
Citation: Pandya, A. ChatGPT-

Enabled daVinci Surgical Robot

Prototype: Advancements and

Limitations. Robotics 2023, 12, 97.

https://doi.org/10.3390/

robotics12040097

Academic Editor: Saïd Zeghloul

Received: 26 May 2023

Revised: 25 June 2023

Accepted: 3 July 2023

Published: 6 July 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

ChatGPT-Enabled daVinci Surgical Robot Prototype:
Advancements and Limitations
Abhilash Pandya

Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA;
apandya@wayne.edu

Abstract: The daVinci Surgical Robot has revolutionized minimally invasive surgery by enabling
greater accuracy and less-invasive procedures. However, the system lacks the advanced features and
autonomy necessary for it to function as a true partner. To enhance its usability, we introduce the
implementation of a ChatGPT-based natural language robot interface. Overall, our integration of a
ChatGPT-enabled daVinci Surgical Robot has potential to expand the utility of the surgical platform
by supplying a more accessible interface. Our system can listen to the operator speak and, through
the ChatGPT-enabled interface, translate the sentence and context to execute specific commands to
alter the robot’s behavior or to activate certain features. For instance, the surgeon could say (even
in Spanish) “please track my left tool” and the system will translate the sentence into a specific
track command. This specific error-checked command will then be sent to the hardware, which will
respond by controlling the camera of the system to continuously adjust and center the left tool in the
field of view. We have implemented many commands, including “Find my tools” (tools that are not
in the field of view) or start/stop recording, that can be triggered based on a natural conversational
context. Here, we present the details of our prototype system, give some accuracy results, and explore
its potential implications and limitations. We also discuss how artificial intelligence tools (such as
ChatGPT) of the future could be leveraged by robotic surgeons to reduce errors and enhance the
efficiency and safety of surgical procedures and even ask for help.

Keywords: surgical robotics; natural language processing; ChatGPT

1. Introduction

The daVinci Surgical Robot is a revolutionary technology that has greatly improved the
field of minimally invasive surgery. It allows for greater precision and dexterity during sur-
gical procedures. Natural language processing (NLP) is a subfield of artificial intelligence
that focuses on understanding and generating natural language. Recent advancements
in NLP, specifically the ChatGPT (Generative Pre-trained Transformer) language model,
have enabled the creation of conversational interfaces that can understand and respond
to human language. It is trained using data from the internet and can translate or even
simplify language, summarize text, code, and even make robots smarter.

The integration of a natural language ChatGPT-enabled interface for the daVinci
Surgical Robot has the potential to enhance the field of surgery. By creating a more intuitive
and user-friendly interface, it can potentially improve the safety and efficiency of surgeries,
while also reducing the cognitive load on surgeons. Can the artificial intelligence behind
ChatGPT be applied to make surgeries safer and faster?

In this paper, we describe a basic implementation of ChatGPT directly interfaced
with the daVinci robot. It is a low-level implementation that limits the output of ChatGPT
to specific commands that can be executed by the robot. It does have the capability for
domain-specific training (say on a particular type of surgery) with open dialog, but in this
paper, we limit it to specific commands to control the hardware. We primarily focus on
explaining the integration of AI with the daVinci system and do not include a user study to

Robotics 2023, 12, 97. https://doi.org/10.3390/robotics12040097 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12040097
https://doi.org/10.3390/robotics12040097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://doi.org/10.3390/robotics12040097
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12040097?type=check_update&version=1


Robotics 2023, 12, 97 2 of 9

verify or showcase its effectiveness. We also discuss the potential avenues of research and
development that this interface could open for the future of robotic surgery. This may be a
steppingstone to a natural language robotic platform that partners with the surgeon for a
more intuitive and efficient system that enhances patient outcomes. Future iterations of
this GPT–robot merging of technology could allow collaboration with surgeons in more
profound ways, including in surgical education [1], preplanning surgeries [2], executing
specific steps of the surgery [3], and keeping the surgeon informed about any anomalies in
the scene or the patient’s data [4,5].

Operations in surgical robotic platforms such as the da Vinci have been facilitated
by means of foot pedals, hardware buttons, and touchpads. This interface can be over-
whelming as the surgeon has to manually control all aspects of the interaction. To alleviate
some of this burden, we have previously implemented a natural language interface to the
daVinci [6] using Vosk [7]. Vosk is a language modeling system that can convert micro-
phone input into text. It is still used in the current implementation in this capacity. Vosk is
not an extensive language model and requires keyword phrases.

The AESOP was among the earliest voice-controlled systems utilized in the operating
room. It is a seven-degree-of-freedom arm employed to manipulate a laparoscopic surgery
camera [8–12]. It had extremely limited movements and specific commands for moving
the endoscope in increments. With this voice-controlled robot, surgeons could use either a
joystick or voice control as required.

ChatGPT has shown promise in robotics applications which require strategies for
robot design and of designing high-level functions and libraries [13]. The main idea is that
the prompts used for ChatGPT are critical and this group has created a site (PromptCraft)
that explores and collectively develops/engineers appropriate queries.

ChatGPT in the Medical Field

ChatGPT has already been used in medicine for various applications, such as medical
chatbots, virtual medical assistants, and medical language processing [14]. For example,
ChatGPT has been employed to provide conversational assistance to patients, generate
clinical reports, help physicians with diagnosis and treatment planning, etc. [15]. It has
also been utilized in medical research, such as analyzing electronic medical records and
predicting patient outcomes.

ChatGPT has hundreds of billions of parameters and has passed the United States
Medical Licensing Examination (USMLE) at a third-year medical student level [16]. More
importantly, its responses were easily interpretable with clear logic that could be explained.
ChatGPT has also been suggested for clinical decision making [14]. These systems have
already been used to simplify the medical jargon used in radiology reports to make it easy
for patients to understand [17].

Can ChatGPT also be potentially used in surgery? Bhattacharya et al. [2] suggest using
ChatGPT as a preoperative surgical planning system. The system could be used to analyze
potential issues and complications, for complex procedures, and to provide checklists and
options for the surgeon.

Here, we provide a novel avenue for using ChatGPT in the surgical setting as a
user interface for the daVinci surgical system. In our protype system, the user can give
commands with a natural language syntax and execute a basic autonomous camera [18,19]
and other tasks.

2. Materials and Methods
2.1. Baseline Commands

The baseline commands that have been created and can directly be issued to the
daVinci hardware include, for example, taking a picture, starting and stopping a video
recording, toggling on/off an autonomous camera system to follow the tools, finding
the surgeon’s tools when out of the field of view, tracking the left/middle/right tool,
maintaining a point in space specified by the right or left tool position within the field



Robotics 2023, 12, 97 3 of 9

of view, and changing the settings associated with zoom control. There are many other
features which can be programmed. These commands can be triggered via keyboard,
keypad, or (as explained in this article) by natural language processing (Figure 1).

Robotics 2023, 12, x FOR PEER REVIEW 3 of 10 
 

 

surgeon’s tools when out of the field of view, tracking the left/middle/right tool, main-
taining a point in space specified by the right or left tool position within the field of view, 
and changing the settings associated with zoom control. There are many other features 
which can be programmed. These commands can be triggered via keyboard, keypad, or 
(as explained in this article) by natural language processing (Figure 1). 

 
Figure 1. The daVinci Standard outfitted with a microphone. We have also modified the system to 
add a head sensor and buttons on the hand controllers to activate the camera and tool clutching. 
These buttons could also be used for voice activation. 

As illustrated in Figure 2, our system receives input from a microphone near the op-
erator, preprocesses the message, and sends it to the Chat-GPT language model. The 
model is trained (by giving it a few examples in the prompt) to respond specifically to 
only the possible commands and the output is checked to ensure this. The responses are 
then translated to command the hardware. The system provides a beep or buzz as feed-
back to the surgeon, indicating success or failure. Although our current feedback to the 
surgeon is only via sound and voice, we envision that augmented reality techniques could 
also be used as feedback for the surgeon. 

 
Figure 2. Overview of the system and ChatGPT integration. 

2.2. The DVRK/Robot Operating System Interface 
Our research laboratory has access to the da Vinci Standard Surgical System, which 

has been modified to work with the da Vinci Research Kit (DVRK) [20,21]. The DVRK 
allows the use of open-source software and hardware control boxes to command and re-
ceive feedback from the robotic system. 

Figure 1. The daVinci Standard outfitted with a microphone. We have also modified the system to
add a head sensor and buttons on the hand controllers to activate the camera and tool clutching.
These buttons could also be used for voice activation.

As illustrated in Figure 2, our system receives input from a microphone near the
operator, preprocesses the message, and sends it to the Chat-GPT language model. The
model is trained (by giving it a few examples in the prompt) to respond specifically to only
the possible commands and the output is checked to ensure this. The responses are then
translated to command the hardware. The system provides a beep or buzz as feedback to
the surgeon, indicating success or failure. Although our current feedback to the surgeon
is only via sound and voice, we envision that augmented reality techniques could also be
used as feedback for the surgeon.

Robotics 2023, 12, x FOR PEER REVIEW 3 of 10 
 

 

surgeon’s tools when out of the field of view, tracking the left/middle/right tool, main-
taining a point in space specified by the right or left tool position within the field of view, 
and changing the settings associated with zoom control. There are many other features 
which can be programmed. These commands can be triggered via keyboard, keypad, or 
(as explained in this article) by natural language processing (Figure 1). 

 
Figure 1. The daVinci Standard outfitted with a microphone. We have also modified the system to 
add a head sensor and buttons on the hand controllers to activate the camera and tool clutching. 
These buttons could also be used for voice activation. 

As illustrated in Figure 2, our system receives input from a microphone near the op-
erator, preprocesses the message, and sends it to the Chat-GPT language model. The 
model is trained (by giving it a few examples in the prompt) to respond specifically to 
only the possible commands and the output is checked to ensure this. The responses are 
then translated to command the hardware. The system provides a beep or buzz as feed-
back to the surgeon, indicating success or failure. Although our current feedback to the 
surgeon is only via sound and voice, we envision that augmented reality techniques could 
also be used as feedback for the surgeon. 

 
Figure 2. Overview of the system and ChatGPT integration. 

2.2. The DVRK/Robot Operating System Interface 
Our research laboratory has access to the da Vinci Standard Surgical System, which 

has been modified to work with the da Vinci Research Kit (DVRK) [20,21]. The DVRK 
allows the use of open-source software and hardware control boxes to command and re-
ceive feedback from the robotic system. 

Figure 2. Overview of the system and ChatGPT integration.

2.2. The DVRK/Robot Operating System Interface

Our research laboratory has access to the da Vinci Standard Surgical System, which has
been modified to work with the da Vinci Research Kit (DVRK) [20,21]. The DVRK allows
the use of open-source software and hardware control boxes to command and receive
feedback from the robotic system.

The research employs this equipment in conjunction with the Robot Operating System
(ROS) [22] software framework. The Robot Operating System (ROS) is an open-source
middleware used for building robotics applications. It provides a set of tools and libraries
for building complex robotic systems, including drivers, communication protocols, and
algorithms. ROS is designed as a distributed system, allowing the communication and



Robotics 2023, 12, 97 4 of 9

collaboration of multiple nodes running on different computers. Nodes can publish and
subscribe to messages on topics, allowing for easy exchange of information between
different components of the system.

In our voice assistant applications for the da Vinci Research Kit (DVRK), we utilize the
ROS middleware for direct access to the state information and control capabilities of the
robotic system. This allows us to integrate our voice commands with the robot’s control
system, enabling natural language control of its functions. The voice assistant application
consists of multiple ROS nodes that communicate with each other through ROS topics.
One node is responsible for processing the voice commands and translating them into
ROS messages that are sent to the DVRK control node. The control node then executes the
appropriate action based on the received message. Overall, the use of ROS in our voice
assistant applications enables seamless integration with the DVRK and provides a powerful
toolset for building complex robotics systems. More details of the base natural language
processing system are provided here [6].

2.3. Capturing and Preprocessing the Voice Inputs

ReSpeaker Mic Array v2.0, developed by Seeed Studios Inc. in Shenzhen, China,
was utilized for testing purposes due to its built-in voice recognition capabilities. The
device features a circular array with four microphones to determine the location of acoustic
sources and is equipped with hardware and onboard algorithms for far-field voice detection
and vocal isolation. The device functions as a USB microphone and tested very well in
both noisy and quiet environments. The microphone provides six channels, including
processed and raw captures from the onboard microphones and playback of the input
audio device through an auxiliary cord connected to a speaker. After we received inputs
from the microphone, we pieced the words together until a natural pause in the sentence
was heard. This pause indicates a full sentence or command to the system. We then used
this fully formed sentence as input to ChatGPT.

2.4. Asking for Input from ChatGPT

We have created an AskGPT() function which provides a way to interact with the
daVinci Surgical Robot using natural language commands. By leveraging the power of the
ChatGPT model, it can generate responses to a wide variety of commands. The AskGPT()
function takes a prompt as input and generates a response using the OpenAI ChatGPT
model. The prompt represents the command that a user wants to execute on the daVinci
Surgical Robot, such as “track the right tool”. The openai.ChatCompletion.create() method
is used to generate a response to the prompt. It takes several parameters, including the
model to use (in this case, “gpt-3.5-turbo”), the temperature value to use for generating
responses, and a set of messages that provide real-time training data for the model.

The temperature value in a ChatGPT API call represents a parameter that controls
the creativity or variability of the responses generated by the model. In the context of the
OpenAI GPT-3 language model, the temperature value is used to scale the logits (output
of the model) before applying the softmax function to obtain the probability distribution
over the vocabulary of possible next tokens. A higher temperature value results in a
probability distribution with higher entropy, meaning that the model is more likely to
produce more diverse and surprising responses. Conversely, a lower temperature value
results in a probability distribution with lower entropy, meaning that the model is more
likely to produce more conservative and predictable responses.

In general, this parameter can be dynamically set and could be useful when exploring
the space of possible responses, generating creative and diverse text, and encouraging
the model to take risks and try new things. Lower temperature values are useful when
generating more coherent and consistent text that is closely aligned with the training data
and has a more predictable structure.

In Figure 3, the interface message to ChatGPT is shown. The messages parameter
(programmatically sent to the ChatGPT interface) is an array of JSON objects that represents



Robotics 2023, 12, 97 5 of 9

a conversation between a user and an assistant. Each message has a role and content field.
The role field specifies whether the message is from the user or the assistant, and the content
field contains the text of the message. Through this message protocol, we must provide
ChatGPT with clear examples of what the expected responses are. In this example, if we
do not provide a specific set of outputs, the system can become difficult to control (See
Figure 3).

Robotics 2023, 12, x FOR PEER REVIEW 5 of 10 
 

 

In general, this parameter can be dynamically set and could be useful when exploring 
the space of possible responses, generating creative and diverse text, and encouraging the 
model to take risks and try new things. Lower temperature values are useful when gen-
erating more coherent and consistent text that is closely aligned with the training data and 
has a more predictable structure. 

In Figure 3, the interface message to ChatGPT is shown. The messages parameter 
(programmatically sent to the ChatGPT interface) is an array of JSON objects that repre-
sents a conversation between a user and an assistant. Each message has a role and content 
field. The role field specifies whether the message is from the user or the assistant, and the 
content field contains the text of the message. Through this message protocol, we must 
provide ChatGPT with clear examples of what the expected responses are. In this exam-
ple, if we do not provide a specific set of outputs, the system can become difficult to con-
trol (See Figure 3). 

 
Figure 3. The message structure that is sent to ChatGPT. Note that several examples are necessary 
to prompt the specific style of responses needed from ChatGPT. 

In the first detailed example, an example prompt is given with an expected answer. 
The first message in the messages array tells the user that they are interacting with a help-
ful assistant. The second message is the simulated prompt to the system—“Track the right 
tool”. The next message provides a set of options that ChatGPT can choose from to execute 
their command, along with corresponding return codes. Then, a message indicating the 
correct response, “TR”, is given. The remaining messages in the messages array are exam-
ples of diverse types of prompts that the user might provide, along with the expected 
response from the ChatGPT model. These are all used as just-in-time training for 
ChatGPT. Finally, the last message in the array is the prompt that the user provided (from 
the microphone) for which an answer is expected. Note that the examples given are not 
an exhaustive list of commands, just a few indicating the general type of answer desired. 
The input can even be in another language or more elaborately specified with a nuanced 
context. 

Figure 3. The message structure that is sent to ChatGPT. Note that several examples are necessary to
prompt the specific style of responses needed from ChatGPT.

In the first detailed example, an example prompt is given with an expected answer.
The first message in the messages array tells the user that they are interacting with a helpful
assistant. The second message is the simulated prompt to the system—“Track the right tool”.
The next message provides a set of options that ChatGPT can choose from to execute their
command, along with corresponding return codes. Then, a message indicating the correct
response, “TR”, is given. The remaining messages in the messages array are examples of
diverse types of prompts that the user might provide, along with the expected response
from the ChatGPT model. These are all used as just-in-time training for ChatGPT. Finally,
the last message in the array is the prompt that the user provided (from the microphone)
for which an answer is expected. Note that the examples given are not an exhaustive list of
commands, just a few indicating the general type of answer desired. The input can even be
in another language or more elaborately specified with a nuanced context.

2.5. Processing the ChatGPT Responses

Once the openai.ChatCompletion.create() method is called, it generates a response to
the provided prompt using the ChatGPT model. The response is returned as a completions
object, which contains the generated text as well as some metadata about the response. The
function returns one of the options from the list of choices, which corresponds to the action
that the calling program should take.



Robotics 2023, 12, 97 6 of 9

To finetune the responses to specific commands that can be issued with confidence, our
code limits the responses of ChatGPT to those that are valid commands. The code defines
a dictionary called “choices” which maps a two-letter code to a specific command that
ChatGPT can respond with. The commands include actions such as tracking left or right,
starting and stopping video recording, finding tools, and taking pictures. As an added
check, the script also defines a string variable called “listofpossiblecommands” which
contains a space-separated list of all the valid two-letter codes. These codes are used to
check if the response from ChatGPT is a valid command. If the response is not a valid
command, then the script returns the “NV” index, which stands for “not valid”.

2.6. Triggering Hardware Commands

Using the ROS node structure, the two letters returned by ChatGPT represent a
possible command that can be executed on the daVinci hardware. When a command is
triggered, a sequence of actions is initiated through the assistant_bridge node to activate the
hardware. For instance, if ChatGPT is prompted with “Can you please track my right tool”,
the system will return the “TR” index, which corresponds to the very specific “daVinci
track right” command. This command is sent to the “assistant/autocamera/track” node,
which in turn sends a message to the/assistant_bridge node. Finally, the/assistant_bridge
node sends a message to the dVRK nodes that control the hardware in a loop, resulting in
the camera arm being continually adjusted to keep the left tool in the center of the field
of view. Commands to find tools that may not be in the field of view, take a picture of the
current scene, start and stop taking a movie of the scene, etc., are initiated similarly. What
ChatGPT adds to this basic framework is the ability to speak naturally, without a key word
or phrase in a specific order. The system is also able to operate the commands even if the
phrase being uttered is in a different language that is known to ChatGPT (Figure 4).

Robotics 2023, 12, x FOR PEER REVIEW 6 of 10 
 

 

2.5. Processing the ChatGPT Responses 
Once the openai.ChatCompletion.create() method is called, it generates a response to 

the provided prompt using the ChatGPT model. The response is returned as a comple-
tions object, which contains the generated text as well as some metadata about the re-
sponse. The function returns one of the options from the list of choices, which corresponds 
to the action that the calling program should take. 

To finetune the responses to specific commands that can be issued with confidence, 
our code limits the responses of ChatGPT to those that are valid commands. The code 
defines a dictionary called “choices” which maps a two-letter code to a specific command 
that ChatGPT can respond with. The commands include actions such as tracking left or 
right, starting and stopping video recording, finding tools, and taking pictures. As an 
added check, the script also defines a string variable called “listofpossiblecommands” 
which contains a space-separated list of all the valid two-letter codes. These codes are 
used to check if the response from ChatGPT is a valid command. If the response is not a 
valid command, then the script returns the “NV” index, which stands for “not valid”. 

2.6. Triggering Hardware Commands 
Using the ROS node structure, the two letters returned by ChatGPT represent a pos-

sible command that can be executed on the daVinci hardware. When a command is trig-
gered, a sequence of actions is initiated through the assistant_bridge node to activate the 
hardware. For instance, if ChatGPT is prompted with “Can you please track my right 
tool”, the system will return the “TR” index, which corresponds to the very specific 
“daVinci track right” command. This command is sent to the “assistant/autocam-
era/track” node, which in turn sends a message to the/assistant_bridge node. Finally, 
the/assistant_bridge node sends a message to the dVRK nodes that control the hardware 
in a loop, resulting in the camera arm being continually adjusted to keep the left tool in 
the center of the field of view. Commands to find tools that may not be in the field of view, 
take a picture of the current scene, start and stop taking a movie of the scene, etc., are 
initiated similarly. What ChatGPT adds to this basic framework is the ability to speak 
naturally, without a key word or phrase in a specific order. The system is also able to 
operate the commands even if the phrase being uttered is in a different language that is 
known to ChatGPT (Figure 4). 

 
Figure 4. There is a ROS node structure for triggering hardware commands to the robot. The main 
item to note is that the output of ChatGPT is filtered and then commands are triggered within the 
ROS node tree that change the behavior of the hardware. 

2.7. Testing the System 
As a way of testing the usability of the system, we wanted to see how accurately the 

entire system works end-to-end (voice input, text conversion, sentence formation, 
ChatGPT send, ChatGPT responses, and robot behavior). To do this, we used the follow-
ing paragraph as a continuous input to the system: 

Voice to Text

Microphone input
Vosk software 
interface
Wait for full sentence
Converts to text

ChatGPT

Translate 
Text/Context
Specific Command
Error check Command

Robot Behavior

Issue ROS message 
ROS network of nodes
Hardware 
Movement/Parameter 
Change

Figure 4. There is a ROS node structure for triggering hardware commands to the robot. The main
item to note is that the output of ChatGPT is filtered and then commands are triggered within the
ROS node tree that change the behavior of the hardware.

2.7. Testing the System

As a way of testing the usability of the system, we wanted to see how accurately the
entire system works end-to-end (voice input, text conversion, sentence formation, ChatGPT
send, ChatGPT responses, and robot behavior). To do this, we used the following paragraph
as a continuous input to the system:

“Good morning. I would like you to start recording a video. Now, please start the
autocamera system. At this point, please track my left tool. Now track my right tool. Now,
just track the middle of my tools. Keep the point of my left tool in view. I seem to have
lost the view of my tools; can you please find my tools? Okay, stop recording the video.
Please keep the point of the right tool in view. Can you please take a picture now? I need
to concentrate on this region, please stop moving the camera.”

After every sentence, we would wait for confirmation before saying the next sentence.
In addition, we also wanted to know the effect of the temperature parameter on the Chat-



Robotics 2023, 12, 97 7 of 9

GPT engine. So, we tested this paragraph (5 repetitions each) for each of the 5 temperature
settings (0.1, 0.2, 0.5, 0.75, 1.0). For these settings, we collected how many times the system
did not produce the correct response.

3. Results/Discussion

The results of the testing described above are shown in Table 1. Although this was
a quick usability test, the results of 275 sentences processed show 94.2% correctness. The
errors included not being able to understand what was said and even giving the wrong
command. The most common error was “NV”, not valid; however, there were errors
where the system responded with a keep left or keep right when a track left or track right
command was given. The errors were also due to transcription errors from voice to text.
These results are preliminary and need a full-blown user study. Before we perform a user
study, our group is interested in solving the issue of the time delay of the system.

Table 1. Table of incorrect responses by the system. The results are the end-to-end result of voice
input, text conversion, sentence formation, ChatGPT send, ChatGPT responses, and robot behavior.
The end-to-end accuracy for 275 commands to the system was 94.2%.

ChatGPT Temperature Number Incorrect Total Sentences

0.1 5 55

0.2 2 55

0.5 2 55

0.75 3 55

1.0 4 55

Total 16 275

Percentage 5.8% 94.2%

For the contingency table above, we find that the chi-squared statistic p value is 2.280
and the corresponding p-value is approximately 0.681. Since the obtained p-value (0.681) is
greater than the significance level (0.05), we do not reject the null hypothesis (that there
is no difference between the groups). This shows that there is no significant difference
between the conditions based on the provided data. Hence, temperature in this dataset had
no effect.

An issue with the current implementation is that there is a delay of about 1–2 s from
signal capture and send to when ChatGPT generates a response. This delay is due to the
nature of the GPT-3.5 model, which is a large deep learning model that requires significant
computation time to generate responses. In addition, there is network transmission delay.
There are several ways in which this delay could be mitigated. One approach is to use a
smaller, faster model, such as GPT-2 or a custom-trained language model that is optimized
for the specific task. With new tools now available like CustomGPT [23], which allow you
to input and create a system that works only on your own data, this will likely be possible.

It is, in theory, possible to have a local copy of a large language model which can
alleviate the network lag. This is known as on-premises or on-device deployment, where
the model is stored locally on a computer or server, rather than accessed through a cloud-
based API. There are several benefits to on-premises deployment, including improved
response times due to reduced network latency, improved privacy and security, and greater
control over the system’s configuration and resources. However, on-premises deployment
also requires more resources and expertise to set up and maintain the system. Other
options for on-premises deployment include training your own language model using
open-source tools like Hugging Face Transformers or Google’s TensorFlow. Integrating a
custom TensorFlow model into ChatGPT requires significant programming expertise, but it
can offer more control over the model’s behavior and potentially better performance than
using a pre-built model from a third-party service.



Robotics 2023, 12, 97 8 of 9

We ran an experiment to test the speed of execution between a smaller LLM (70.8 mil-
lion parameters) running on a an RTX 2070 GPU with 8GB of VRAM [24] and the full
ChatGPT (version 3.5) LLM running from the web. The model we used locally executed,
on average, a command in 300 milliseconds, whereas a command using the full ChatGPT
model on the web took, on average, 580 milliseconds. Running on a local machine with a
more focused model is almost twice as fast as running on the web. More research on the
trade-off between the privacy, accuracy, and speed of LLMs is needed.

4. Conclusions

We believe that a robotic embodiment is crucial as GPT technology matures. An artifi-
cial general intelligence, which we may be approaching, without actuation is comparable
to cornflakes without milk. The development of chatbots using language models such as
ChatGPT has opened exciting possibilities for creating conversational interfaces that can be
integrated with various robotics-related applications. Our implementation is the first and
most basic step in this evolution.

The surgical robotics space has extremely stringent safety and operational restrictions.
There are challenges that need to be addressed, such as privacy, network latency, errors, and
the limited control over the responses of the model. One way to overcome these issues is by
training a local copy of the GPT model using TensorFlow and integrating it into the chatbot.
Tools for customizable datasets are now available [23]. Such systems will allow for faster
response times and domain-specific control over the responses generated by the model.

For clinicians, no level of error in the translation of intent is acceptable. There are many
improvements needed in this technology before it is validated for clinical use. Speech-to-
text conversion remains a critical issue. Additionally, it is important to carefully design the
conversation flow and supply specific instructions and limitations to the model, as seen in
the prompt example shown here. This is a new field of “prompt engineering” which helps
to ensure that the responses generated by the model are valid for the given context and the
type and modality of interaction are appropriate for surgical tasks.

The implementation of a natural language ChatGPT-enabled interface for the daVinci
Surgical Robot has the potential to significantly improve surgical outcomes and increase
accessibility to the technology. Our study provides implementation details along with a
basic prototype highlighting the usability of the natural language interface. This is only
a scratch on the surface of this field. Further research and development are needed to
evaluate the long-term implications of the natural language interface and its potential
impact on surgical outcomes.

The use of ChatGPT in aiding surgeons with complex cases through warnings, sug-
gestions and alternatives, patient monitoring, fatigue monitoring, and even surgical tool
manipulation could be possible in the near future. With advances in image and video
analysis in the ChatGPT framework, this avenue of research development could lead to
higher-functioning and more intelligent surgical systems that truly partner with the surgical
team. Future studies should evaluate the effectiveness and usability of the natural language
interface in surgical settings. We have begun implementing a “talk to me” functionality
that will be trained on specific surgical interventions and allow surgeons-in-training to ask
questions and receive information from the dataset that the system will be trained on.

Funding: This research received no external funding.

Data Availability Statement: Any data and developed software are available upon request. Please
contact the author.

Acknowledgments: We would like to acknowledge Abhishek Shankar, Luay Jawad, Xingyu Zhou,
Mohammad Alawad, and David Edelman, for valuable discussions. We would also like to thank
Arshdeep Singh Chudda for help with the timing studies of local LLMs.

Conflicts of Interest: The authors declare no conflict of interest.



Robotics 2023, 12, 97 9 of 9

References
1. Long, Y.; Cao, J.; Deguet, A.; Taylor, R.H.; Dou, Q. Integrating artificial intelligence and augmented reality in robotic surgery: An

initial dvrk study using a surgical education scenario. In Proceedings of the 2022 International Symposium on Medical Robotics
(ISMR), Atlanta, GA, USA, 13–15 April 2022; pp. 1–8.

2. Bhattacharya, K.; Bhattacharya, A.S.; Bhattacharya, N.; Yagnik, V.D.; Garg, P.; Kumar, S. ChatGPT in surgical practice—A New
Kid on the Block. Indian J. Surg. 2023, 1–4. [CrossRef]

3. Richter, F.; Shen, S.; Liu, F.; Huang, J.; Funk, E.K.; Orosco, R.K.; Yip, M.C. Autonomous robotic suction to clear the surgical field
for hemostasis using image-based blood flow detection. IEEE Robot. Autom. Lett. 2021, 6, 1383–1390. [CrossRef]

4. Rahbar, M.D.; Ying, H.; Pandya, A. Visual Intelligence: Prediction of Unintentional Surgical-Tool-Induced Bleeding during
Robotic and Laparoscopic Surgery. Robotics 2021, 10, 37. [CrossRef]

5. Rahbar, M.D.; Reisner, L.; Ying, H.; Pandya, A. An entropy-based approach to detect and localize intraoperative bleeding during
minimally invasive surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, 1–9. [CrossRef] [PubMed]

6. Elazzazi, M.; Jawad, L.; Hilfi, M.; Pandya, A. A Natural Language Interface for an Autonomous Camera Control System on the da
Vinci Surgical Robot. Robotics 2022, 11, 40. [CrossRef]

7. Vosk Offline Speech Recognition API. Available online: https://alphacephei.com/vosk/ (accessed on 1 May 2022).
8. Mettler, L.; Ibrahim, M.; Jonat, W. One year of experience working with the aid of a robotic assistant (the voice-controlled optic

holder AESOP) in gynaecological endoscopic surgery. Hum. Reprod. 1998, 13, 2748–2750. (In English) [CrossRef] [PubMed]
9. Unger, S.; Unger, H.; Bass, R. AESOP robotic arm. Surg. Endosc. 1994, 8, 1131. [CrossRef] [PubMed]
10. Allaf, M.E.; Jackman, S.V.; Schulam, P.G.; Cadeddu, J.A.; Lee, B.R.; Moore, R.G.; Kavoussi, L.R. Laparoscopic visual field: Voice vs.

foot pedal interfaces for control of the AESOP robot. Surg. Endosc. 1998, 12, 1415–1418. (In English) [CrossRef]
11. Nathan, C.O.; Chakradeo, V.; Malhotra, K.; D’Agostino, H.; Patwardhan, R. The voice-controlled robotic assist scope holder

AESOP for the endoscopic approach to the sella. Skull Base 2006, 16, 123–131. [CrossRef] [PubMed]
12. Kraft, B.M.; Jäger, C.; Kraft, K.; Leibl, B.J.; Bittner, R. The AESOP robot system in laparoscopic surgery: Increased risk or advantage

for surgeon and patient? Surg. Endosc. 2004, 18, 1216–1223. (In English) [CrossRef] [PubMed]
13. Vemprala, S.; Bonatti, R.; Bucker, A.; Kapoor, A. Chatgpt for robotics: Design principles and model abilities. Microsoft Auton. Syst.

Robot. Res. 2023, 2, 20.
14. Sallam, M. ChatGPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and

valid concerns. Healthcare 2023, 11, 887. [CrossRef] [PubMed]
15. Khan, R.A.; Jawaid, M.; Khan, A.R.; Sajjad, M. ChatGPT-Reshaping medical education and clinical management. Pak. J. Med. Sci.

2023, 39, 605. [CrossRef] [PubMed]
16. Gilson, A.; Safranek, C.; Huang, T.; Socrates, V.; Chi, L.; Taylor, R.A.; Chartash, D. How Well Does ChatGPT Do When Taking

the Medical Licensing Exams? The Implications of Large Language Models for Medical Education and Knowledge Assessment.
JMIR Med. Educ. 2023, 9, e45312. [CrossRef] [PubMed]

17. Lyu, Q.; Tan, J.; Zapadka, M.E.; Ponnatapura, J.; Niu, C.; Myers, K.J.; Whitlow, C.T. Translating radiology reports into plain
language using ChatGPT and GPT-4 with prompt learning: Results, limitations, and potential. Vis. Comput. Ind. Biomed. Art 2023,
6, 9. [CrossRef] [PubMed]

18. Eslamian, S.; Reisner, L.A.; Pandya, A.K. Development and evaluation of an autonomous camera control algorithm on the da
Vinci Surgical System. Int. J. Med. Robot. Comput. Assist. Surg. 2020, 16, e2036. [CrossRef] [PubMed]

19. Da Col, T.; Mariani, A.; Deguet, A.; Menciassi, A.; Kazanzides, P.; De Momi, E. Scan: System for camera autonomous navigation
in robotic-assisted surgery. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020; pp. 2996–3002.

20. Chen, Z.; Deguet, A.; Taylor, R.; DiMaio, S.; Fischer, G.; Kazanzides, P. An open-source hardware and software platform for
telesurgical robotics research. In Proceedings of the MICCAI Workshop on Systems and Architecture for Computer Assisted
Interventions, Nagoya, Japan, 22–26 September 2013; Volume 2226.

21. D’Ettorre, C.; Mariani, A.; Stilli, A.; Baena, F.R.; Valdastri, P.; Deguet, A.; Kazanzides, P.; Taylor, R.H.; Fischer, G.S.; DiMaio, S.P.;
et al. Accelerating surgical robotics research: A review of 10 years with the da vinci research kit. IEEE Robot. Autom. Mag. 2021,
28, 56–78. [CrossRef]

22. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating
System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5.

23. Rosario, A.D. Available online: https://customgpt.ai/ (accessed on 15 May 2023).
24. Laurer, M.; Atteveldt, W.V.; Casas, A.; Welbers, K. Less Annotating, More Classifying–Addressing the Data Scarcity Issue of

Supervised Machine Learning with Deep Transfer Learning and Bert-Nli. Preprint. 2022. Available online: https://osf.io/wqc86/
(accessed on 1 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12262-023-03727-x
https://doi.org/10.1109/LRA.2021.3056057
https://doi.org/10.3390/robotics10010037
https://doi.org/10.1002/rcs.2166
https://www.ncbi.nlm.nih.gov/pubmed/32946167
https://doi.org/10.3390/robotics11020040
https://alphacephei.com/vosk/
https://doi.org/10.1093/humrep/13.10.2748
https://www.ncbi.nlm.nih.gov/pubmed/9804224
https://doi.org/10.1007/BF00705739
https://www.ncbi.nlm.nih.gov/pubmed/7992194
https://doi.org/10.1007/s004649900871
https://doi.org/10.1055/s-2006-939679
https://www.ncbi.nlm.nih.gov/pubmed/17268585
https://doi.org/10.1007/s00464-003-9200-z
https://www.ncbi.nlm.nih.gov/pubmed/15457381
https://doi.org/10.3390/healthcare11060887
https://www.ncbi.nlm.nih.gov/pubmed/36981544
https://doi.org/10.12669/pjms.39.2.7653
https://www.ncbi.nlm.nih.gov/pubmed/36950398
https://doi.org/10.2196/45312
https://www.ncbi.nlm.nih.gov/pubmed/36753318
https://doi.org/10.1186/s42492-023-00136-5
https://www.ncbi.nlm.nih.gov/pubmed/37198498
https://doi.org/10.1002/rcs.2036
https://www.ncbi.nlm.nih.gov/pubmed/31490615
https://doi.org/10.1109/MRA.2021.3101646
https://customgpt.ai/
https://osf.io/wqc86/

	Introduction 
	Materials and Methods 
	Baseline Commands 
	The DVRK/Robot Operating System Interface 
	Capturing and Preprocessing the Voice Inputs 
	Asking for Input from ChatGPT 
	Processing the ChatGPT Responses 
	Triggering Hardware Commands 
	Testing the System 

	Results/Discussion 
	Conclusions 
	References

