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Abstract: Multirotor Uncrewed Aircraft Systems (UAS), widely known as aerial drones, are increas-
ingly used in various indoor and outdoor applications. For outdoor field deployments, the plethora
of UAS rely on Global Navigation Satellite Systems (GNSS) for their localization. However, dense
environments and large structures can obscure the signal, resulting in a GNSS-degraded environment.
Moreover, outdoor operations depend on weather conditions, and UAS flights are significantly
affected by strong winds and possibly stronger wind gusts. This work presents a nonlinear model
predictive position controller that uses a disturbance observer to adapt to changing weather condi-
tions and fiducial markers to augment the system’s localization. The developed framework can be
easily configured for use in multiple different rigid multirotor platforms. The effectiveness of the
proposed system is shown through rigorous experimental work in both the lab and the field. The
experimental results demonstrate consistent performance, regardless of the environmental conditions
and platform used.

Keywords: UAS; nonlinear model predictive control; GNSS-degraded environment; wind disturbance

1. Introduction

Uncrewed Aircraft Systems (UAS), widely known as aerial drones, are increasingly
used in infrastructure inspection applications [1], among others. Recent surveys show
the extensive use of drones in non-destructive inspections of industrial sites [2] and in
facility condition monitoring [3]. A technical report from the Minnesota Department
of Transportation [4] shows that the use of drones can improve the quality of bridge
inspections. Moreover, the significant advantages of drone-based inspections compared to
traditional manual inspections were presented in a recent comparative study [5].

In most cases, the inspections are performed by manual or semi-autonomous flights,
and one of the key research challenges is to build fully autonomous systems with collision-
avoidance capabilities [1]. One of the biggest challenges in this effort is to maintain an
accurate state estimation and robust position control. These are significantly affected by two
factors: (i) degraded Global Navigation Satellite System (GNSS) signals, and (ii) changing
weather conditions (wind and wind gusts).

The vast majority of aerial drones used for infrastructure inspections are dependent
on the use of GNSS. However, GNSS signals are susceptible to signal degradation [6]
and blockage when, for example, drones fly close to large structures or below bridges [7].
Without a reliable GNSS signal, there is a rapid deterioration in the navigation system of the
drone since there are no position measurement updates, and attitude measurements are not
enough to keep the system from drifting. In this case, different sensors and methods can be
used as reliable alternatives to localization and navigation [8,9], including visual-based [10]
and LIDAR-based [11] methods.

Moreover, in outdoor applications, wind remains a major disturbance and makes
control challenging [12]. Since the early days of multirotor platforms, there have been
studies on how winds affect them as systems [13]. A novel state parameter control based
on Euler angles was discussed in [14] with a dynamic feedback controller and a Lyapunov
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estimation of the wind parameters. To estimate the effect of external disturbances, a sliding-
mode observer was introduced in [15]. A feedback linearization-based controller ran in
parallel with the estimator. This controller design allowed for the minimal use of sensors
to estimate the state of the vehicle. Finally, a switching model predictive controller with
piecewise affine models for the linearized dynamics of a quadrotor was presented in [16].
The quadrotor was tested indoors without the use of GNSS, using an experimental setup
for the wind gusts.

Our group has developed a UAS system to perform Digital Image Correlation (DIC)
measurements in railroad bridges [17,18]. GNSS-degraded signals and wind disturbances
have been issues that we had to resolve toward building a fully autonomous system.
Motivated by this goal, we developed and present in this paper a control framework for
UAS field deployments close to large structures. The proposed system uses the UAS flight
dynamics and a disturbance observer to estimate the external forces acting on the platform
and a nonlinear model predictive controller that considers the platform dynamics and
external forces to control the position of the platform.

To allow this framework to be used by multiple different rigid body multirotor UAS,
a generic multirotor model is used. Furthermore, the framework is designed to work
with PX4 Autopilot [19] Flight Control Units (FCU), one of the most widely used flight
controllers. Finally, the different portions of the updated control framework are developed
as ROS nodes [20], and the complete framework, as well as scripts that implement the
required system identification, are made publicly available at https://github.com/usrl-
uofsc/px4_control (accessed on 20 July 2023).

The effectiveness of the proposed system is shown through a series of lab tests using a
Motion Capture (MoCap) system. The framework’s ability to estimate the external forces
acting on the platform, augment its localization using pose information from fiducial
markers, and ultimately track the desired trajectory under changing wind conditions is
examined. Finally, the proposed system is deployed in a second, different, and larger
UAS, performing a bridge inspection. Experimental results in both cases show consistent
performance for both multirotor UAS.

In summary, the main contributions of this work are (i) the development of a con-
trol framework for navigation in GNSS-degraded and windy environments that can be
applied in any rigid multirotor platform; (ii) a rigorous experimental analysis that includes
both indoor and outdoor flights with two different platforms, demonstrating the effective-
ness of the framework; and (iii) the developed framework is made publicly available to
the community.

The rest of the paper is organized as follows. Section 2 defines the system modeling,
state estimation, and control portions of the proposed framework. Section 3 presents
the experimental setup used to validate the effectiveness of the system and discusses the
experimental findings. Finally, Section 4 concludes this work and discusses areas of interest
that may be explored in the future.

2. System Modeling and Control

There has been a significant body of work in modeling external forces acting on UAS
without using any extra sensors [21–23]. Most notable is the work from Tomić et al. [24,25].
The authors used the UAS dynamics model, along with models for the propeller and motor
dynamics, to estimate the external forces and torques acting on the platform. Moreover,
they were able to distinguish between aerodynamic, contact, and collision forces, even
when they were applied in tandem. Although this system can be used to accurately estimate
all external disturbances, accurate models for all the components are needed. To obtain
such models, a laborious system identification process is required.

Since one of the objectives of this work is to provide a framework that can quickly
be deployed on multiple different platforms, only a simplified model for the rigid body
dynamics is used. Moreover, the model does not consider the full wrench applied to
the platform; only forces are considered. While this limits the accuracy of the estimated
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disturbances, it considerably simplifies the system identification process. Using data from
a single manual flight, the parameters of the required model can be derived using classic
system identification methods [26]. This is also significant during the development of a
UAS when the design might change multiple times.

2.1. System Modeling

A nonlinear model of the UAS is required by both the state estimator and the controller.
To define the six-degree-of-freedom (DoF) pose of the UAS, a fixed inertial frame (E) and a
body frame (B), attached to the platform, need to be defined. Figure 1 shows a schematic of
a hexrotor UAS with the body and inertial frames. While a hexrotor model is shown in the
figure, the derived model for the dynamics can be used for multiple types of rigid body
multirotors. The nonlinear model used for the UAS is:

ṗ = v,

v̇ =

dx 0 0
0 dy 0
0 0 dz

v + R(q)

0
0
T

−
0

0
g

+ Fexternal ,

q̇ =
1
2

q⊗ω,

(1)

where p ∈ E is the vector of the position of the origin of B, and v ∈ E is the linear velocity
of B. The rotation matrix of B with respect to E is denoted by R; dx, dy, and dz are the
mass-normalized drag coefficients; T is the mass-normalized thrust; g is the gravitational ac-
celeration; and Fexternal is the mass-normalized external disturbances. The mass-normalized
thrust is modeled as T = kTTcmd, where kT is the thrust coefficient and Tcmd ∈ [0, 1] is the
thrust command. Finally, q is the rotation quaternion equivalent of the rotation matrix R, ⊗
denotes the quaternion product, and ω ∈ B is the angular velocity of B with respect to E,
written as a pure quaternion.

Figure 1. A model UAS with the attached body frame B, the fixed inertial frame E, and a fiducial
marker-attached frame M.
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While quaternions are used for the state estimation, the pitch (φ), roll (θ), and yaw
(ψ) angles are used for the controller. Furthermore, it is assumed that a low-level attitude
controller can track the desired roll and pitch angles (φd and θd, respectively). A first-order
model is used to model the response of the attitude controller for the roll and pitch. As for
the yaw angle, it is assumed that the attitude controller can directly track the desired yaw
rate ψ̇d. Finally,

φ̇ =
1
τφ

(kφ · φd − φ),

θ̇ =
1
τθ
(kθ · θd − θ),

ψ̇ = ψ̇d,

(2)

where τφ and τθ represent the time constants, and kφ and kθ represent the gain. Finally,
the inputs to the system are Tcmd, φd, θd, and ψ̇d.

To improve the position estimation in GNSS-degraded environments and mark areas
of interest, fiducial markers can be used. As shown in Figure 1, the markers define a
coordinate frame M. The frame M is assumed to be stationary with respect to the fixed
frame E. As such, its position and attitude are modeled as:

ṗM = 0,

ṘM = 0,
(3)

where pM ∈ E is the vector of the position of the origin of M, and RM denotes the rotation
matrix of M with respect to E.

It should be noted that this approach works for any orientation of the fiducial marker,
as long as it is visible from the camera. In Figure 1, the marker is attached to a vertical
surface but we can achieve similar performance when the marker is attached to a horizontal
surface, in particular, to the underside of a structure [27].

2.2. State Estimation

The state and disturbance estimator is based on an Error State Kalman Filter (ESKF).
The structure and derivation of the filter are based on [28]. There are three state values
considered in the ESKF formulation: the true state χtrue, the nominal state χ, and the error
state δχ. The true state is the composition of the nominal and error states χtrue = χ⊕ δχ.
The nominal state should be considered the “large” part of the true state and can be
calculated by integrating the nonlinear model of the system. The error state, however,
should be considered the “small” part of the true state that accumulates all modeling errors
and process noise. The ESKF estimates the error state instead of the true state and uses it to
correct the nominal state.

The ESKF process is as follows. Using the inputs to the system and the model derived
in Section 2.1, the state of the system is tracked by integrating the nonlinear system.
However, the modeling errors and unmodeled dynamics will gradually accumulate in
the error state, so the filter is propagated to predict a Gaussian estimate of the error state.
When a measurement becomes available, the error state becomes observable and a filter
correction is performed. The error state mean can then be calculated and injected into the
nominal state.

There are a few advantages of using an ESKF compared to other Kalman Filters [28,29].
Compared to the EKF, the error state system operates closer to the origin, and thus the
linearization assumption is more likely to hold. Also, the error state is small, and thus
all higher-order products are indeed negligible, simplifying the computation of Jacobians.
Since the generalized composition is used to correct the nominal state and find the true
state, it simplifies working with constrained quantities such as rotations in 3D. Finally, it
has been shown that the ESKF formulation performs better for mobile robot localization
than the EKF formulation [30].



Robotics 2023, 12, 123 5 of 16

The three state values considered in the filter are shown in Table 1. The angles vector
contains the error state of the UAS attitude quaternion. It is assumed that the GNSS position
measurement contains both White and Brownian noise. To track the random bias of the
Brownian noise, an extra state btrue is added to the filter.

Table 1. The ESKF variables.

True Nominal Error Composition

UAS position pDtrue pD δpD pDtrue = pD + δpD
UAS velocity vDtrue vD δvD vDtrue = vD + δvD
UAS attitude qDtrue qD δqD qDtrue = qD ⊗ δqD
Angles vector δθ δqD = eδθ/2

Disturbances Ftrue F δF Ftrue = F + δF
Marker position pMtrue pM δpM pMtrue = pM + δpM
Marker attitude qMtrue qM δqM qMtrue = qM ⊗ δqM
GNSS bias btrue b δb btrue = b + δb

To derive the dynamics of the true state, it is assumed that the modeling errors are
additive and directly affect the velocity and attitude of the UAS:

ṗDtrue = vDtrue,

v̇Dtrue = DvDtrue + RT − g + Ftrue + vme,

q̇Dtrue =
1
2

qDtrue ⊗ (ω + ωme),

Ḟtrue = 0,

ḃtrue = υ,

ṗMtrue = 0,

q̇Mtrue = 0,

(4)

where vme and ωme contain all modeling errors, and υ is the zero-mean Gaussian noise that
drives the random bias. The nominal state is the same as the true state without these three
parameters. Consequently, the error-state dynamics are:

˙δpD = δvD,

δ̇vD = DδvD + R[T]xδθ + δF + vme,

δ̇θ = −[ω]xδθ,
˙δF = 0,

δ̇b = υ,
˙δpM = 0,

δ̇θM = 0,

(5)

where []x denotes the skew-symmetric matrix.
Three types of measurements are considered: a UAS pose measurement, a UAS odom-

etry measurement, and a relative pose measurement from the marker tracking. The first
two measurements are from the avionics sensor fusion that runs on the FCU. The FCU uses
data from the GNSS sensor, the IMU, and the magnetometer, as well as any other available
sensors, to obtain an estimate of the drone’s pose and velocities. These are then used as
measurements for the ESKF.

The pose measurement contains two parts: the position and the attitude of the drone.
For the position measurement, since it is based on GNSS measurements, we assume that it
contains the GNSS bias, whereas the attitude is measured directly. As for the velocity of the
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UAS, the FCU reports the velocity in the body frame instead of the fixed frame. The first
and second measurements are:

y1a = pD + b,

y1b = qD,

y2 = R(qD)
TvD.

(6)

When the fiducial marker is detected, the position and orientation of the marker
relative to the camera are measured. Assuming that the camera has a known fixed position
relative to the body frame, the marker’s pose relative to the UAS can be used instead. So,
the two parts of the marker measurement are:

y3a = R(qD)
T(pM − pD),

y3b = q−1
D qM.

(7)

As can be seen in the filter formulation, the external forces are not directly measured.
However, their effect can be observed and estimated using the ESKF. The filter uses the
derived model and the controller inputs to make a prediction about the state of the UAS.
When a measurement arrives, the filter can use it to correct the predicted state and estimate
any external disturbances by their effect on the platform. This estimation also includes
any modeling errors and unmodeled parameters. However, their effect is minimal, pro-
vided that the model identification process has managed to accurately identify the model
parameters. As such, significant external forces can be estimated.

Since the UAS is expected to operate in environments where the position measure-
ments may degrade at times, it is important to allow the state estimation framework to
adapt to the changing quality of the measurements. Covariance matching [31] is used to
allow the estimator to adapt to the changing quality of the measurements. The innovation
covariance matrix is approximated using the innovation sequence vi over a sample of
measurements as:

Si ≈
1
N

N

∑
i=1

vivT
i , (8)

and since Si = HPHT + R, the estimated measurement covariance matrix is approxi-
mated as:

Ri ≈
1
N

N

∑
i=1

vivT
i − HPHT , (9)

where N is empirically chosen for each sensor to provide some statistical smoothing. Finally,
to protect the filter from erratic measurements, outlier rejection using χ2 measurement
gating is used [32,33]. Even when a measurement is rejected, it will be used in the covariance
matching to increase the measurement covariance matrix for the sensor so that subsequent
measurements can be used.

2.3. System Control

A nonlinear model predictive controller (NMPC) is used to control the position of the
UAS. The controller design is based on [34] m and the model used is the one defined in
Section 2.1. An overview of the control system architecture is shown in Figure 2. Since this
model contains an estimation for the external disturbances, the controller can adapt to the
changing weather conditions. The controller can be used to track a desired trajectory or
maintain a specific position.

The Acados toolkit [35,36] is used to generate the solver for the nonlinear Optimal
Control Problem (OCP). The Acados toolkit can generate C code to quickly and efficiently
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solve OCPs, thus allowing for the execution of this controller in an onboard computer.
The optimization problem is given by:

min
χ,u

∫ T

0
(χ(t)− χr(t))TQ(χ(t)− χr(t)) + (u(t)− ur(t))T R(u(t)− ur(t))dt

+ (χ(T)− χr(T))T P(χ(T)− χr(T)),

subject to χ̇ = f (χ, u),

u(t) ∈ U,

χ(0) = χ(t0),

(10)

where χ and u denote the UAS state and input, respectively; χr and ur denote the UAS state
and input reference, respectively. Q and R are the cost weights for the state and the input,
respectively; and P is the weight for the terminal state. Moreover, χ̇ = f (χ, u) denotes the
state dynamics, as defined in Section 2.1; U is the set of valid inputs; and χ(t0) is the initial
state of the system. Finally, T is the controller’s horizon.

UAS Flight Control UnitUAS Camera
Attitude

Commands 

STag State
Observer NMPC

GNSS Position

Drone State

Disturbances
Marker Pose

Video
Feed

Figure 2. Control system architecture.

The controller’s horizon and the control rate are defined according to the available
processing power of the onboard platform. The NMPC is used to control the position of the
UAS. The orientation of the platform is controlled by a PID controller. At the beginning
of each control loop, the current initial conditions and external disturbance estimation are
updated. Also, the control input of the orientation is calculated and used as a parameter
for the NMPC. If a single setpoint is provided, then all the reference points are set to this
single setpoint. If a trajectory is provided, then a portion of the full trajectory according to
the controller horizon is used. As for the input reference, the attitude inputs are initially
all set to zero, whereas the thrust input is set to the expected thrust required for hovering
Thover = g/kT .

Finally, it is worth noting that there are cases where the NMPC cannot find a solution
to the OCP, resulting in not having a control input at the end of the control loop. While it is
not common, provided that a reachable reference is given, it is advised to have a backup
controller. In this case, a set of PID controllers is used as a backup.

3. Experiments and Results

The proposed framework was tested in both lab (indoor) and field (outdoor) ex-
periments. The objective of the lab experiments is to assess the system under known
controllable conditions. Moreover, using a Motion Capture system, the accuracy of the
position estimation can be measured. However, to verify that the proposed system can
effectively be deployed, field experiments are necessary. Finally, to showcase that the
system can be deployed on a variety of different platforms, two different platforms are
used for the lab and the field experiments.

3.1. Lab Experiments

A hexrotor based on the DJI F550 was used for the lab experiments. The UAS was
equipped with a Raspberry Pi 4B+ for all onboard processing and a second-generation
piCam pointing toward the floor for fiducial marker tracking. Since the onboard computer
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had limited processing power, the NMPC horizon was set at 3 s and the control rate at
10 Hz. Nevertheless, the average OCP solution time was around 30 ms. The total weight of
the UAS was 1.8 kg and the diagonal wheelbase was 550 mm. The system can be seen in
Figure 3 during experimentation.

Figure 3. Indoor lab experiments using a small UAS, where a leaf blower was used to produce
wind disturbances.

Since the proposed system was intended to be used in field experiments, an effort was
made to mimic outdoor conditions inside the lab. First, wind disturbances were created
using a leaf blower. Moreover, the MoCap position data were injected with artificial noise
to generate virtual GNSS position data. GNSS position data are usually modeled as having
both White and Brownian noise. Consequently, both types of noise were added to the
MoCap position data. The added White noise reduced the overall accuracy of the MoCap
measurements and the Brownian noise introduced a random walk bias. At time step k

pk
GNSS = pk

MoCap + bk + ω,

bk = bk−1 + υ,
(11)

where pk
GNSS is the virtual GNSS position used in the observer, pk

MoCap is the UAS position

from the MoCap, ω ∼ N (0, 10−3) is the additive White noise, and bk is the Brownian noise
that is driven by υ ∼ N (0, 10−3).

3.1.1. Position Estimation

To test the position accuracy of the state estimation, the UAS was deployed and tasked
with flying autonomously over a STag [37] fiducial marker bundle. The UAS could detect
the fiducial marker bundle and track its pose [38]. The marker pose was then used by
the state estimation to augment the platform’s position estimation. Figure 4 shows the
generated GNSS position, the estimated position from the observer, and the real position of
the system provided by the MoCap during a sample deployment. The UAS was tasked with
hovering over the marker for around two minutes (129 s), and the marker was detected for
137 s. During the time that the marker was detected, the Root-Mean-Square (RMS) error for
the generated GNSS position was 1.28 m. For the same time, the RMS error for the position
provided by the filter was 0.13 m. Due to the limited power of the onboard computer used
in this UAS, there were some gaps in the data, as the image processing required to detect
the markers is an expensive process. However, the accuracy of the position acquired from
the filter was significantly increased.
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Figure 4. The three plots show the UAS position during deployment, in the x, y, and z axis, respec-
tively. The virtual GNSS is in green, the state observer is in blue, and the MoCap system is in red.
The vertical dashed lines show the first and last times the marker was detected.

3.1.2. Disturbance Estimation

To test the effectiveness of the framework in estimating external disturbances and
adapting to their effect, a similar experimental setup was used. The platform was again
tasked with hovering over the marker, but this time, a leaf blower was used to generate
wind disturbances (Figure 3), where the generated stream speed was measured using an
anemometer. First, the leaf blower pushed the UAS toward the positive x-axis (maximum
air-stream speed was 10 m/s), then toward the negative y-axis (maximum air speed was
measured at 7 m/s), and finally, toward both the positive x-axis and negative z-axis (max-
imum stream speed of 10 m/s). Figure 5 shows the estimated disturbances during the
deployment, and it is clear that the observer was able to estimate the disturbances. More-
over, the estimated direction and magnitude matched the applied disturbances. The mag-
nitude of the first disturbance was around 1.5 and in the positive x-direction. The second
disturbance was in the negative y-direction, with a magnitude of around 0.8. Since the
wind stream for the second disturbance was smaller than the first, it was expected that the
estimated magnitude would be smaller as well. Finally, the last disturbance again exhibited
the expected direction in both the x- and z-axes. Moreover, the magnitude on the x-axis
was smaller than the first one, since the same wind gust was affecting two axes at the time.
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Figure 5. The external disturbances, as estimated using the proposed framework while hovering.

The position of the UAS during the experiment can be seen in Figure 6. While the
introduction of the wind disturbance affected the UAS position, the proposed framework
could quickly adapt and return to the desired position. It is worth noting here the increased
noise levels in the estimated position of the UAS, especially in the x- and y-axes. The camera
of the drone was not rigidly mounted on the platform to reduce the effect of the motor
and propeller vibrations on the acquired images. However, in the presence of significant
winds, the camera mount moved relative to the UAS frame. This produced marker pose
measurements with increased errors. Regardless, the RMS error during the autonomous
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portion of the flight was 13.2 cm, showing that the controller was capable of holding the
desired position.
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Figure 6. UAS position measurements during the hovering task and while being affected by the wind
disturbances shown in Figure 5.

3.1.3. Trajectory Tracking

In the experimental setup described so far, the controller was tasked with hovering
in place. In the next step, the controller was tested for its ability to also track desired
trajectories. However, the setup of the indoor UAS experiment did not allow for tracking
a stationary marker while moving around (as the UAS camera was fixed on the UAS
frame). As such, the MoCap position was directly used by the state observer in the
following experiments.

The first trajectory used was a simple back-and-forth trajectory. The UAS started on
the positive x-axis and moved along the x-axis until it reached the negative edge before it
turned back. At both edges, the trajectory included a 5 s stop. Two different iterations were
considered for this trajectory. In the first iteration, a leaf blower was used to generate a
wind stream toward the positive x-axis. The leaf blower was placed at the negative edge of
the trajectory so that its nozzle was 1 m away. At the negative edge, the wind stream had a
maximum velocity of 14.8 m/s, whereas at the positive edge, it was 5.5 m/s. The results of
this deployment are shown in Figure 7. The RMS position error for this experiment was
7.6 cm. The UAS was able to track the desired trajectory, regardless of the significant wind
disturbances. Moreover, the estimated disturbance increased when the UAS moved closer
to the negative edge of the trajectory and then decreased while it moved away.

In the second iteration, the leaf blower was placed in the middle of the trajectory
pointing toward the negative y-axis. At this point, the wind-stream velocity was 13.4 m/s.
Compared to the previous setup, the UAS did not experience sustained wind but rather a
sharp wind gust while it was passing through the middle of the trajectory. Figure 8 shows
the results using this setup. The RMS position error for this experiment was 7.4 cm. One
noticeable difference was that the platform was able to track the trajectory on the x-axis
with reduced errors. Also, when the UAS was passing through the middle of the trajectory,
the wind gust was registered by the observer, and the UAS was instantaneously pushed to
the side before recovering.

Furthermore, an ascending spiral trajectory was used to test the controller. The radius
of the spiral was set to 1 m; the starting and final altitudes were set to 0.75 m and 2.25 m,
respectively; and the UAS had to complete three full rotations over 2 min. This trajectory
required the platform to move on all three axes simultaneously. Moreover, the trajectory
required that the UAS was always facing the center of the spiral. While the position of
the platform was controlled by the NMPC, the orientation was controlled by a PID. Again,
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wind disturbances were introduced during the trajectory tracking as wind gusts when the
drone was positioned at around (−1, 0). Four different wind conditions were used; no
wind, side wind, side wind with around 20° pointing upwards, and finally, side wind with
around 20° pointing downwards.
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Figure 7. The UAS position and estimated disturbance along the x-axis during a back-and-forth
trajectory, with a face wind.
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Figure 8. The UAS position along the x and y axes, and the estimated disturbance along the y-axis
during a back-and-forth trajectory, with a side wind in the middle of the trajectory.

Figure 9 shows the results for the deployments under the various wind conditions
examined. Although the drone was able to track the desired trajectory under all conditions,
in the presence of strong wind gusts there was a drop in the platform’s attitude. This was
the case regardless of the direction of the wind. Also, the highest tracking error occurred
at the point where the disturbance was introduced. Specifically, the position RMS error
for the full trajectory was 10.4 cm for the experiment without disturbances, 11.4 cm for
the one with a direct side wind, 10.2 cm for the one with an upward-direction wind, and
9.2 cm for the one with a downward-direction wind. This indicates consistent performance
despite the momentarily increased errors due to the wind gusts. Finally, although the
position controller could accurately track the desired trajectory, the orientation controller
experienced a constant offset error. This was due to the different controllers used for
each task.
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Figure 9. The UAS position and orientation during the spiral trajectories under all four different
wind conditions.

3.2. Field Experiments

For the field experiments, another UAS was used, namely the Aurelia X6 Standard
platform. This is a much larger platform compared to the F550, with a total weight of
9.3 kg and a diagonal wheelbase of 1075 mm. The system is equipped with an Intel NUC
i5 computer for onboard computing. Since this is a more powerful computer, the NMPC
horizon was set at 3 s, the control rate at 20 Hz, and the average OCP solution time was
around 15 ms. The system is also equipped with two 8.9-megapixel cameras that are used
for both acquiring DIC inspection data [18] and tracking fiducial markers. Figure 10 shows
the UAS during field deployment.

For the field experiment, the objective of the UAS was to hover steadily in a specific
position relative to the inspection area. The inspection area was marked with a bundle of
four STag markers that were also used to provide pose measurements. Figure 11 shows
the position of the platform during a sample field deployment. The blue curve shows
the position of the platform according to the GNSS and other avionics sensors, and the
red curve shows the estimated position of the platform according to the developed state
estimation framework. The black curve shows the desired position, and the vertical dashed
lines show the portion of the flight that was autonomous. The drift of the GNSS position,
which in a few cases was over a meter, is visible in the figure. Nevertheless, the developed
state estimation framework used the model projections and the extra information from the
marker to obtain a better estimation of the real position of the platform while tracking the
GNSS random walk bias.

As for the developed controller, Figure 11 shows that it is able to keep the system close
to the desired state. During the deployment shown in Figure 11, there were significant side
winds; regardless, the controller was able to keep the platform in the desired position with
an RMS error of 12 cm on the x-axis, 23 cm on the y-axis, and 16 cm on the z-axis. On the
same day, the RMS error over five deployments with different wind conditions was 13 cm
on the x-axis, 15 cm on the y-axis, and 22 cm on the z-axis.
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Figure 10. The UAS used for field deployments during a railroad bridge inspection. The UAS is
highlighted with a red circle, and the inspection area is highlighted with a green box.
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Figure 11. The position of the platform during one of the field deployments. The red curve shows
the estimated position from the developed state observer, whereas the blue curve shows the reported
position from the avionics sensors. The black curve shows the desired position, and the dashed
vertical lines show the autonomous portion of the flight.

4. Conclusions and Future Work

In this paper, we presented a UAS control framework that is robust to wind distur-
bances by estimating external disturbances and adapting its control. The framework is
also robust to degraded GNSS signals by augmenting its pose estimation using data from
fiducial markers. Rigorous experimental work, using two different UAS platforms in
both indoor and field experiments, shows the effectiveness of the proposed framework.
In all cases, the system exhibited consistent performance and error levels, regardless of the
underlying conditions and the UAS platform used.

During experimentation, it was observed that the estimated external force in the z-
axis was gradually increasing in magnitude in the negative direction. This can be seen
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in Figure 5. This was probably due to the decreasing battery power. The FCU maps the
thrust to a specific signal sent to the motor controllers without considering the change in
the available power. However, since the power changes, the same signal results in a lower
thrust output. This, in turn, is registered by the state estimator as an increasing negative
force. This can be improved by considering the battery level in the thrust equation of
the model.

When neither the GNSS nor marker measurements are available, the state observer
relies solely on using the system model and the attitude commands to propagate the state.
In this case, however, the state observer is unable to estimate any external disturbances,
while the estimation error due to unmodeled dynamics and modeling errors grows over
time. Given enough time, the estimated state will become unreliable. In future work,
the system will be able to monitor the uncertainty of the UAS position, and when it exceeds
a safety level, it will either signal a safety pilot, if available, or try to move the UAS away
from the structure.

While the focus of this work is to use the estimated external disturbances to adjust
the position controller and achieve better performance, a possible extension is to use the
same framework to estimate contact forces. This could be useful for UAS contact-based
inspections [39] and sensor deployments [27,40] by allowing the UAS to apply the required
force at the point of contact.
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