robot
must repeatedly move to a new position, sense its surroundings, update the map, and
plan its next course of action in order to create a map of its surroundings. Local path
planning faces a number of challenges, including sensor reading errors, sensor constraints,
variable environmental conditions, robot dynamics, location estimation, and robot motion
restrictions [6]. In extremely complicated and vast environments, local path planning may
not be able to locate the path to the target. This mostly occurs as a result of the sensors’
inability to supply enough data to send the robot to the desired location [7]. The base
position of the robot, its rotation, and the rotation or translation of its entire links are called
the robot’s configuration. A set of all possible configurations constitutes the configuration
space or c-space, and it requires several elements:
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1. A description of the robot’s shape, such as whether it has legs, wheels, or no limbs at
all (locomotion).

2. An explanation of the robot’s environment, including its geometry (2- or 3-dimensional
workspace).

3. The environment must have a start and goal configuration, between which the robot’s
path must be planned.

A number of parameters are used to describe the robot’s workspace configuration.
For instance, two parameters, commonly referred to as x and y, can be used to describe
the configuration of a robot, translating it into a two-dimensional workspace. Obstacles
in the robot’s workspace prevent some configurations from being used. For instance, the
robot configured at configuration C is prohibited if it collides with any of the workplace
obstacles. The configuration space C is divided into a set of prohibited configurations
Cforb and a set of permitted configurations Cfree as a result. In general, a path is defined
as a continuous function π : [0, L] → C, parameterized by the length L of the path. The
path-planning problem is to find a (collision)-free path between a given start configuration
s ∈ C and goal configuration g ∈ C. Translating, in terms of the configuration space C, is
by finding a path π so that π(0) = s and π(L) = g, and ∀(t ∈ [0, L] : π(t) ∈ C f ree) [8].
Mapping is the process of constructing a model of the environment. In order to make a
map that is accurate enough to show what the robot will see along its path, the terrain must
be shown accurately. Different types of maps exist to represent an environment. Some
of them use a grid with cells that are either empty, where the robot can travel freely, or
occupied to represent an obstacle, as shown in Figure 2. Others use two-dimensional (or
three-dimensional) rectangular or square workspaces, with the obstacles being polygon, as
shown in Figure 3.
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Many researchers have presented a survey paper on mobile robot navigation [9–11];
however, these surveys are insufficient to provide an in-depth analysis of individual
navigational techniques. This proposed survey paper on mobile robot navigation aims to
discover the research gaps and scope of innovation in a particular area. It provides an in-
depth analysis of an individual algorithm for a static environment, a dynamic environment
in the presence of a moving obstacle and goal, simulation analysis, experimental analysis,
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multiple mobile robot navigation, hybridization with other intelligent techniques, and
its application to a three-dimensional (3D) environment. The survey also highlights the
differences between classical and reactive approaches based on their effectiveness and
application for specific environments, such as aerial, land, underwater, industrial, and
hazardous environments. In Ref. [9], the approach is limited to 3D path planning only,
whereas Ref. [10] reviews multi-robot path-planning approaches and decision-making
strategies for various robot types, including aerial, ground, and underwater robots. Ref. [11]
focuses on multi-objective optimization algorithms for mobile robot path planning.
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This review is organized as follows: Section 2 discusses robot path planning techniques,
Section 3 discusses modeling mobile robot navigation, and Section 3 is the discussion.
Finally, the conclusion of this paper is represented in Section 4.

2. Robot Path Planning Techniques

The robot’s path should be optimized to meet certain criteria, making the path plan-
ning issue a type of optimization problem. The study of optimization algorithms has
attracted much attention from researchers over the last few decades. The two types of
optimization methods and algorithms are deterministic and stochastic [12]. Stochastic
methods are more adept at discovering global optimal solutions for various objective func-
tions, while deterministic methods rely on the mathematical properties of the problem.
Conversely, stochastic methods are not contingent on the mathematical attributes of a spe-
cific function, as stated in reference [13]. Nevertheless, the initial approach exhibits certain
limitations, including a reliance on gradients, susceptibility to local optima, inefficiencies
in searching large-scale spaces, and an inability to address discrete functions. Stochastic
process-based techniques are perceived to possess a higher degree of user-friendliness.
Stochastic methods are necessary due to the complexity of many real-world optimization
problems, particularly when it comes to optimizing non-differentiable, multimodal, and
discrete complex functions—these algorithms have been found to outperform classical or
gradient-based approaches. These nature-inspired paradigms are currently being widely
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applied in numerous engineering fields [14]. These techniques have been shown to be
reliable and powerful search methods.

For many years, numerous scientists and researchers have offered a variety of method-
ologies for navigational approaches. The ways in which a mobile robot finds its way
around can be roughly divided into two groups: classical and heuristic (Figure 4). Classical
methods have a number of flaws that render them ineffective in real-world applications,
including the issue of a high time complexity in high dimensions and the phenomenon of
being trapped in local minima, which are significant concerns in the field. Heuristic ap-
proaches have outperformed conventional approaches and gained widespread popularity
as a result of the NP-hardness of the PP problem. Heuristic techniques have also become
increasingly popular due to their success in resolving issues involving multidimensionality,
complex workspaces, and local minima [15]. In the following subsection of the research,
we examine a group of scientific contributions that used classical and heuristic approaches
to find the best single- or multi-objective path planning.
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2.1. Classical Approaches

We discuss three classical approaches that were used to find the best single- or multi-
objective paths in the following points:

1. Roadmap (visibility graph [16]; Voronoi diagram [17]): The roadmap approach (RM)
involves the reformulation, reduction, or mapping of the free C-space onto a one-
dimensional workspace, as illustrated in Figure 5. Salzman examines the application
of the RM for the navigation of autonomous mobile robots [18]. During the planning
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phase, the configuration space of the robot is randomly generated, resulting in a
specific number of nodes. A road map is then constructed by connecting pairs of
nodes in a straight line while ensuring that the path does not intersect with any
obstacles. Based on the results obtained during the planning stage, the query phase
devises a path connecting the initial and target configurations. Enhancements were
implemented to the efficient path planning of the Voronoi diagram in order to optimize
its performance and mitigate issues, such as abrupt turns and extended loops, as cited
in reference [19]. The optimal route is ascertained through the employment of a hybrid
approach that amalgamates the visibility graph, Voronoi diagram, and potential field
technique, as stated in reference [20]. Scholars have highlighted that the approach
fails to identify the optimal pathway and presents challenges in its implementation.
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Yang et al. [21] employed skeleton maps and Voronoi diagrams, among other tech-
niques, to effectively strategize their routes. Wein et al. [22] proposed a novel approach
that integrates a visibility graph and a Voronoi diagram to determine the optimal route. In
their work [23], Kavraki et al. demonstrated the use of probability in robotic motion (RM)
for the purpose of comprehending and producing path-planning solutions. The method,
however, is ineffective at obtaining the ideal path length. The probabilistic RM was slightly
modified by Sanchez et al. [24] using a probabilistic roadmap method to improve the
shortest-path determination (PRM), presenting the lazy collision-checking strategy as their
solution to the practical path-planning problem. Yan et al. [25] have successfully tested
an unmanned aerial vehicle’s ability to navigate in a 3D environment. This method uses
both a probabilistic formula and a road map to determine the flight path. An innovative
path-planning algorithm, which performs obstacle avoidance in dynamic environments,
is called Temporal-PRM [26]. By adding the concept of time to the original probabilistic
roadmap (PRM), it creates an enhanced structure that can be efficiently queried.

Huang et al. present in [27] the utilization of heuristics-informed robot online path
planning (HIRO), which can significantly expedite the discovery of collision-free paths
in comparison to conventional methods, regardless of whether or not the robot has prior
knowledge of the environment. For quick path-finding, HIRO employs both an informed
heuristic and a deterministic roadmap. The probabilistic roadmap (PRM) has been widely
applied in mobile robot navigation for its simplicity. When there are narrow passages in
the environment, the efficiency of the PRM is greatly reduced. Zhang et al. [28] proposed
an improved potential field-based probabilistic roadmap algorithm. The path-planning
problem can be successfully solved by a probabilistic roadmap (PRM) in a setting with
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numerous complex constraints and high dimensions. Its weaknesses include poor path-
planning quality and efficiency in confined spaces and dynamic environments. Finally,
You et al. [29] suggested that a dynamic PRM-blended potential field be used to plan paths
for a mobile robot in an environment with more than one dimension.

2. Cell decomposition (CD) [30]: To determine a route connecting the initial and target
configurations, the unobstructed configuration space is partitioned into a collection
of compartments. As shown in Figure 6, the establishment of a connection between
the commencement and termination cells and the subsequent establishment of a
connection via a series of intermediary cells determines the cellular relationships.
Samet [31] and Noborio [32] proposed a decomposition utilizing a quadtree. Large
grid cells divide the environment; however, when a grid cell is only partially filled, it
is broken into four smaller parts of the same size until it is empty. This system’s flaw is
its inability to update the program when new information (such as the position of an
obstacle) arrives, making it ineffective in dynamic environments. Lingelbach [33] has
proven that the high-dimensional static configuration problem with path planning
exists. He found a solution to the path-planning issue for robotic platforms that
resembled chains and a maze. Using CAD-based data, Sleumer et al. [34] presented a
path-planning strategy for mobile robots.
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Cai et al. [35] have shown that rough CDs using sensors can be used to sort many fixed
targets in a complicated environment into different groups. In a static environment, the
developed method works best because it takes the shortest route and covers the whole envi-
ronment. Dugarjav et al.’s [36] utilization of a sensor-based CD model remains applicable in
addressing an unfamiliar rectilinear workspace for a mobile robot. The individuals utilized
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the CD strategy and a laser-scanning mechanism to circumvent unfamiliar locations and
objects. Glavaski et al. [37] proposed a hybrid approach to address the disparity between
theoretical advancements and practical considerations in path-planning problems. In order
to reduce computational expenses, an exact CD path planner was developed based on the
APF method. Tunggal et al. [38] introduce the utilization of CD and fuzzy logic as a means
of achieving real-time operation in environments that are characterized by uncertainty.

Mark et al.’s [39] paper aimed to elucidate the mechanics of a greedy depth-first search
algorithm and a CD technique that utilizes a genetic algorithm (GA) for the purpose of
planning 3D paths for manipulator systems. Gonzalez et al. [40] presented quantitative
analyses of the paths by changing the graph weights, the waypoint calculation method, and
the CD. Wahyunggoro et al. [41] presented an application to a problem of aerial navigation
using the CD approach for exploring the 3D environment. The CD method and fuzzy logic
are used together in this method to guide and control the aerial vehicle. [42] In comparison
to the vertical (VCD) algorithm, the radial CD (RCD) algorithm can produce shorter
paths. Both cluttered and corridor environments can benefit from the RCD algorithm. The
RCD’s effectiveness, in terms of the path length and processing time, is supported by the
simulation results.

3. Artificial potential fields (APFs): The present approach involves a configuration space
that comprises two distinct forces, namely a repulsive force that acts in a manner to
expel the robot from the obstacles, as illustrated in Figure 7, and an attractive force
that draws the robot towards the desired goal configuration. Khatib [43] was the
pioneer in introducing the APF approach for mobile robot navigation in 1986. As per
his statement, the objective and hindrances function as energized surfaces, and the
automaton is subjected to a hypothetical force produced by the aggregate of their
potential energies. This hypothetical force, shown in Figure 7, pushes the robot in
the desired direction and keeps it from heading toward a barrier. Here, the robot
travels along the negative gradient to bypass the obstruction and arrive at the desired
location. Garibotto et al. [44] presented an application of this method for mobile
robot navigation. Kim et al. [45] discussed a novel obstacle avoidance technique in
an unexplored environment using APF. To bypass the issue of a local minimum, they
used a harmonic function.
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Another solution to the issue of the local minimum conditions has been provided by
Borenstein et al. [46]. They have taken into account the dynamic navigational characteristics
of robots in this study. In the references [47,48], it is done so as to study APFs in a dynamic
context for obstacle avoidance. By utilizing the electrostatic laws, the APF method has been
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modified in some ways [49], where utilizing electrostatics enables the production of the
potential function and the instantaneous determination of a collision-free path. Obstacle
avoidance while moving is a difficult task in a real-time environment; thus, Huang [50]
developed a way to control speed to figure out where the obstruction was and how it was
moving. The terms “superior potential” and “superior repellent potential” refer to those
two functions by Shi et al. [51] in order to prevent local minima and reach global maxima.
Sfeir et al. [52] examined the problem of mobile robot navigation, which can be fixed by
employing APF techniques such as oscillations and conflicts. They changed the APF to
make it less likely to oscillate and cause problems when the target is close to an obstacle.

Pradhan et al. [53] tested the APF’s applicability using the ROBOPATH simulation
tool. The artificial potential field method is thought to be one of the most popular path-
planning techniques. In order to address the issue of unreachable targets, article [54]
enhances the repulsion field function. When it becomes caught in a trap, it chooses a
virtual target point to help free it. The application of the artificial potential field method to
static obstacles with unknowable environmental data is the main topic of article [55]. The
modified artificial possible field method can occasionally move around the local minima and
reach its destination without any problems, as demonstrated by the MATLAB simulation.
Shi et al. [56] dealt with multi-agent formation obstacle avoidance control, examined the
impact of step sizes on path planning and suggested two ways to make the path more
efficient. The informed rapidly exploring random tree star (RRT*) algorithm performs a
quality check and re-optimizes the sampling path. A more effective local obstacle avoidance
path-planning algorithm for APF was suggested by Liu et al. [57]. The stability of dynamic
obstacle avoidance is improved, according to the simulation results, and the change in the
heading angle obtained by the improved potential field method is reduced by 84%. The
algorithm might be applied to real-time vehicle obstacle avoidance.

Several attempts were then introduced to enhance those classic methods, such as
the probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT*). Moreover,
hybrid methods combining classic and heuristic approaches exist to exploit the advantages
of both techniques (simulated annealing (SA) with artificial potential field (APF) [58]).
Heuristic methodologies were devised to surmount the limitations of conventional method-
ologies, such as the issue of being trapped in local minima. Some of them are listed in the
following subsections:

2.2. Heuristic Approaches

We discuss eleven heuristic approaches used to find the best single- or multi-objective
paths in the following points:

1. Genetic algorithm (GA): This is a well-known search-based optimization tool that
adheres to the 1958 Bremermann [59] discovery of genetics and natural selection.
In 1975, Holland [60] was the first to present it in the context of computer science.
Robot navigation is just one of the many areas of science and technology where it is
currently widely used. Robot navigation is a prevalent application in the fields of
science and technology. The subject matter pertains to the optimization of complex
problems that require the maximization or minimization of the objective function
while adhering to the pre-established constraints. This approach involves the alloca-
tion of a population, consisting of individuals with unique genetic traits, to a specified
problem. Subsequently, each member of the population is assigned a fitness score,
which is determined by the objective function. The selection of individuals is based on
their fitness value, and they are permitted to undergo crossover with the succeeding
generation to ensure the transmission of their genetic material. The mutation prevents
premature convergence and maintains population diversity.

The algorithm is then finished if the population has converged. The GA is somewhat
randomized; however, because it can also use historical data, it outperforms a random
local search. The general flow chart for GA is shown in Figure 8. One of the difficulties in
robotics is the planning of multi-robot paths. The multiple mobile robots’ path-planning
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strategy was discussed by Kala [61] with the help of GA. Through his research, researchers
developed an efficient method of coordinating multiple robots to avoid colliding in a
stationary environment. The strategy for multiple goals is illustrated in Ref. [62] for a static
environment, similar to multiple robot path planning. Yang et al. [63] solved the problem of
multi-mobile robot system navigation in a dynamic environment. They have demonstrated
the outcomes in the presence of both static and moving barriers. Several research studies
have indicated that the GA possesses certain limitations, such as a sluggish convergence
rate, an absence of assurance in obtaining the optimal solution, a cumbersome approach
for selecting the mutation rate, population size parameters, and so on.
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The modified GA path planner, which incorporates a population-based co-evaluation
mechanism for robot navigation, is presented by Hong et al. [64]. The authors have
demonstrated enhanced simulation outcomes pertaining to obstacle avoidance and path
optimality for multi-robot systems operating in an unfamiliar environment through the
application of modified GAs. Jianjun et al. [65] presented a different modified form of GA
for path optimization. To achieve the best results, their method modifies the chromosome’s
length. The GA approach is used in the 2D path planning of a humanoid robot [66] as well
as the 3D path planning problems for underwater [67] and aerial robots [68] because it
effectively adapts to the environment (both known and unknown). Patle et al. [69], for both
single-robot and multi-robot systems, a matrix-based GA utilizing binary code (MGA) was
developed to address the moving target problem. In this method, the robot can quickly
and easily follow a moving goal and an obstacle and arrive at its destination. A popular
intelligent technique for defense equipment is the GA approach.

Creaser et al. [70] presented a missile control demonstration that combines fuzzy logic
and the GA approach. In creating the guidance law for the missile, the GA is crucial.
Lin et al. [71] introduced an innovative approach to military and ocean monitoring based
on GA. With the help of GA, they were able to secure a crucial military asset and determine
the optimal positioning strategy for a network of underwater sensors. The authors of [72]
aimed to discover a solution to the robot path-planning problem that addresses the issues of
slow convergence speed and easy local optimum fall-off and propose an adaptive selection
technique based on an assessment of population diversity levels. Several simulations
are run in a grid environment to demonstrate the algorithm’s viability and efficacy. The
two-way RRT algorithm is used in [73] to replace a portion of the population in order
to create an elite population after the population initialization method is improved. The
results show that the elite population GA, proposed in this article, makes up for the flaws
of traditional GAs.

2. Ant colony optimization (ACO): For his dissertation in 1992, Marco Dorigo developed
this swarm intelligence algorithm [74]. In order to solve the combinatorial optimiza-
tion problem, a population-based approach was used. The effectiveness with which
ant colonies navigate from their nests to sources of food served as the inspiration for
the ACO algorithm (Figure 9). The ACO algorithm has already been used in a number
of scientific and engineering fields, including graph coloring, quadratic assignment
problems, vehicle routing, traveling salesman problems, job-shop scheduling, and
many others. ACO was applied to the real-time path planning of mobile robots by
Guan-Zheng et al. [75]. When compared to other algorithms, such as GA, the ACO
algorithm enhances dynamic convergence behavior, solution variation, convergence
speed, and computational efficiency. Liu et al. [76] presented the use of ACO for multi-
mobile robot navigation. They provided a collision avoidance method for different
robot systems in a still setting. To enhance the selective strategy, they made use of a
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special function. When an ant encounters a dead corner, a penalty function is applied
to the trail intensity to prevent the robot’s path from becoming immobile.
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Castillo et al. [77] presented an ACO-fuzzy-based hybrid approach for mobile robot
navigation in a static environment. Kumar et al. [78] presented an RA-ACO-based method
for humanoid robot navigation in a cluttered environment. They used a Petri net to test
the proposed method for the real-time navigation of multiple humanoid robots and found
good agreement between the simulation and real-time results. Liu et al. [79] offer sugges-
tions for how the current ACO method can be tweaked to work better in a static setting.
They assert that convergence velocity is the single most important factor in determining
performance. The search space for the pattern shrinks as the ants gravitate toward higher
fitness subspaces, and the pheromone along the current path diffuses in the direction of the
potential field force. They found the optimal route by combining pheromone diffusion and
geometric local optimization. Rajput et al. [80] offered another modification for the dynamic
environment. In order to prevent pointless looping and achieve faster convergence, they
also presented a novel pheromone updating technique. The ACO algorithm has been
applied for mobile robot navigation in an uncharted dynamic environment, according to
Purian et al. [81]. For the selection and optimization of the fuzzy rules, they used ACO.

Brand et al. presented in [82] a comparison of simulated and real-world mobile
robot operations in the same environment. Liu et al.’s [83] proposal for path planning in
three dimensions for underwater vehicles uses an ACO-based search algorithm to find a
collision-free path from one location to another. The ACO algorithm has been proposed
by Chen et al. [84]. An issue with determining the best path for unmanned aerial vehicles
on the battlefield can be resolved using reinforcement learning to address the original ant
colony algorithm’s slow searching and stagnation behavior. The ant colony algorithm is
also applied to military hardware. Gao et al. [85] presented improved performance when
using ACO for missile route planning, including optimal route lengths and a faster rate of
convergence. Zong et al. [86] suggested that an improved ant colony algorithm be used
to plan paths for mobile robots. The algorithm’s pheromone update mechanism has the
ability to accelerate convergence. The results of numerous simulation experiments demon-
strate that the improved algorithm performs superior to other algorithms in challenging
environments. In mobile robots, the traditional ant colony algorithm has redundant paths
and is prone to local optimal solutions.

The ant colony algorithm’s convergence can be significantly improved by modifying
the path to the target point [87]. The number of nodes is decreased, and it better meets the
needs of robot movement. The working time and production efficiency of the automatic
line are directly impacted by the welding path’s length [87]. A path-planning method based
on the (ACO) algorithm is proposed to address the issue that traditional path-planning
methods are unsuitable for multi-target points. Although the path is too long and there are
too many turns [88], the basic ant colony algorithm (ACO) is simple to use to enter the local
optimum. The walkable position points are set at random by an improved ACO in the area
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of the map where there are no obstacles. For mobile robots, an autonomous path-planning
method based on evolutionary optimization is suggested.

3. Particle swarm optimization (PSO): This metaheuristic takes cues for group dynamics
from animals in the wild, such as schools of fish and flocks of birds. It was developed
in 1995 by Eberhart and Kennedy [89] and is an optimization tool with a rapidly
growing user base for resolving various engineering and scientific issues. The PSO
imitates social animal behavior, yet it does not require a group leader to complete the
job. The flock of birds does not need a leader when searching for food; instead, they
follow the member who is closest to the food (Figure 10). In this manner, the flock of
birds successfully communicates with the other members of the population to arrive
at the required solution. The PSO algorithm is made up of a collection of particles,
each of which represents a potential resolution. PSO is now a widely used tool for
mobile robot navigation. Using a multi-agent particle filter, Tang et al. [90] dealt with
the issues of mapping and localization for a mobile robot navigating in an unknown
environment. PSO is used because it has more stable convergence characteristics and
helps to reduce calculation.
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To obtain a precise trajectory and prevent becoming stuck in local optima, the PSO
algorithm combined with the MADS (mesh adaptive direct search) algorithm was used
by Xuan et al. [91]. When combined with the GA and EKF algorithms, the PSO–MADS
algorithm produces an effective result (the extended Kalman filter). The Area Extended
PSO (AEPSO) was created by Atyabi et al. [92]. Furthermore, problems with mobile
robot navigation that are limited by time and change can be solved with a version of PSO
that combines the basic PSO algorithm with other optimization techniques. The AEPSO
strategy is successfully used in bomb defusing and the search and rescue of survivors.
Tang et al.’s [93] cooperative motion path planning in a challenging environment addresses
multi-mobile robot system navigation. The fault tolerance of the proposed method is then
examined, with both the PSO and the multibody system dynamics (consisting of robot
properties, such as acceleration, mass, force, and inertia) being taken into account. For
the real-world navigation of numerous mobile robots, Couceiro et al. [94] made some
modifications. They altered the PSO and Darwinian PSO (DPSO) systems to address com-
munication and obstacle avoidance problems. They discovered that a system of 12 physical
robots could increase both the best overall performance and the maximum communication
distance by up to 90%.

Chen et al. [95] used a multi-category classifier to make a human expert control strategy
for an uncertain environment that could learn. The particle swarm optimization (PSO)
algorithm is employed in this context to efficiently attain enhanced precision in a timely
manner. Compared to the conventional grid search method, it offers superior precision.
The self-adaptive learning particle swarm optimization (SLPSO) technique, proposed by
Li et al., was designed to tackle the challenge of path planning for robots in intricate
environments while simultaneously satisfying diverse constraints. The authors initially
converted the path-planning issue into a multi-objective optimization problem with the aim
of satisfying the navigational objectives of minimizing the path length and collision risk
and maximizing smoothness. Following the achievement of these objectives, a self-adaptive
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learning mechanism was incorporated to enhance the particle swarm optimization’s (PSO)
capacity to explore a setting with numerous constraints. Das et al. [96] have provided a
hybrid approach for creating effective path planning. They presented a hybrid methodology
using the improved gravitational search algorithm (IGSA) and PSO to assess the best
course of action for numerous mobile robots in a cluttered environment. The study by
He et al. [97] investigated the utilization of particle swarm optimization (PSO) in addressing
the challenge of navigating underwater environments in a multifaceted, three-dimensional
setting. The study employed a combined PSO-UFastSLAM approach to enhance the
estimation accuracy and restrict particle size, thereby yielding improved outcomes.

The particle swarm optimization (PSO) approach has been employed in the navigation
of various types of robots, including underwater robots, aerial robots in 3D unknown
environments [98], humanoid robots [99], and industrial robots [100]. Notably, these robots
have demonstrated successful navigation outcomes. Algabri M et al. [101] conducted a
comparative analysis of various navigational control techniques, such as GA, PSO, NN,
and FL, to identify the optimal approach. The researchers arrived at the determination that
the fusion of FL and PSO yielded the most optimal outcomes in relation to the distance
traversed. Particle swarm optimization (PSO) has potential applications beyond the realm
of mobile robot navigation, particularly in the defense sector. Banks et al. [102] conducted
a study on the application of PSO in non-deterministic UAV navigation and its potential
to facilitate inter-UAV collaboration for safeguarding a vast region against aerial threats.
The environment in [103] is divided using the grid method to enable particle swarm
optimization. The path’s distance is measured by the objective function, and avoiding
obstacles on the way is penalized. Two path-planning issues involving emergency and
regular vehicles are solved using particle swarm optimization. One of the current robotics
field’s most active research areas is path planning. Chen et al. [104] make reference to the
problem that the local search performance of particle swarms is subpar; thus, an ideal path
can be planned more quickly, and the algorithm can enhance the quality of particle searches
in both the early and late stages. Sarkar et al. [105] developed an adaptive fitness function
that addresses three important issues, including the avoidance of obstacles and the choice
of a shorter, smoother path. The fitness function is optimized by using the particle swarm
optimization (PSO) algorithm.

4. Bacterial foraging optimization (BFO): A new nature-inspired optimization algorithm,
derived from the behavior of E. coli and M. Xanthus bacteria, was introduced by
Passino [106] in 2002. In order to find nutrients, these bacteria maximize their use of
available energy per unit of time. Chemotaxis, a feature of the BFO algorithm, detects
chemical gradients through which bacteria exchange specific signals with one another.
Chemotaxis, swarming, reproduction and eradication, and dispersal are some of its
four core tenets. Figure 11 depicts the general flowchart of bacteria behavior when
searching for nutrients. On the map, bacteria are constantly moving in search of areas
with more nutrients. Bacteria, when in an area with more nutrients, will spread out
and die, whereas bacteria in an area with fewer nutrients will live longer and divide
into two equal parts. Bacteria, when in an area with more food, are drawn to bacteria
in the area with less food, and the bacteria in the area with less food send a signal to
the bacteria in the area with more food that they are there. A region with abundant
nutrients is mapped by bacteria.

On the map, bacteria are spread out, once more in search of new nutrient sources. The
study by Coelho and colleagues [107] demonstrated the use of a BFO algorithm with an
adjustable velocity as a means for mobile robots to navigate within a stationary setting. The
aforementioned distribution is derived from the uniform, Gauss, and Cauchy distributions.
When encountering several obstacles in a stationary setting, Refs. [108,109] employed a
uniform approach to navigation. The authors of Gasparri et al. [110] demonstrated the
implementation of a real-time navigation system for a mobile robot operating within
various indoor settings, such as corridors, lobbies, and building floors. Abbas et al. [111]
enhanced the efficacy of path planning for a robot with wheels through the development
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of an optimized BFO algorithm. The method devised utilizes an APF (artificial potential
field) approach that incorporates two opposing forces, namely an attractive force towards
the objective and a repulsive force away from the obstacles. The approach examines
the adverse feedback of the algorithm in order to identify suitable direction vectors that
guide the exploration process toward a more favorable region with improved local search
capabilities. Jati et al. [112] proposed a BFO algorithm to address the challenging task of
navigating in the presence of multiple robots. The authors integrated the binary firefly
optimization (BFO) technique with the Harmony Search algorithm in their study. In
addition to wheeled robots, the efficacy of the BFO algorithm has been demonstrated on
industrial manipulators. Coelho et al. [113] have reported that the enhanced BFO algorithm
yields superior outcomes compared to the conventional BFO algorithm. The UAV BFO
navigation problem was presented by Oyekan et al. in their study [114]. The utilization of
a proportional integral derivative (PID) controller for optimizing the search parameters
of the BFO in three-dimensional space obviates the necessity for intricate modeling and
enhances the performance of the UAV controller.
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5. Artificial bee colony (ABC) algorithm: The ABC algorithm has been proposed as a
swarm-based intelligent approach that employs the foraging behavior of honey bees as
a metaphor, as depicted in Figure 12, Kharaboga [115]. The population-based artificial
bee colony (ABC) algorithm comprises a set of inherent solutions that serve as the
food source for the bees. The aforementioned technique pertains to swarm algorithms
and is a stochastic search approach based on populations. It is characterized by its
user-friendly nature. The processing time is relatively short. The food search cycle
of ABC comprises three distinct rules: dispatching the employed Apis mellifera to
a food source while evaluating the caliber of the nectar; observers make decisions
regarding food sources based on the information provided by worker bees and their
assessment of the nectar’s quality; the process involves the selection of scout bees and
their guidance toward potential sources of sustenance. The authors in reference [116]
demonstrated the utilization of the ABC algorithm for the purpose of mobile robot
navigation in a stationary setting. The method that was developed employs an
evolutionary algorithm to ascertain the optimal path and an (ABC) for conducting
a local search. For the purpose of validating the results, real-time experiments in an
indoor setting are presented.
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Saffari et al. [117] also presented a comparable method in a static environment; how-
ever, their results are only applicable to simulational settings. Ma et al. [118] demonstrated
the ABC-based method for navigating in a dynamic, real-time environment. By using a
time-rolling-window strategy in conjunction with the ABC algorithm, they presented a
hybrid approach. It is difficult to navigate an environment with multiple mobile robots;
however, Bhattacharjee et al. [119] and Liang et al. [120] implemented ABC successfully in
a static environment and included testing of the ABC algorithm for use in aerial naviga-
tion [121], underwater navigation [122], routine issues with autonomous vehicles [123], and
navigational methods for mobile robots with wheels. The goal of UCAV path planning is to
find the best way to fly in a 3D environment, taking into account the dangers and limits of
the battle field. This UCAV navigation issue was dealt with by Li et al. [124], who employed
an enhanced ABC algorithm. The ABC algorithm was modified by a balance-evolution
strategy (BES) that makes use of the convergence data obtained during iteration. This
modification is aimed at enhancing exploration accuracy and achieving a balance between
local exploitation and global exploration capabilities.

Ding et al.’s [125] application of the ABC algorithm in the defense industry has tested
an unmanned helicopter for difficult tasks, such as data collection, precise measurement,
and border patrol. They developed a novel identification algorithm using an ABC controller
and a chaotic operator to find the two decoupled linear models’ unknown parameters
based on the flight data gathered from the experiments. The ABC algorithm’s search
and optimization steps are added to the improved particle swarm algorithm in [126]. An
adaptive inertia weight method is suggested to increase the particle search’s effectiveness
and precision. The end results demonstrate how quickly and effectively the algorithm in this
article can locate the ideal path. For mobile robot path planning in variable space, a hybrid
approach is suggested in [127]. It comprises online path-planning schemes and an offline
global path optimization algorithm. The analysis was performed in a MATLAB/Simulink
environment, and additional information, including visualization, is included.

6. Firefly (FF) algorithm: In 2008, Yang [128] introduced the FF, and although it is also
known as the “meta-heuristics algorithm,” it is based on the flashing behavior of
fireflies. Its basic idea is based on the stochastic survival of fireflies in nature and
general identification as random states. The FF, a member of the Lampyridae family, is
commonly known as a lightning bug due to its capacity to emit light. Light emission
is produced via the prompt oxidation of luciferin in the presence of the enzyme,
luciferase. Fireflies glow without wasting heat energy by using bioluminescence, a
process that converts biological matter into light. Fireflies use this light to choose
a mate, send messages, and occasionally frighten away predatory animals. The
general flowchart for the FF algorithm is shown in Figure 13. The authors, Hidalgo-
Paniagua et al. [129], have proposed a mobile robot navigational strategy utilizing
the F algorithm when confronted with a stationary obstacle. The three fundamental
goals of navigation, namely path length, path smoothness, and path safety, have
been successfully accomplished. In a simulation-only environment, Brand et al. [130]
presented the FF for a single mobile robot’s shortest collision-free path.
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The FF was demonstrated by Sutantyon et al. [131] for underwater mobile robot
navigation. They created the swarm robot scheduling method to prevent 3D marine
conditioning interference and jamming. They applied the levy light-firefly approach to
solving another real-world underwater navigation problem in the same partially known
environment [132]. Christensen et al. [133] presented an FF-based cooperative strategy for
dead robot detection in a multi-mobile robot system. Wang et al. [134] have developed and
tested the use of FF to explore a 3D environment for aerial navigation. In their experiment, a
UCAV’s path is planned using an improved version of FF to avoid hazardous areas, reduce
fuel consumption, and avoid complex, crowded environments. The modified FF algorithm,
based on concentric spheres presented in [135], prevented the fireflies from randomly
moving while requiring less computational work. The results of the simulations and
experiments demonstrate a strong commitment to achieving the objectives of navigation in
a complex environment. The present study evaluates the analysis of a field function for a
single-robot and a multi-robot system in the presence of various obstacles (concave, zigzag,
and convex), as reported in reference [136]. Numerous researchers have conducted diverse
experiments in the field of robot path planning. These experiments include an FF-vision-
based system [137], an FF-Q learning approach [138], an FF–ABC hybrid approach [139],
and several other approaches. Tighzert et al. [140] and Liu et al. [141] demonstrated the use
of FF on a legged robot and an underwater robot, respectively. Patle et al. [142] discussed
the difficulty of navigating in various circumstances. The fast Fourier transform (FFT)
algorithm was employed to illustrate the approach for determining the optimal path in
a dynamic setting, where the positions of both the target and obstacle were subject to
continuous change. The present study proposes a method for path planning that utilizes
a self-adaptive population-size-based FF algorithm. The proposed algorithm in [143]
performs better than the fixed-population-size FF algorithm in terms of solution stability,
convergence speed, and running time.

7. Cuckoo search (CS): Yang and Deb [144] introduced the CS algorithm, a metaheuristic
algorithm, in 2009. The algorithm was developed on the basis of the slothful behavior
of some cuckoos, which causes them to lay their eggs in the nests of other host birds.
Yang claims that the algorithm adheres to the following three fundamental principles
for an optimization problem: one egg is laid by each cuckoo at a time in a nest that
is selected at random; the best nests with top-notch eggs will be passed down to
the following generation; and the number of available host nests is fixed, and the
host bird has a chance of finding the cuckoo egg with a probability of pa ∈ (0, 1). In
this situation, the host bird has two options: either remove the egg or abandon the
nest and create a new one. Figure 14 depicts the typical flow chart for a computer
science algorithm. The novelty of the CS algorithm for mobile robot path planning
has resulted in a limited number of scholarly articles utilizing it.
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In their publication [145], Mohanty et al. provide the algorithm for navigating a
wheeled robot in a static environment. The authors have conducted experiments involving
both simulation and real-time scenarios on a wheeled robot navigating a complex environ-
ment, which includes areas that are partially unknown. The simulation and experiment
exhibit a high degree of concurrence, as the discrepancy error is significantly reduced. The
CS-based algorithm demonstrates effective functionality when employed in conjunction
with other navigational strategies. Mohanty et al. [146] proposed a hybrid approach that
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combines CS and ANFIS to enhance navigational outcomes in an uncertain environment.
Wang et al.’s [147] suggestion of combining the differential evolution algorithm with CS to
speed up global convergence is another hybrid path-planning strategy for an unknowable
3D environment. The aerial robot can better explore the three-dimensional environment
thanks to faster convergence. Xie et al. [148] provide an example of using the CS algorithm
for 3D environment exploration, focusing on a battlefield. In their work, they have shown
how to solve the 3D aerial path-planning problem using a hybrid approach that combines
CS and the differential evolution algorithm. The improved CS model employs differential
evolution to streamline the cuckoo selection process so that the birds can search for the best
course of action as agents.

8. Shuffled frog-leaping algorithm (SFLA): Based on the behavior of frogs seeking food,
Eusuff and Lansey’s [149] metaheuristic optimization approach was created. In the
area of engineering optimization, the SFLA has gained popularity. It stands out
from other metaheuristic algorithms due to its improved convergence speed, ease of
implementation, fewer parameters, higher success rate, and improved search capacity
in the presence of uncertainty. The general flow chart of SFLA is shown in Figure 15.
Ni et al.’s [150] median strategy forms the basis of a path-planning method that can
be used to escape from a problem with a local optimal solution. The position of the
frog, which was optimized by changing the fitness function to obtain the best frog in
the world, was used to guide the robot’s movement around obstacles that are both
fixed and moving. Path safety, path length, and path smoothness are three primary
navigational goals, and they have all been proven by Hidalgo-Paniagua et al. [151]
with the help of an SFLA-based multi-objective strategy. In a static condition, the
modified SFLA demonstrated notably smoother paths when compared to the GA.
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Kundu et al. [152] have conducted research and provided a navigational approach
for 3D underwater environments. The target is traced through the implementation of an
adaptive SFLA navigational strategy that is designed to accommodate dynamic conditions.
The utilization of adaptation techniques results in the optimization of navigation paths
and time by circumventing the occurrences of local minima. Validation is demonstrated
by the achievement of a favorable concurrence between the simulation and experimental
outcomes in a disorderly environment. A modified SFLA approach of a similar type is
proposed for the purpose of UAV 3D path planning and vehicle routing, as stated in
reference [153]. According to Liang et al. [154], a methodology for managing the flight of
air-breathing hypersonic vehicles utilizing SFLA was devised with the intention of being
utilized by the military. The modified SFLA technique can be employed to regulate flight
during ascent, level flight, and descent by utilizing the proportional integral derivative
approach in conjunction with the height loop, pitch angle loop, and velocity loop. A
new algorithm combining the improved ant colony algorithm (IACO) with the (SFLA)
algorithm is proposed in [155]. Numerical experiments show that the optimal path can
be more effectively generated using the improved leapfrog algorithm and the simplified
operator in the last step.
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9. The bat algorithm (BA): Yang created a bio-inspired algorithm in 2010 [156]. It is based
on microbats’ echolocation or biosonar abilities. Bats use echolocation, which involves
sending out sound pulses and flying while listening for echoes that are reflected back
from any obstacles. A bat can therefore determine the velocity, shape, and size of
the prey and obstacles by using the interval between its ears, the loudness of the
response, and the delay time. A bat can also alter the way its sonar functions. It can
fly for a shorter amount of time while gathering comprehensive information about its
surroundings when it sends sound pulses at a rapid rate. The slow convergence rate,
poor convergence precision, and weak stability of the bat algorithm are drawbacks.
The general flow chart of the BA is shown in Figure 16. Yuan et al. [157] created a
logarithmic decreasing strategy-based bat algorithm with Cauchy disturbance in this
study. When comparing hybrid path-planning techniques to the dynamic window
approach, the path length can be significantly reduced. Wange et al. [158] noted
that unmanned combat air vehicle (UCAV) path planning is a challenging, high-
dimensional optimization problem. In order to resolve the UCAV path-planning issue,
a new bat algorithm with mutation (BAM) is suggested. BAM can speed up global
convergence while maintaining the strong robustness of the fundamental BA.
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For planning the path of mobile robots, a reformative bat algorithm (RBA) by Xin et al. [159]
is suggested. To improve the RBA, frequency updates are given the Doppler treatment.
To select the loudness attenuation coefficient and pulse emission enhancement coefficient,
Q-learning is incorporated into the RBA. To speed up the convergence of the bat’s position
update, the improved artificial potential field (APF) method is used. The adaptive inertia
weight of the bat algorithm is proposed by Lin et al. [160] to be improved using the optimal
success rate strategy. The enhanced algorithm, CPFIBA, significantly raises the success rate
of locating an appropriate planning path when compared to the traditional APF and chaos
strategy in UAV path planning. Zhou et al.’s [161] unmanned aerial vehicle (UAV) flight
path planning is based on the advanced swarm optimization algorithm of the bat algorithm.
In order to improve the BA’s local search capabilities, IBA primarily employs ABC. The
IBA can design a flight path for UAVs that are quicker, shorter, safer, and accident-free.
Wang et al. [162] suggested an enhanced bat algorithm based on Levy flight and inertial
weight. We used linear inertial weights to prevent the algorithm from converging too
quickly. To improve the algorithm’s capability for local mining, a random exploration
mechanism in a Cauchy distribution is used. The outcomes demonstrate the viability and
efficiency of the suggested algorithm in dealing with path-planning issues.
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Ajeil et al. [163] The present study outlines a methodology that utilizes a modified
frequency bat algorithm to generate a robot path in an obstacle-free environment. The algo-
rithm operates in two distinct steps. Upon detecting a nearby obstacle, the robot initiates
its second mode with the purpose of evading it. The comparative analysis has revealed
that the MFB algorithm exhibits superior performance in contrast to the conventional BAT
algorithm. Ibraheem et al. [164] have made modifications to the bat algorithm (BA) in
order to tackle the issue of mobile robot navigation. The primary objective of this study
is to determine the most efficient and secure path between an initial location and a final
destination while taking into account a dynamic setting with mobile obstructions.

10. Whale optimization algorithm (WOA): WOA is a swarm intelligence algorithm that is
suggested for problems involving continuous optimization. It has been demonstrated
that this algorithm performs as well as or better than some of the other algorithmic
techniques currently in use [165]. WOA has drawn inspiration from the humpback
whales’ hunting techniques. Each solution in WOA is regarded as a whale. In this
answer, a whale attempts to fill in a new location in the search area that is referenced
as the best member of the group. The whales use two different mechanisms to both
attack and locate their prey. In the first, the prey is encircled, while in the second,
bubble nets are made. In terms of optimization, whales search for prey by exploring
their environment, and they exploit their environment during an attack. The general
flow chart of WOA is shown in Figure 17. This algorithm is a new recent application
on path planning in 2020, as seen in [166]. The authors, Chhillar et al., proposed
that the modified WOA algorithm ensures an optimal collision-free path. The fitness
of any whale will be calculated by taking into account the target location and the
obstacles in the search space in the WOA algorithm.
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Dai et al. [167] put forth a new whale optimization algorithm (NWOA). In order to
increase the convergence speed, NWOA uses adaptive technology. It also creates virtual bar-
riers to help users avoid local optimal traps. Additionally, NWOA introduces an improved
potential field factor to improve the ability to dynamically avoid obstacles. Dao et al. [168]
noted the robot advances in order until it reaches the position of the whale, which is consid-
ered to be the best globally. The outcomes demonstrate that the suggested approach enables
the robot to reach its target while colliding with no obstacles. In Yan et al. [169], the main
determinants of autonomous underwater vehicles are perception, decision-making, and
control systems. This article proposes a WOA that utilizes forward-looking sonar for the
purpose of addressing path-planning concerns in the context of autonomous underwater
vehicles. The aforementioned approach exhibits superior planning efficacy, an accelerated
convergence rate, reduced execution duration, and heightened solution accuracy.

Liu et al.’s [170] study focused on the problem of autonomous path planning for
mobile robots, which is tackled through the utilization of an enhanced whale optimization
algorithm (IWOA). The IWOA algorithm is a fusion of Levy flight and inverse initial coding
optimization techniques. The efficacy and feasibility of the improved weighted A* algo-
rithm in the domain of path planning have been validated via simulation. Yan et al.’s [171]
WOA algorithm is derived from the bubble-net hunting strategy employed by humpback



Robotics 2023, 12, 93 20 of 35

whales. In order to effectively determine the worldwide optimal solution, the approach
involves simulating the behavior of surrounding prey, utilizing a bubble-net strategy for
attack, and engaging in the pursuit of prey. The optimization performance and robustness
of the WOA algorithm surpass those of other algorithms, including the ABC, BA, CS, and
flower pollination algorithms. On the basis of sensor technology and intelligent systems,
intelligent path planning can be accomplished. Zan et al. [172] suggested using a novel
path-planning algorithm along with computer perception technology. The new algorithm
does a better job of figuring out the best path for mobile robots to take and can analyze
and decide on that path quickly. The modified WOA algorithm, which guarantees the best
collision-free path, is used in [166]. The target location and the obstacles in the search space
will be taken into account when determining the fitness of any whale in the WOA. The
simulation and findings demonstrate that the proposed modified WOA is workable for
issues with mobile robot path selections.

11. Gray wolf optimizer (GWO): The GWO is based on gray wolves’ hunting tactics and
social structure. Alpha, beta, delta, and omega wolves are the four groups that make
up the gray wolf hierarchy. The alpha wolf is the dominant or leader of the pack and
is usually followed by the other wolves. The best wolf for leading the pack is the
alpha. Beta wolves are ranked second in the wolf group’s social hierarchy. The beta
wolf assists the alpha in a variety of tasks. While it judges the omega wolves, the
delta wolf must submit to the alpha and beta wolves. Scouts, guards, elders, hunters,
and caregivers make up this group. The general flow chart of this algorithm is shown
in Figure 18. The level-one gray wolf is known as the omega wolf [173]. The gray
wolf optimizer (GWO) is a newly developed metaheuristic algorithm that emulates
the hunting behavior and social structure of the gray delta, and omega, each with
their own unique movement patterns [174]. Albina et al. [175] employed the GWO
algorithm and coordinated multi-robot exploration (CME) to explore using multiple
robots, surpassing the deterministic CME algorithm in terms of performance, with the
aim of achieving optimal coordination and effectively optimizing the coverage area.
Despite the fact that the mean coverage of the four distinct obstacle maps is 97.98%,
complying with the obstacle avoidance constraint remains a challenging task.

Robotics 2023, 12, x FOR PEER REVIEW 22 of 38 
 

 

dynamic weights to keep wolves from becoming homogeneous and settling into local op-
timums. To demonstrate that the improved algorithm is superior in terms of convergence 
accuracy and stability, a two-dimensional space model of mobile robot obstacle-avoidance 
path planning [180], the conversion of linear convergence factors in the GWO algorithm 
into nonlinear convergence factors, the addition of collaborative quantum optimization of 
the gray wolf population, and the use of four international test functions were all used. 

 
Figure 18. GWO general flow chart. 

Another miscellaneous algorithm is reinforcement learning (RL), which many 
researchers have used to perform the task of mobile robot navigation in various 
environments. Mobile robots are revolutionizing the automotive industry and on-demand 
services. Navigation is crucial for avoiding accidents. Work [181] proposes a neural 
network-based decision-making algorithm for navigation scenarios with an accuracy of 
nearly 90%. The model was tested on a virtual robot in a navigation simulator. Moreover, 
intelligent techniques, such as hunter–prey [182], invasive weed optimization (IWO) [183], 
the Harmony Search (HS) algorithm [184], memetic algorithms (MA) [185], variable 
neighborhood search (VNS) [186], and intelligent water drops (IWD) [187] are used to 
perform the task of mobile robot navigation. 

For mobile robot localization, the significance of localization in wireless sensor net-
works (WSNs) and robotics cannot be overstated, as it provides a multitude of services, 
such as human–machine interactions, autonomous systems, and augmented reality. The 
present study introduces a revised Kalman filter (KF) framework for the purpose of local-
ization, utilizing the UKF and PF localization approaches. The performance of these meth-
ods is compared and evaluated. The utilization of these algorithms can be extended to 
diverse applications, such as the localization of robots, resulting in an enhancement of 
their overall performances.[188] 

3. Discussion 
The navigational strategies are separated into two categories following an extensive 

analysis of the research articles cited in the literature: heuristic approaches and classical 
approaches. Prior to a few decades ago, the vast majority of robotics research was con-
ducted solely through traditional methods. The conventional methods exhibit several lim-
itations, such as their high computational complexity, susceptibility to local minima en-
trapment, inability to manage maximum uncertainty, dependence on accurate environ-
mental data, the necessity for a precise sensing mechanism for navigation in real-time, 
and various additional shortcomings. As a result, when using the traditional approach, it 
is never certain whether a solution will be found or if it is best to assume that one will not 
be found. These methods are unreliable and unpredictable, making them fragile when 
used in a real-time setting. Despite the efforts of several researchers to pinpoint deficien-
cies in conventional methodologies and devise innovative techniques, heuristic 

Figure 18. GWO general flow chart.

Kamalova et al. [176] conducted an experiment to showcase the robot’s coverage capa-
bility using a multi-objective GWO algorithm. However, the robots exhibited a tendency to
revisit previously explored areas, resulting in an increase in the overall execution time. Further-
more, the utilization of step-size mechanisms in the GWO algorithm may lead to challenges
in achieving optimal global solutions and surmounting dynamic barriers. Ge et al. [177] pro-
posed a hybrid algorithm that combines the GWO and fruit fly optimization (FFO) algorithms
to enhance the local optimal solution. Furthermore, Dewangan et al. [174] have exhibited
that the enhanced gray wolf optimizer (GWO) algorithm possesses superior capabilities in
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avoiding local optima and exploring the search space. Kamalova et al. [178] generated fron-
tier points within the unexplored areas of an environment by utilizing the global waypoints
control technique for frontier-based exploration using an array of frontier points as input
parameters. Notably, the sensor did not receive any transmitted signal during this process.
The study found that the GWO algorithm exhibited superior performance compared to
the PSO algorithm in relation to search actions. This was achieved through the utilization
of a methodology that involved the estimation of the next global waypoint. Specifically,
this estimation was based on the averaging of three distances, namely the mean alpha
points, mean beta points, and mean delta points. These distances were measured from the
current robot position to the positions of the frontier points. Despite the robot’s adeptness
in navigating obstacles, it must traverse a considerable distance before the final analysis.

The gray wolf algorithm (GWO) is a widely recognized swarm intelligence algorithm.
However, it exhibits a slow convergence rate and is susceptible to premature convergence
on certain problems. The initial GWO algorithm incorporates the lion optimizer algorithm
and dynamic weights in [179]. The gray wolf position update now includes dynamic
weights to keep wolves from becoming homogeneous and settling into local optimums.
To demonstrate that the improved algorithm is superior in terms of convergence accuracy
and stability, a two-dimensional space model of mobile robot obstacle-avoidance path
planning [180], the conversion of linear convergence factors in the GWO algorithm into
nonlinear convergence factors, the addition of collaborative quantum optimization of the
gray wolf population, and the use of four international test functions were all used.

Another miscellaneous algorithm is reinforcement learning (RL), which many re-
searchers have used to perform the task of mobile robot navigation in various environ-
ments. Mobile robots are revolutionizing the automotive industry and on-demand services.
Navigation is crucial for avoiding accidents. Work [181] proposes a neural network-based
decision-making algorithm for navigation scenarios with an accuracy of nearly 90%. The
model was tested on a virtual robot in a navigation simulator. Moreover, intelligent tech-
niques, such as hunter–prey [182], invasive weed optimization (IWO) [183], the Harmony
Search (HS) algorithm [184], memetic algorithms (MA) [185], variable neighborhood search
(VNS) [186], and intelligent water drops (IWD) [187] are used to perform the task of mobile
robot navigation.

For mobile robot localization, the significance of localization in wireless sensor net-
works (WSNs) and robotics cannot be overstated, as it provides a multitude of services,
such as human–machine interactions, autonomous systems, and augmented reality. The
present study introduces a revised Kalman filter (KF) framework for the purpose of lo-
calization, utilizing the UKF and PF localization approaches. The performance of these
methods is compared and evaluated. The utilization of these algorithms can be extended
to diverse applications, such as the localization of robots, resulting in an enhancement of
their overall performances [188].

3. Discussion

The navigational strategies are separated into two categories following an extensive
analysis of the research articles cited in the literature: heuristic approaches and classical
approaches. Prior to a few decades ago, the vast majority of robotics research was conducted
solely through traditional methods. The conventional methods exhibit several limitations,
such as their high computational complexity, susceptibility to local minima entrapment,
inability to manage maximum uncertainty, dependence on accurate environmental data,
the necessity for a precise sensing mechanism for navigation in real-time, and various
additional shortcomings. As a result, when using the traditional approach, it is never
certain whether a solution will be found or if it is best to assume that one will not be
found. These methods are unreliable and unpredictable, making them fragile when used
in a real-time setting. Despite the efforts of several researchers to pinpoint deficiencies
in conventional methodologies and devise innovative techniques, heuristic approaches
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continue to outperform these methods, including APF and certain hybrid algorithms, in
real-world scenarios.

Conventional techniques are commonly employed for navigation in a familiar setting
due to their lack of requirement for prior knowledge of the operational environment.
However, heuristic approaches are used for navigation in places that have not been mapped
out because they can deal with the high level of uncertainty in those places. Their use
outperforms the efficacy of conventional techniques in addressing real-time navigation
issues because they are simple to implement, intelligent, and more effective. The heuristic
approaches still have a number of drawbacks, despite being more effective than the classical
approaches, such as the need for a learning phase, a high memory requirement, and the
inability to be used with inexpensive robots. Based on Figure 19, it has been demonstrated
for many years that robots can navigate using both classical and heuristic methods. Between
1970 and 2022, the popularity of the heuristic approach rose from 0% to 95%, while that of
the classical approaches fell from 95% to 5%. Heuristic systems exhibit greater sophistication
compared to conventional approaches, albeit with certain limitations, such as protracted
learning curves, intricate designs, and elevated memory requirements.
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The utilization of artificial intelligence techniques is unsuitable for low-cost robots.
Figure 20 depicts a comparison based on the number of articles published by each researcher
using the heuristic methodology. Figure 21 displays the total number of research articles
published using the classical methodology for each individual. Table 1 provides a thorough
breakdown of the techniques used for robot navigation. Each algorithm is assessed accord-
ing to a number of criteria. This inquiry pertains to the efficacy of the robot’s navigation
capabilities in both static and dynamic environments, their applicability to various robot
systems, their utilization in dynamic goal-oriented tasks, and their performance in both
simulated and real-time scenarios, as well as whether to use a hybrid algorithm or not. The
research discussed in Table 1 is from a research article published during the period from
1985 to 2022. Figure 22 depicts the distribution of these articles in terms of their number. A
number of ideas have been covered over the past thirty-seven years, as shown in Table 1.
A total of 82% of these studies discussed path planning in an environment containing
fixed obstacles, while 18% of those studies concerned an environment containing moving
obstacles (Figure 23).
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Table 1. Analyses of different RPP methods.

Ref. No Techniques Hybrid Algorithm Year Environment Experiment Dynamic Goal Multi-Robot Kinematic

[19] RM 2008 Static Simulation
[20] RM 2004 Static Simulation
[21] RM 2007 Static Simulation
[22] RM 2007 Static Simulation 3
[23] RM 1996 Static Simulation
[24] RM 2001 Static Simulation

[25] RM 2013 Static Real-time and
Simulation

[26] RM 2022 Dynamic Real-time and
Simulation
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Table 1. Cont.

Ref. No Techniques Hybrid Algorithm Year Environment Experiment Dynamic Goal Multi-Robot Kinematic

[27] RM 2022 Dynamic Real-time and
Simulation

[28] RM 2019 static Simulation
[29] RM 2022 static Simulation
[32] CD 1990 Static Simulation
[33] CD 3 2004 Static Simulation
[34] CD 1999 Static Simulation 3
[35] CD 2009 Static Simulation

[36] CD 2013 Static Real-time and
Simulation 3

[37] CD 3 2009 Static Simulation
[38] CD 3 2016 Static Simulation
[39] CD 3 2010 Static Simulation
[40] CD 2017 Static Simulation
[41] CD 3 2016 Static Simulation 3
[42] CD 2021 Static Simulation
[43] APF 1985 Static Simulation
[44] APF 1991 Static Simulation
[45] APF 1992 Static Simulation 3
[46] APF 1989 Static Simulation

[47] APF 2002 Dynamic Real-time and
Simulation 3 3

[48] APF 3 2015 Dynamic Simulation
[49] APF 2000 Static Simulation
[50] APF 2009 Dynamic Simulation 3 3
[51] APF 2009 Static Simulation 3
[52] APF 2011 Static Simulation 3
[53] APF 2006 Static Simulation 3
[54] APF 2021 Static Simulation
[55] APF 2022 Static Simulation
[56] APF 2022 Static Simulation
[57] APF 2022 Dynamic Simulation 3
[58] APF 3 1993 Dynamic Simulation 3
[61] GA 2014 Static Simulation 3
[62] GA 2014 Static Simulation
[63] GA 2006 Dynamic Simulation 3
[64] GA 2013 Static Simulation 3

[65] GA 2016 Static Real-time and
Simulation 3

[66] GA 3 2018 Static Real-time and
Simulation 3

[67] GA 3 2018 Static Real-time and
Simulation 3

[68] GA 2018 Dynamic Simulation 3 3

[69] GA 2017 Dynamic Real-time and
Simulation 3 3

[70] GA 3 1998 Static Simulation
[71] GA 2011 Static Simulation 3
[72] GA 3 2022 Static Simulation
[73] GA 3 2021 Static Simulation

[75] ACO 3 2007 Dynamic Real-time and
Simulation 3 3

[76] ACO 2006 Static Simulation 3
[77] ACO 3 2015 Static Simulation

[78] ACO 3 2018 Static Real-time and
Simulation 3

[79] ACO 2017 Static Simulation

[80] ACO 2017 Dynamic Real-time and
Simulation

[81] ACO 3 2013 Static Simulation
[82] ACO 2010 Dynamic Simulation
[83] ACO 2008 Static Simulation 3
[84] ACO 2009 Static Simulation 3
[85] ACO 2013 Static Simulation 3 3
[86] ACO 3 2022 Static Simulation
[87] ACO 2021 Static Simulation
[88] ACO 3 2021 Static Simulation
[90] PSO 2014 Static Simulation
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Table 1. Cont.

Ref. No Techniques Hybrid Algorithm Year Environment Experiment Dynamic Goal Multi-Robot Kinematic

[91] PSO 3 2013 Static Real-time and
Simulation 3

[92] PSO 2010 Dynamic Real-time and
Simulation 3

[93] PSO 2011 Dynamic Simulation 3

[94] PSO 2013 Static Real-time and
Simulation 3 3

[95] PSO 3 2013 Static Real-time and
Simulation 3

[96] PSO 3 2016 Static Real-time and
Simulation 3

[97] PSO 3 2015 Static Real-time and
Simulation

[98] PSO 2017 Static Simulation 3

[99] PSO 3 2017 Static Real-time and
Simulation 3

[101] PSO 2015 Static Simulation
[102] PSO 2008 Static Simulation 3
[103] PSO 2021 Static Simulation
[104] PSO 3 2021 Static Simulation
[105] PSO 2021 Static Simulation
[107] BFO 2005 Static Simulation
[108] BFO 2006 Static Simulation
[109] BFO 2013 Static Simulation
[110] BFO 2008 Static Simulation 3
[111] BFO 2017 Dynamic Simulation
[112] BFO 3 2012 Static Simulation
[113] BFO 2006 Static Simulation
[114] BFO 2010 Static Simulation 3

[116] ABC 3 2015 Static Real-time and
Simulation 3

[117] ABC 2009 Static Simulation 3
[118] ABC 2010 Dynamic Simulation 3
[119] ABC 2011 Static Simulation 3
[120] ABC 2015 Static Simulation 3 3
[121] ABC 2011 Static Simulation 3
[122] ABC 2014 Static Simulation
[123] ABC 2012 Static Simulation
[124] ABC 3 2014 Static Simulation 3

[125] ABC 3 2015 Static Real-time and
Simulation 3

[126] ABC 3 2022 Static Real-time and
Simulation

[127] ABC 3 2021 Static Real-time and
Simulation

[129] FF 2015 Static Simulation
[130] FF 2013 Static Simulation
[131] FF 2015 Static Simulation

[132] FF 2013 Static Real-time and
Simulation

[133] FF 2008 Static Simulation
[134] FF 2012 Static Simulation

[135] FF 2017 Static Real-time and
Simulation 3

[136] FF 2013 Static Simulation 3

[137] FF 2015 Static Real-time and
Simulation 3

[138] FF 2018 Static Real-time and
Simulation

[139] FF 3 2016 Static Simulation 3
[140] FF 2018 Static Simulation 3
[141] FF 2015 Static Simulation 3

[142] FF 2018 Dynamic Real-time and
Simulation 3 3

[143] FF 2020 Static Simulation

[145] CS 2016 Static Real-time and
Simulation
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Table 1. Cont.

Ref. No Techniques Hybrid Algorithm Year Environment Experiment Dynamic Goal Multi-Robot Kinematic

[146] CS 3 2015 Static Real-time and
Simulation 3

[147] CS 3 2015 Static Simulation 3
[148] CS 2016 Static Simulation
[150] SFL 2014 Dynamic Simulation
[151] SFL 2015 Static Simulation 3

[152] SFL 2015 Static Real-time and
Simulation 3

[153] SFL 2014 Static Simulation 3
[154] SFL 2016 Dynamic Simulation 3
[155] SFL 3 2020 Static Simulation 3
[157] BA 3 2021 Dynamic Simulation 3

[159] BA 2022 Static Real-time and
Simulation

[160] BA 2019 Dynamic Simulation
[161] BA 3 2021 Static Simulation
[162] BA 2020 Static Simulation
[163] BA 2021 Dynamic Simulation
[164] BA 2017 Dynamic Simulation
[166] WOA 2020 Static Simulation
[167] WOA 2022 Dynamic Simulation
[168] WOA 2016 Static Simulation
[169] WOA 2022 Static Simulation 3
[170] WOA 2022 Static Simulation
[171] WOA 2021 Static Simulation
[172] WOA 2021 Static Simulation 3
[174] GWO 2019 Static Simulation 3
[175] GWO 3 2019 Static Simulation
[176] GWO 2019 Static Simulation 3
[177] GWO 2019 Static Simulation
[178] GWO 2020 Static Simulation
[179] GWO 3 2021 Static Simulation
[180] GWO 3 2022 Static Simulation 3
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In some research, the robot’s objective was to move from its starting point, and the
APF algorithm outperformed classic methods, while the GA algorithm was most relevant
for heuristic methods. Moreover, this type of problem was discussed in some research
in which algorithms of this type were used (ACO, FA). Some research has discussed the
topic of multi-robot systems, where each robot moves from its starting point to a specific
target. Moreover, some researchers used traditional methods to solve this problem by
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using an algorithm (APF). Most of the research dealt with robot kinematics, especially in
recent research, where applying geometry to the study of the movement of multi-degree-
of-freedom kinematic chains that form the structure of robotic systems was considered,
and some algorithms were combined with each other to obtain better results. This topic
clearly appears in the classical methods using the CD algorithm. In the heuristic methods,
the CS algorithm is considered the most receptive to merging with other algorithms for
the purpose of improvement. There are also other algorithms, such as the GA, ACO, PSO,
BFO, ABC, FA, SFL, BA, and GWO. These percentages and discussions are clearly shown
in Figure 24.
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4. Conclusions

This work presents a comprehensive survey of various robot path-planning techniques
that are applicable to mobile robots. The aforementioned techniques were succinctly
addressed. The text provides a thorough examination of the various techniques utilized in
the expansive field of path planning for mobile robots. The aforementioned techniques are
classified into two distinct categories, namely, classical and heuristic. Real-time applications
are comparatively infrequent and are generally not the primary subject of contemporary
publications. The quantity of literature pertaining to navigation by multiple mobile robot
systems is notably limited in comparison to the quantity of literature on navigation by single
mobile robot systems. Heuristic approaches exhibit superior performance compared to
classical methods due to their ability to effectively manage environmental uncertainty. The
prevalence of research articles pertaining to dynamic environments is comparatively lower
than that pertaining to static environments. Heuristic methods are commonly employed
to address real-time navigation challenges. The literature on robot navigation in dynamic
environments with moving targets is relatively scarce compared to that on robot navigation
in static environments. The literature on hybrid algorithms is considerably scarcer in
comparison to that of standalone algorithms. The amalgamation of heuristic approaches
with classical approaches has the potential to enhance performance. In scenarios where
there are multiple objectives, it is common practice to integrate heuristic algorithms with
classical algorithms as opposed to relying solely on the latter. Currently, there is a lack of
academic research that incorporates multiple objectives that shift targets.
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