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Abstract: Snake-like robots, which have high degrees of freedom and flexibility, can effectively
perform an obstacle avoidance motion in a narrow and unstructured space to complete assignments
efficiently. However, accurate closed-loop control is difficult to achieve. On the one hand, this is
because adding too many sensors to the robot will significantly increase its mass, size, and cost. On
the other hand, the more complex structure of the hyper-redundant robot also challenges the more
elaborate closed-loop control strategy. For these reasons, a cable-driven snake-like robot, which is
compact and low cost, with force transducers and angle sensors, is designed in this article. The
simpler and more direct kinematic model is studied, which applies to a widely used kinematics
algorithm. Based on the kinematic model, the inverse dynamics are resolved. Finally, this article
analyzes the sources of the motion errors and achieves dual-loop control through force-feedback and
pose-feedback. The experiment results show that the robot’s structure and dual-loop control strategy
function with high accuracy and reliability, meeting the requirements of engineering applications
and high-precision control.

Keywords: cable-driven snake-like robot; kinematics; dynamics; closed-loop control

1. Introduction

With the development of robotics, various types of robots have been widely used
in the industrial field to achieve the working mode of “robots replacing labor”, greatly
reducing labor intensity and improving the quality of working environments. In recent
decades, hyper-redundant robots [1], with appearances similar to snakes, elephant trunks,
and octopus tentacles [2–5], have been developed and researched extensively. Due to
their slim and dexterous geometric shape, they can move efficiently in a confined and
complex space. The cable-driven snake-like robot (CSR) in this paper is a special semi-rigid
hyper-redundant robot. A wide range of the literature demonstrates that CSRs have very
broad applications in many areas, such as minimally invasive surgery [6–9], nuclear waste
manipulation [10], in-space inspection [11], and search and rescue [12,13].

To establish a reliable and accurate motion control strategy, precise and efficient
kinematic and dynamic models are essential. In the kinematic field, methods for tracking
the geometric curve have been widely used. Naccarato et al. [14] presented an inverse
kinematic solution that forces the hyper-redundant robot to track the reference shape curve.
Chirikjian et al. [15,16] extended the reference shape curve to the backbone reference curve
set, including both the bending description and the torsion description. Furthermore,
follow-up studies have placed more emphasis on these geometric methods, such as follow-
the-leader [17], tractrix [18], and FABRIK [19]. Normally, the geometric method first
generates a reference curve that the robot can track, and then it forces the robot to follow
this reference curve. Since the reference curve is strongly correlated with the task space, the
method can easily add requirements from its users, such as avoiding obstacles or passing
through some special points. On the other hand, the resolution of the inverse kinematics
can be obtained quickly and accurately by using the constraints of the reference curve. One
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feature of this geometric method is that it calculates the positions of link ends first rather
than the joint parameters. Since the pose of all the links of the CSR can be fully described
by the link eigen vectors which point from the proximal end to the distal end of each link,
this article discards the joint space and local coordinate system, instead utilizing the link
eigen vectors in the global coordinate system to construct the kinematic model.

In the dynamics field, various methods have unique benefits. Rodriguez [20] devised
a method to solve the inverse and forward dynamic problems with O(N) solutions. The
Euler–Lagrange formalism [21] involves a simple mathematical form and clear physical
sense. Cosserat theory [22] is highly adaptable to the motion state. However, the efficiency
of these dynamic methods, which is crucial to real-time control, is not as good as the
Newton–Euler method [23,24]. Therefore, this article combines the Newton–Euler method
with the reconstructed kinematic model above to solve the inverse dynamics and to achieve
accurate real-time control.

After the kinematic and dynamic models are determined, a motion control strategy
with high reliability and high precision can be further explored. However, the deployment
of pose and force sensors is costly and difficult, which affects the closed-loop strategy for
better utilizing the kinematics and dynamics. Tran et al. [25,26] calculated the feedforward
of the cable length based on the kinematic model. However, these methods do not consider
the pose feedback; therefore, they are open-loop strategies. Tang et al. [27] obtained the
tracking motion of the end pose through the PID controller of the cable length. Although
the trajectory tracking of the CSR is achieved by controlling the cable length, the tension
forces of the cables are still uncontrollable. The fiber Bragg grating sensors [28,29] or the
six-axis force/torque (F/T) sensor [30] can greatly enhance the force sensing ability for
supporting the compliance control. Nevertheless, these sensors will greatly increase the cost,
dimension, and mass of the CSR system. Moreover, these methods are not directly related to
the driving forces of the cables, which would be calculated based on the inverse dynamics.
Hence, in order to take full advantage of the kinematic and dynamic models, this paper
has designed a CSR with both angle sensors and cable force transducers. Subsequently,
using pose feedback from the angle sensors and force feedback from the transducers, the
dual-loop control strategy can be implemented based on kinematic and inverse dynamics
methods. This control strategy improves the precision of the robot and also ensures the
correct cable force and stiffness of the CSR, thereby guaranteeing the stability and reliability
of the motion.

The rest of the paper is organized into six sections. Section 2 introduces the mechanical
structure of the CSR. Section 3 introduces the kinematics modelling, then derives the
mapping relationships among the various variables of the CSR. Section 4 analyzes the
mechanics of the CSR and obtains the solution of the inverse dynamics. Section 5 studies
the errors and establishes the dual-loop control system with force-loops and pose-loops.
Section 6 describes the experiment and provides a discussion which fully verifies the control
strategy. Finally, the paper is concluded in the last section.

2. Mechanical Structure

The research object in this paper is a universal joint cable-driven snake-like robot with
a mechanical structure shown in Figure 1. The structure can be divided into three parts:
the sliding table, base box, and robot arm. The robot arm is driven by the cables, and the
driving forces of the cables come from the driving modules of the base box.

The sliding table offers translation freedom for the base box and robot arm, expanding
the workspace of the robot.

The detailed structure of the base box is shown in Figure 2. The driving module
translates the motor power into the cable’s driving force, to drive the movement of the
robot arm. The absolute encoders in the encoder board are used to monitor the positions of
the driver modules. Figure 2b shows the setup of the force transducer, which is the key to
achieving the dual-loop control.
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Figure 2. Base box: (a) Structure of base box; (b) setup of force transducer.

The detailed structure of the robot arm is shown in Figure 3, which is composed by
connecting universal joints and links in series. The CSR in the paper is with six universal
joints and seven links. One link is a fixed link, which is denoted as Link0 and connected to
the base box. The remaining links are denoted as Link1 . . . Link6 and the universal joints
are denoted as Joint1 . . . Joint6. Similarly, Joint0 means the fixed joint at the proximal end of
Link0. Jointi’s key part HRi, i.e., the hollow ring, is used to connect two links. As shown in
the figure, Jointi is driven by three yellow cables (Ci, Ci+6, Ci+12) which are fixed on Linki.
The three green cables (Ci+1, Ci+7, Ci+7) which pass Linki are fixed on Linki+1 and are to
drive Jointi+1 (though the figure shows only three cables passing through Linki, the cables
driving Jointm (m > i) all pass through Linki). That means every universal joint is with
two degrees of freedom and is driven by three cables. As shown in Figure 3b, each joint
of the robot arm has been assembled with two angle sensors, which are also the key to
achieving the dual-loop control.
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3. Kinematics Modelling

As shown in Figure 1, the global coordinate system is constructed by: setting the
proximal end of Link0 as the origin; the vector from the proximal end to the distal end as
the X0-axis; the vector vertically upward as the Z0-axis.
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As shown in Figure 3, the center of Jointi is denoted as Omi, which is also the proximal
end of Linki. Then, Linki’s independent eigen vector can be defined as

uix =
−−−−−−−−−→

OmiOm(i+1) /|
−−−−−−−−−→

OmiOm(i+1) | (1)

According to the characteristics of the universal joint robot, the axes of the revolute
pairs in the link can be set as the derived eigen vectors, which are denoted as uiy, uiz. That
is to say, uiy coincides with the axis of the revolute pair between Linki and Jointi+1, uiz
coincides with the axis of the revolute pair between Linki and Jointi. Then, the derived
eigen vectors can be calculated by the following steps.

Let udirz = uix × u(i−1)y, then udirz is collinear with uiz.
Let udiry = udirz × uix, then udiry is collinear with uiy.
Thus, uiy, uiz can be calculated by{

uiz = udirz/|udirz|
uiy = udiry/

∣∣udiry
∣∣ (2)

Therefore, the pose of Linki can be completely described by the eigen vectors, uix, uiy,
uiz. Compared to the traditional kinematic models [17,23,24], which need to calculate the
joint parameters with cumbersome methods and describe the pose information in many
local coordinate systems, the link eigen vectors are more direct and intuitive.

As shown in Figure 3a, each joint has two discs, i.e., Disc1,i, Disc2,i. The centers of
the discs are denoted as Oai, Obi, respectively. On one disc, 18 cable holes are evenly
circumferentially distributed, which are for cables passing through. The cable hole on
Disc1,i+1 which is at uiy is denoted as Di+1,1, and the remaining holes are counterclockwise
denoted as Di+1,2, Di+1,3 . . . Di+1,18. Similarly, the cable hole on Disc2,i which is at uiy is
denoted as Pi,1, and the remaining holes are counterclockwise denoted as Pi,2, Pi,3 . . . Pi,18.
The cables passing through the corresponding cable holes are denoted as C1, C2 . . . C18.

Let Ψj refer to the included angle between
−−−−→

OaiDi+1,j and uiy and also the included angle

between
−−−−→
ObiPi,j and uiy, then

Ψj = (j− 1)× 2π

3× 6
(3)

3.1. Mapping between Link Eigen Vectors and Cable Lengths

The cable Cj can be divided into two parts, i.e., the link part and the joint part. When a
cable is tensioned and the cable between two points is straight, the cable length between
the two points is equal to the distance between the two points. Moreover, since the cable
length in the link part remains constant, only the cable length in the joint part needs to be
considered. Therefore, the theory cable length of Cj in Jointi can be treated as the distance
between Di,j and Pi,j,

si,j =
∣∣Pi,j − Di,j

∣∣ (4)

Pi,j, Di,j can be obtained by the following equations,{
Di,j = Pi−1,j + Oai −Ob(i−1)

Pi,j = rdcos
(
Ψj
)
uiy + rdsin

(
Ψj
)
uiz + Obi

(5)

rd : radius of the distribution circle of the hole on the disc.
Oai, Obi can be obtained by the following equations,{

Oai = Omi − du(i−1)x
Obi = Omi + duix

(i = 1, 2 . . . 6) (6)

d : distance from Omi to adjacent disc’s center, i.e., d = |Omi −Oai| = |Omi −Obi|.
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The initial values of (5) are: Ob0 = [0 0 0]T , P0,j =
[
0rdcos

(
Ψj
)
rdsin

(
Ψj
)]T

(j = 1, 2, . . . 18).
Let Csj be the pseudo total cable length of Cj, which is calculated by adding all

corresponding si,j, then

Csj = ∑
k=nj−1+1
k=1 sk,j (7)

nj: remainder of dividing j by 6.
If the cable is tensioned, Csj can be taken as the real total cable’s length. Thus, the

forward mapping is solved.
The inverse mapping can be divided into two situations, i.e., pseudo total cables’

lengths to link eigen vectors and real total cables’ lengths to link eigen vectors. Since the
joint and link have sufficient stiffness, the first mapping is definite.

The first mapping, i.e., Cs1, . . . Cs18 → uix, uiy, uiz , the values of sm,n(m = 1, 2 . . . i− 1) ,
(n = i, i + 6, i + 12) can be solved from (4). And from (7), we can obtain,

si,i = Csi −∑
k=ni−1
k=1 sk,i

si,i+6 = Cs(i+6) −∑
k=ni+5
k=1 sk,i+6

si,i+12 = Cs(i+12) −∑
k=ni+11
k=1 sk,i+12

(8)

Since uix is a unit vector, uix can be set as [cosγi, sinγicosϕi, sinγisinϕi]
T

(ϕi ∈ [0, 2π], γi ∈ [0, π)). Then, substituting the expression of uix into (2), we can obtain,

uiz = udirz/|udirz| = (uix × u(i−1)y)/|uix × u(i−1)y| = ( fiz(ϕi, γi), giz(ϕi, γi), hiz(ϕ i, γi)) (9)

fiz(ϕi, γi), giz(ϕi, γi), hiz(ϕi, γi): X, Y, Z coordinates of uiz, which are expressed by the
variables ϕi and γi.

Similarly,
uiy =

(
fiy(ϕi, γi), giy(ϕi, γi), hiy(ϕi, γi)

)
(10)

fiy(ϕi, γi), giy(ϕi, γi), hiy(ϕi, γi): X, Y, Z coordinates of uiy, which are also expressed
by the variables ϕi and γi.

Thus, the expressions of uiy, uiz also have two variables. Substitute the above uix, uiy, uiz
into (4)–(6), we can obtain, 

si,i = Fsi (ϕi, γi)
si,i+6 = Fsi+6(ϕi, γi)

si,i+12 = Fsi+12(ϕi, γi)
(11)

Then, the expressions of si,i, si,i+6, si,i+12 also have two variables, ϕi, γi. Since the
values of si,i, si,i+6, si,i+12 are already calculated through (8), the following equations with
two unknown variables can be obtained,

Fsi (ϕi, γi) = Csi −∑
k=ni−1
k=1 sk,i

Fsi+6(ϕi, γi) = Cs(i+6) −∑
k=ni+5
k=1 sk,i+6

Fsi+12(ϕi, γi) = Cs(i+12) −∑
k=ni+11
k=1 sk,i+12

(12)

As the stiffness of the joints is enough, the above equations have a consistent solution
within the accuracy range. Therefore, it is reasonable to use any two of the above equations
to calculate the values of ϕi and γi, to obtain the values of uix, uiy, uiz. Since the equations
are complex, the Newton–Raphson method could be used for the numerical solution.

When uix = u(i−1)x, the values of ϕi, γi could be set as initial values. Then, ϕi, γi can
be solved by the iterative method. Additionally, the solved ϕi, γi can be substituted into
the last equation of (12) for verification. And if the left and right sides of (12) are equal
within the acceptable error range, uix, uiy, uiz are solved successfully. On the contrary, there
is no solution. Then, Om(i+1) can be solved as follows,

Om(i+1) = liuix + Omi (13)
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li : length of Linki, li = |
−−−−−−−−−→

OmiOm(i+1) |.
In the second mapping situation of calculating uix, uiy, uiz, there are three more subcases:

(1) Every cable is tensioned. Then, the cables’ lengths are approximately equal to the
distances between corresponding holes, so the inverse mapping method is the same
as the first mapping method.

(2) Two of the cables that drive the joint are tensioned, but the other is slack. Then, the two
cables’ lengths are approximately equal to the distances between the corresponding
holes. Thus, compared to the first mapping situation’s method, just the verification
equation is canceled.

(3) More than one of the cables is slack. In this case, the inverse mapping cannot be performed.

It is worthy noting that the effects of Joint1, . . . Jointi−1 to the lengths of the cables
must be considered before the inverse mapping in Jointi.

3.2. Mapping between Link Eigen Vectors and Joint Angles

In the new kinematic model, the joint parameters are not necessary. However, as
it is convenient to obtain the pose of CSR with the utilization of joint angle sensors, the
mapping relation between the link eigen vectors and the joint angles is derived here. Set
the joint angle of the revolute pair between Linki−1 and Jointi as αi and the joint angle of
the revolute pair between Jointi and Linki as βi. When uix = u(i−1)x, set αi = βi = 0. Then

(1) Forward mapping,
(
uix, uiy, uiz

)
→ (αi, βi).

Let 
Projx = uix·u(i−1)x
Projy = uix·u(i−1)y
Projz = uix·u(i−1)z

(14)

Thus, we can obtain,{
αi = −arctan(Projz/Prox)αi ∈ (−0.5π, 0.5π)

βi = arcsin
(

Projy
)

βi ∈ (−0.5π, 0.5π)
(15)

(2) Inverse mapping, (αi, βi)→
(
uix, uiy, uiz

)
.

Let 
viy = u(i−1)y

viz = cos(αi)u(i−1)z + sin(αi)u(i−1)x
vix = viy × viz

(16)

Thus, we can obtain, 
uiz = viz

uix = cos(βi)vix + sin(βi)viy
uiy = uiz × uix

(17)

The key part of Jointi, HRi also has its eigen vectors, which are exactly vix, viy, viz. All
eigen vectors of the hollow ring can be calculated by link eigen vectors.

4. Inverse Dynamics
4.1. Mechanical Analysis

As shown in Figure 4, Ci, Ci+6, Ci+12 are fixed on Linki. They provide the driving
forces for Linki’s movement. At the same time, the cables passing through Linki also
have forces acting on Linki (Figure 4 only shows three cables passing through Linki, i.e.,
Ci+1, Ci+7, Ci+13). These cables are fixed on Linkm(i < m ≤ 6).
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Suppose the turning angle of Ci+1 at Pi,i+1 is θi,i+1,2 and the turning angle of Ci+1 at
Di+1,i+1 is θi+1,i+1,1, then ∣∣∣Ti+1,i+1,1/Ti,i+1,2

∣∣∣= eµθi,i+1,1 ·eµθi,j,2 (18)

µ: Coulomb friction coefficient.
Ti+1,i+1,1: cable force of Ci+1 in Jointi+1, whose direction is shown in Figure 4.
Ti,i+1,2: cable force of Ci+1 in Jointi, Ti,i+1,2 = −Ti,i+1,1.
Let {

vi,j,1 = (Di,j − Pi,j)/
∣∣∣Di,j − Pi,j

∣∣∣
vi,j,2 =

(
Pi,j − Di+1,j

)
/
∣∣Pi,j − Di+1,j

∣∣ (19)

Then {
θi,j,1 = cos−1(vi,j,1·vi,j,2

)
θi,j,2 = cos−1(vi,j,2·vi+1,j,1

) (20)

As a result, if the cable force of a cable in a joint is known, all cable forces of the cable
in the other joints can be calculated. Since the mechanics analysis of the robot is an inward
recursion, Linkm’s (m > i) force analysis is before Linki. Therefore, the cable forces of the
cables passing through Linki are known, on the contrary, the cable forces of the cables fixed
on Linki are the driving forces to be solved.

For HRi, Omi is the center of mass. The acting forces on HRi are:

(1) The acting forces from distal Linki, Fi,1, Fi,2. They can be decomposed into six forces
with known action lines and directions, Fi,1x, Fi,1y, Fi,1z, Fi,2x, Fi,2y, Fi,2z. The moment
of them about Omi is denoted as M1,2.

(2) The acting forces from Linki−1, Fi,3, Fi,4. Similarly, they can also be decomposed into
six forces with known action lines and directions, Fi,3x, Fi,3y, Fi,3z, Fi,4x, Fi,4y, Fi,4z. The
moment of them about Omi is denoted as M3,4.

(3) Gravity force, GHi.
(4) Inertia force and moment, FIH,i, MIH,i.

Since Fi,1z, Fi,2z act on the same line, they can be merged as

Fi,zc = Fi,1z + Fi,2z (21)

Thus, Fi,1, Fi,2 can be simplified as five forces with known action lines and directions.
Similarly, Fi,3y, Fi,4y can be merged as,

Fi,yc = Fi,3y + Fi,4y (22)

Thus, Fi,3y, Fi,4y can also be simplified as five forces with known action lines and directions.
According to the current values and historical values of Omi and HRi’s eigen vectors

vix, viy, viz, the velocity vcH,i, acceleration accH,i, angular velocity ωHi and angular accel-
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eration αHi of HRi at the centroid can be calculated. Thus, the values of FIH,i, MIH,i are

FIH,i = −mHi·accH,i (23)

MIH,i = −IcH,iαHi −ωHi × (I cH,iωHi) (24)

mHi: mass of HRi.
IcH,i: inertia tensor of HRi relative to the center of mass in the global coordinate system.
The acting forces on Linki are:

(1) The known cable forces ST1,i from the cables which are fixed on Linkm(m > i). The
moment of them about Omi is denoted as SMT1,i.

(2) The unknown cable forces ST2,i from the cables which are fixed on Linki. The moment
of them about Omi is denoted as SMT2,i.

(3) The acting forces from distal HRi+1,−Fi+1,3,−Fi+1,4 (if Linki is the end link, the forces
can be taken as environment forces). The moment of the forces about Omi is set as
−M’

3,4.
(4) The acting forces from proximal HRi, −Fi,1,−Fi,2. The moment of the forces about

Omi is denoted as −M1,2.
(5) Gravity force, Gi. The moment of the force about Omi is denoted as MGi .
(6) Inertia force and moment, FI,i, MI,i. The moment of FI,i about Omi is denoted as MFI,i.

The position of Linki’s centroid relative to Omi is known. Then, according to the current
values and historical values of Omi and Linki’s eigen vectors uix, uiy, uiz, the velocity vc,i,
acceleration acc,i, angular velocity ωi and angular acceleration αi of Linki at the centroid
can be calculated [31]. Thus, the values of FI,i, MI,i are

FI,i = −mi·acc,i (25)

MI,i = −Ic,iαi −ωi × (I c,iωi) (26)

mi : mass of Linki.
Ic,i: inertia tensor of Linki relative to the center of mass in the global coordinate system.

4.2. Newton–Euler Method

According to the mechanical analysis, the Newton–Euler equations of HRi are{
Fi,1 + Fi,2+Fi,3 + Fi,4 + GHi + FIH,i = 0

M1,2 + M3,4 + MIH,i = 0 (27)

The Newton–Euler equations of Linki are{
ST1,i + ST2,i − Fi,1−Fi,2 − F

i+1,3
− Fi+1,4 + Gi + FI,i = 0

SMT1,i + SMT2,i −M1,2 −M′3,4 + MGi + MI,i + MFI,i = 0
(28)

In the above equations, the variables to be solved are Fi,1, Fi,2, Fi,3, Fi,4, ST2,i. Fi,1, Fi,2, Fi,3, Fi,4
can be decomposed into 10 forces with known action lines and directions. ST2,i can be decom-
posed into 3 forces with known action lines and directions. Therefore, (27) and (28) are with
12 independent equations and 13 unknown variables. Let the smallest force of ST2,i be equal to
the pre-tensioning force Tpre, then the needed driving forces of the cables can be solved. Thus,
the inverse dynamics is resolved.
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5. Dual-Loop Control Strategy
5.1. Errors Analysis

Cable zero length (CZL) refers to a cable length when the arm of CSR stays straight and
horizontal. CZL is calculated without the model error. For convenience, the cable lengths
discussed in this section are all relative to the cable zero lengths.

Cable real lengths, LR, refer to the differences in the real cable lengths relative to the
CZLs after the joints rotate at certain angles.

Cable theory lengths, LT, refer to the differences in the theory cable lengths relative
to the CZLs after the joints rotate at certain angles. Note that theory cable lengths are
calculated by adding the distances between two groups of corresponding cable holes. It is
called theory lengths due to the errors between LT and LR. There are four main errors:

The first errors Efir: When a cable passes a link, it passes the cable holes. As the inner
diameter of the cable hole is larger than the diameter of the cable, the cable has a radial
movement relative to the cable hole. However, LT is calculated assuming that the cable is
always at the center of the cable hole. Take cable C1 in Joint1’s part as an example (the other
cables and joints have similar error relations). As shown in Figure 5, the left figure is the
relation among LT, γ, and ∅, and the right figure is the relation among Efir, γ, and ∅. The
γ refers to the included angle between X0 and u1x, i.e., the included angle between u0x and
u1x. ∅ refers to the included angle between the projection of u1x in the plane X0Y0 and Y0.
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The second errors Esec: The distance of Jointi’s center to the adjacent discs’ center,
which is denoted as d in the above section, will slightly vary due to the change in the
tension of the cables. Therefore, only a theoretical approximation can be taken as this
distance. Again, take the cable C1 in Joint1’s part as an example. As shown in Figure 6, the
left figure is the relation among LR, γ and ∅. The right figure is the relation among Esec, γ
and ∅.

The third errors Ethi: When the cable is under tension, it will be stretched and de-
formed, and its length will change. However, the errors are minor and can be eliminated
according to the feedback values of the force transducers.

The fourth errors Efou: These errors are caused by the nonlinear coupling relations
among the cables and the universal joints. The three cables driving a joint can not only
determine the angle of this joint, but also affect all joints that these three cables pass through.
On the contrary, the joints will also affect all cables passing through these joints. The smaller
the errors of the joint angles, the less the influence of Efou. And if the joint angle errors are
limited within a tiny range, this nonlinear coupling relations can be ignored. Thus, these
coupling relations have not been analyzed in detail in this paper.

The errors’ analysis can theoretically support the design of feedforward controllers, so as to
accelerate the tracking speed of the closed-loop control and optimize the dynamic performance.
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5.2. Practicability of Dual-Loop Control

For convenience, we only discuss the case with one single joint. Nevertheless, the
cases with multiple joints can be analogized.

Hole zero distance (HZD) refers to the distance between the two corresponding cable
holes when the arm of CSR stays straight and horizontal. HZD is obtained without
considering the model error, especially the Esec. For one single joint, zero distance is equal
to 2d.

Hole real distances, DR, refer to the differences in the real distances between the two
groups of corresponding cable holes relative to the HZDs after the joints rotate to the certain
angles. The real joint angles and model size determine DR. We can calculate the feedback
hole real distances, DF, according to the feedback joint angles AF. DF, DR are positively
correlated and the main errors of DF come from Esec.

Hole desired distances, DD, refer to the differences in the desired distances between the
two groups of corresponding cable holes relative to the HZDs when the joints rotate to
the desired angles. DD, LT are positively correlated. The main errors of LT relative to DD
also come from Esec. When DD = DR, the real joint angles AR is equal to the expected joint
angles AD.

The essence of the driving of the joints is by changing the distances of the correspond-
ing cable holes, which is achieved by shifting the cables. After analysis, it can be concluded
that the combined effects of the first three types of errors will not cause serious deviations
of LT, LR, DD, DF, DR, and their varying trends are consistent. After further verification,
we can know that LT, LR, DD, DF, DR are positively correlated, i.e., all increase when one
increases and all decrease when one decreases. Therefore, the closed-loop control is prac-
ticable. As shown in Figure 7, the motors are driven by the expected LT. That means LT
will be taken as LR. Then, LR will determine the real joint angles AR. Thus, according
to the feedback joint angles AF, DF can be inversely solved. Because of the positive cor-
relation of various variables, DR will gradually approach DD by the iteration setting of
LR = LR + LT −DF (the real process would be more complex, such as the setting of PID
parameters). In this way, not only can the complex calculation of the driving displacements
of the motors be simplified, but also the effective and reliable closed-loop control can
be promised.

As shown in Figure 8, the process of the closed-loop is demonstrated by taking one
cable’s driving for Jointi as an example. The relations between LT , DF and joint angle can be
expressed by the same curve. The relation between LR and joint angle can be expressed by
another curve. The steps in the figure have been numbered, which are explained as follows:

(1) According to the expected joint angle, the expected cable theory length LT is calculated.
LT will be taken as cable real length LR and input into the CSR’s driving system.

(2) According to LR, the motor moves to drive the joint.
(3) According to the feedback joint angle AF, the feedback hole real distance DF is calculated.



Robotics 2023, 12, 126 11 of 20

(4) According to DF, LR is updated to L′R.
(5) According to the updated L′R, the motor moves to drive the joint.
(6) and (7) . . . The steps from (3) to (5) are executed in an endless loop.
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Moreover, the practicability of closed-loop control can be understood more simply
from the driving mode of the universal joints. Obviously, if a joint angle sensor detects the
angle error, the error could be reduced by shifting the cable to make the joint rotate reversely.
And the way of how to rotate the joint in reverse is exactly let LR = LR + LT −DF.

However, Jointi would be driven by the other two cables together and their closed-loop
processes are the same (Figure 8). The specific error values of the three cables would not
happen to be consistent, i.e., the three cable real lengths correspond to different joint angles.
The collaborative action of the three cables would obtain another real joint angle. Hence,
although the closed-loop can still be carried out, the errors would accumulate with the
continuous movement. As a result, the excessive errors of the cable forces would make
the cables too loose and result in certain errors in the joint angles. Because of that, the
feedforward control based on the feedback of the cable forces has been added to the control
strategy to keep the cables tensioned and ensure the working of the closed-loop. Thus, the
reliability and the accuracy of the system are promised.

5.3. Dual-Loop Control Strategy

As shown in Figure 9, the dual-loop control strategy has two loops. The force-loop
processes the feedback driving forces and is to ensure the proper forces of the cables during
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the motion of the CSR. That not only ensures the stiffness of the robot, but also the working
of the pose-loop. The pose-loop processes the feedback joint angles and achieves the
closed-loop control of the robot pose, to improve the motion accuracy of the robot.
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The variables and the elements in the figure are explained as follows:
The variables related to joint angles are 12-dimensional vectors, such as AD, AR. The

variables related to cables are 18-dimensional vectors, such as LT, DF, TF, e1, e2. TF refers
to the feedback driving forces of the cables, e1 refers to the errors calculated by the force
controller, e2 refers to the errors calculated by the position controller.

“Drivers” are responsible for the driving of the DC motors, which are embedded with
the position and speed-current closed-loop control algorithms.

“Time delay” refers to the inevitable delay when sensors collect data.
The “force controller” and “position controller” are both PD controllers. Their deriva-

tive elements can weaken the effects of the time delay. Their proportional and derivative
gains are KPF, KDF, KPP, KDP, respectively, whose value is shown in Table 1. Additionally,
to avoid the excessive overshoot, both e1, e2 have been set within borders.

Table 1. Parameters of all controllers.

Controller Name Property Value

Force controller
KPF (mm/N) 1.67 × 10−5

KDF (mm/N) 0.5
|e1| (mm) Within 0.02

Position controller
KPP 0.04
KDP 0.5

|e 2| (mm) Within 0.02

PID controller

Value of KPA’s element 0.5–1.5
Value of KDA’s element 0.1–0.5
Value of KIA’s element 0.1–0.3

ρ 0.01

Let ∆T(j) = TF(j)− TT(j) (TT refer to the values of the driving forces of the cables,
which are calculated through the inverse dynamics), then the value of jth component in
e1 is

e1(j) =


0.02i f e1(j) > 0.02
−0.02i f e1(j) < −0.02

KPF∆T(j) + KDF[∆T(j)− ∆T′(j)]
(29)

∆T′: value of ∆T at previous period.
Let ∆L(j) = LT(j)− DF(j), then the value of jth component in e2 is

e2(j) =


0.02i f e2(j) > 0.02
−0.02i f e2(j) < −0.02

KPP∆L(j) + KDP[∆L(j)− ∆L′(j)]
(30)
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∆L′: value of ∆L at previous period.
The “PID” controller integrates the input variables e1, e2 to obtain the integrated errors

E. And then E are combined with the current LT to obtain the motor displacements, Ls,
which is required by the drivers. As the cables have various load characteristics and
lengths, the PID parameters are different for each cable, as shown in Table 1. Moreover,
because the regular integrator element would result in the instability of the system, i.e.,
causing too large or small cable forces, the weighting factor is added for the integrator
element to weaken the influence of historical errors. Thus, the stability of the system can be
improved. Let

es = e1 + e2 (31)

Then, the elements of E can be calculated by the following two equations (take Cj as
an example again),

E(j) = KPA(j)es(j) + KDA(j)∆es + KIA(j)S′E(j) (32)

SE = E + ρS′E (33)

∆es: difference between current es and last es.
SE: sum of historical weighted E.
S′E: value of SE at previous period.
Then, the motor displacements Ls are

Ls = LT + E (34)

Thus, the CSR’s dual-loop controller has been designed.

6. Experimental Results and Discussion

To substantiate the effectiveness and reliability of the proposed dual-loop control
strategy, a series of experiments have been presented on a CSR prototype. To illustrate the
superiority of the proposed method, the CSR prototype not only has run the dual-loop
mode motion test, but also the comparison experiments, i.e., the open-loop and single-loop
(pose-loop) modes tests. According to the material property, the coulomb friction coefficient
has been set as µ = 0.14. The experiments can be divided into three parts, single joint test,
multiple joints test, and continuous motion test.

6.1. Single Joint Test

Single joint test refers to rotating a single joint of the CSR and then comparing the
difference among the feedback joint angles. Table 2 shows the test data of α6. Because of
the nonlinear coupling relations among the cables and the universal joints, the other joint
angles would be influenced even if we changed only one joint angle. Thus, the recording
data are not limited to α6, but also are with α1,α2, . . .α5, β1, β2, . . .β6. Moreover, the other
joints have also been tested with various joint angles. However, since the results of different
joints tests are similar, we have not listed them one by one.

The single joint test results show that the steady-state accuracy of the dual-loop control
mode has been significantly improved. The accuracy of the single-loop mode is slightly
improved compared to the open-loop. Furthermore, it can be found that the smaller the
joint rotation angle, the higher the accuracy of the single-loop.
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Table 2. Single joint test of Joint6.

Reference Angles
Feedback Angles

Open-Loop Single-Loop Dual-Loop
α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

10◦ 0◦




−0.101◦ 0.066◦

0.051◦ −0.074◦

0.000◦ −0.055◦

−0.021◦ 0.138◦

0.006◦ −0.085◦

10.261 ◦ 0.143◦




0.261◦ 0.011◦

−0.377◦ −0.139◦

−0.055◦ 0.181◦

0.221◦ −0.137◦

0.094◦ 0.069◦

9.921 ◦ −0.033◦




0.011◦ −0.003◦

−0.016◦ −0.081◦

0.014◦ 0.066◦

0.006◦ 0.023◦

0.003◦ −0.016◦

10.009 ◦ 0.000◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

20◦ 0◦




−0.112◦ 0.077◦

0.062◦ −0.096◦

0.011◦ −0.066◦

−0.021◦ 0.138◦

0.006◦ −0.096◦

20.500 ◦ 0.198◦




0.261◦ 0.000◦

−0.399◦ −0.128◦

−0.055◦ 0.181◦

0.221◦ −0.126◦

0.094◦ 0.080◦

20.204 ◦ −0.022◦




0.000◦ 0.008◦

−0.016◦ −0.081◦

0.013◦ 0.088◦

0.006◦ −0.001◦

−0.008◦ 0.006◦

20.017 ◦ 0.011◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

0◦ 0◦

30◦ 0◦




−0.112◦ 0.055◦

0.073◦ −0.074◦

0.011◦ −0.055◦

−0.021◦ 0.127◦

−0.005◦ −0.096◦

30.762 ◦ 0.231◦




0.261◦ 0.000◦

−0.388◦ −0.128◦

−0.055◦ 0.170◦

0.210◦ −0.126◦

0.094◦ 0.080◦

30.432 ◦ −0.011◦




0.000◦ −0.003◦

−0.016◦ −0.081◦

0.014◦ 0.088◦

0.006◦ 0.001◦

0.003◦ −0.016◦

30.004 ◦ 0.000◦



6.2. Multiple Joints Test

The multiple joints test refers to rotating multiple joints of the CSR and then comparing
the difference among the feedback joint angles. Table 3 presents the data of the multiple
pitch joints test, i.e., α3,α4,α5,α6. Table 4 presents the data of the multiple yaw joints test,
i.e., β3, β4, β5, β6. Table 5 presents the data of the multiple pitch and yaw joints test, i.e.,
Joint3, Joint4, Joint5, Joint6.

Table 3. Multiple pitch joints test.

Reference Angles
Feedback Angles

Open-Loop Single-Loop Dual-Loop
α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

5◦ 0◦

5◦ 0◦

5◦ 0◦

5◦ 0◦




−0.189◦ 0.022◦

0.941◦ 0.014◦

4.296 ◦ 0.016◦

5.351 ◦ 0.050◦

4.994 ◦ −0.041◦

5.197 ◦ −0.033◦




−0.288◦ 0.011◦

0.469◦ 0.003◦

4.296 ◦ 0.115◦

5.186 ◦ −0.104◦

5.664 ◦ −0.118◦

4.570 ◦ −0.154◦




−0.014◦ 0.000◦

0.018◦ 0.003◦

4.999 ◦ −0.006◦

5.000 ◦ 0.006◦

5.005 ◦ −0.008◦

4.999 ◦ 0.000◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

10◦ 0◦

10◦ 0◦

10◦ 0◦

10◦ 0◦




−0.200◦ 0.011◦

0.941◦ 0.003◦

9.503 ◦ 0.016◦

10.427 ◦ 0.028◦

10.157 ◦ −0.030◦

10.162 ◦ −0.022◦




−0.277◦ 0.022◦

0.469◦ 0.003◦

10.349 ◦ 0.115◦

9.702 ◦ −0.115◦

10.883 ◦ −0.140◦

9.470 ◦ 0.209◦




−0.003◦ 0.000◦

0.007◦ −0.008◦

9.987 ◦ −0.006◦

9.988 ◦ −0.016◦

10.004 ◦ −0.008◦

9.998 ◦ 0.000◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

15◦ 0◦

15◦ 0◦

15◦ 0◦

15◦ 0◦




−0.200◦ 0.022◦

0.919◦ 0.003◦

14.667 ◦ 0.005◦

15.547 ◦ 0.017◦

15.431 ◦ −0.041◦

15.106 ◦ −0.033◦




−0.310◦ 0.011◦

0.469◦ 0.003◦

15.524 ◦ 0.115◦

14.800 ◦ −0.093◦

16.222 ◦ −0.250◦

14.392 ◦ 0.319◦




−0.003◦ 0.011◦

−0.015◦ 0.003◦

14.996 ◦ −0.005◦

15.008 ◦ 0.006◦

15.002 ◦ −0.003◦

15.007 ◦ 0.011◦
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Table 4. Multiple yaw joints test.

Reference Angles
Feedback Angles

Open-Loop Single-Loop Dual-Loop
α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 5◦

0◦ 5◦

0◦ 5◦

0◦ 5◦




0.063◦ −0.011◦

−0.092◦ 0.003◦

−0.077◦ 5.103 ◦

0.056◦ 4.686 ◦

0.061◦ 5.441 ◦

−0.066◦ 4.790 ◦




0.272◦ −0.044◦

−0.619◦ 0.102◦

0.363◦ 4.916 ◦

−0.021◦ 4.807 ◦

0.039◦ 5.496 ◦

−0.121◦ 4.636 ◦




−0.046◦ 0.033◦

0.025◦ 0.025◦

0.011◦ 5.004 ◦

−0.010◦ 5.005 ◦

−0.005◦ 4.991 ◦

0.000◦ 4.999 ◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 10◦

0◦ 10◦

0◦ 10◦

0◦ 10◦




0.140◦ −0.022◦

−0.081◦ −0.041◦

−0.088◦ 10.277 ◦

0.045◦ 9.531 ◦

0.039◦ 10.451 ◦

−0.077◦ 9.756 ◦




0.294◦ −0.077◦

−0.608◦ 0.069◦

0.385◦ 10.101 ◦

−0.131◦ 9.652 ◦

0.028◦ 10.517 ◦

−0.088◦ 9.580 ◦




−0.046◦ 0.033◦

0.040◦ 0.025◦

0.000◦ 9.992 ◦

0.001◦ 10.015 ◦

−0.005◦ 10.001 ◦

0.000◦ 10.009 ◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

0◦ 15◦

0◦ 15◦

0◦ 15◦

0◦ 15◦




0.206◦ −0.044◦

−0.059◦ −0.074◦

−0.165◦ 15.408 ◦

0.023◦ 14.442 ◦

0.028◦ 15.417 ◦

−0.077◦ 14.733 ◦




0.316◦ −0.099◦

−0.553◦ 0.036◦

0.406◦ 15.265 ◦

−0.263◦ 14.508 ◦

0.028◦ 15.527 ◦

−0.011◦ 14.491 ◦




−0.046◦ −0.022◦

0.029◦ 0.014◦

0.000◦ 15.001 ◦

−0.001◦ 15.024 ◦

0.017◦ 14.966 ◦

−0.011◦ 15.007 ◦



Table 5. Multiple pitch and yaw joints test.

Reference Angles
Feedback Angles

Open-Loop Single-Loop Dual-Loop
α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

5◦ −5◦

5◦ 5◦

−5◦ 5◦

−5◦ −5◦




−0.079◦ 0.011◦

−0.103◦ −0.030◦

5.537 ◦ −5.010 ◦

4.879 ◦ 5.565 ◦

−5.542 ◦ 4.782 ◦

−4.603 ◦ −5.306 ◦




0.239◦ 0.044◦

−0.619◦ −0.392◦

5.702 ◦ −4.307 ◦

4.791 ◦ 4.807 ◦

−5.059 ◦ 5.112 ◦

−5.032 ◦ −5.240 ◦




0.008◦ 0.000◦

−0.004◦ −0.008◦

4.999 ◦ −4.999 ◦

4.978 ◦ 4.994 ◦

−5.004 ◦ 5.002 ◦

−4.999 ◦ −5.010 ◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

5◦ −5◦

5◦ 5◦

−5◦ 5◦

−5◦ −5◦




−0.079◦ 0.022◦

−0.103◦ −0.030◦

10.613 ◦ −10.393 ◦

10.054 ◦ 10.948 ◦

−10.739 ◦ 10.122 ◦

−9.382 ◦ −10.723 ◦




0.327◦ 0.033◦

−0.773◦ −0.030◦

10.833 ◦ −10.327 ◦

9.988 ◦ 10.784 ◦

−10.574 ◦ 9.891 ◦

−9.404 ◦ −10.272 ◦




−0.003◦ −0.011◦

−0.004◦ −0.008◦

9.998 ◦ −9.998 ◦

9.988 ◦ 10.004 ◦

−10.002 ◦ 10.001 ◦

−9.998 ◦ −9.998 ◦




α1 β1
α2 β2
α3 β3
α4 β4
α5 β5
α6 β6

 =


0◦ 0◦

0◦ 0◦

15◦ −15◦

15◦ 15◦

−15◦ 15◦

−15◦ −15◦




−0.101◦ 0.011◦

−0.169◦ −0.008◦

15.645 ◦ −15.634 ◦

15.140 ◦ 16.090 ◦

−15.759 ◦ 15.615 ◦

−14.172 ◦ −16.029 ◦




0.239◦ 0.033◦

−0.619◦ −0.008◦

15.963 ◦ −15.546 ◦

15.974 ◦ 15.914 ◦

−15.617 ◦ 15.340 ◦

−14.161 ◦ −15.601 ◦




0.008◦ −0.011◦

−0.004◦ −0.008◦

14.985 ◦ −15.029 ◦

15.008 ◦ 15.024 ◦

−15.001 ◦ 15.043 ◦

−14.974 ◦ −15.040 ◦



The multiple joints test results further demonstrate the advantages of dual-loop control,
i.e., the higher precision with faster response. Unlike the single joint test, the accuracy of
the single-loop mode is not significantly improved compared to the open-loop. Especially
when the joint angles are relatively large, sometimes the accuracy of the single-loop mode
would be even lower. Figure 10 shows three groups of photos, which show the postures of
the CSR when the joints are at different angles. Figure 10a shows the simultaneous motion
of multiple pitch joints. Figure 10b shows the simultaneous motion of multiple yaw joints.
Figure 10c shows the simultaneous composite motion of multiple pitch and yaw joints.
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Figure 10. Multiple joints motions: (a) Motion of multiple pitch joints; (b) motion of multiple yaw 
joints; (c) composite motion of multiple pitch and yaw joints. 

6.3. Continuous Motion Test 
Continuous motion test refers to comparing the dynamic performance of each control 

strategy when the CSR moves along the planned path. Because of the instability of the 
single-loop, the paper has not conducted a continuous motion test of this motion mode. 
Figure 11 shows the photos of CSR during the motion. During the test, CSR performed 

Figure 10. Multiple joints motions: (a) Motion of multiple pitch joints; (b) motion of multiple yaw
joints; (c) composite motion of multiple pitch and yaw joints.

6.3. Continuous Motion Test

Continuous motion test refers to comparing the dynamic performance of each control
strategy when the CSR moves along the planned path. Because of the instability of the
single-loop, the paper has not conducted a continuous motion test of this motion mode.
Figure 11 shows the photos of CSR during the motion. During the test, CSR performed the
tip-following motion, i.e., the centers of all joints would follow the motion trajectory of the
CSR’s end. The photos have been sorted alphabetically according to the motion sequence.
Figure 12a shows the variation in the joint angles when the CSR executes the open-loop
motion mode. Figure 12b shows the variation in the joint angles when the CSR executes
the dual-loop motion mode. In the figures, α4, α5, α6 correspond to the desired values, and
α(4), α(5), α(6) correspond to the feedback joint angles.
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Figure 12. Variation of joint angles: (a) Open-loop; (b) dual-loop.

If we take the joint angle errors as the research object, then the relationships between
the errors and time can be shown in Figure 13. The figures show the errors are relatively
smaller with the closed-loop control, especially when the joint angles are large. Furthermore,
when the proximal joints keep still, their joint angle errors of the open-loop control are tiny.
That is because the cables driving these proximal joints keep still, which can effectively
promise the stillness of these proximal joints.
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Furthermore, the CSR’s quantitative performance could be analyzed with the integral
square error (ISE) criteria. The corresponding ISE values are,

ISEopen =

ISEα1 ISEβ1
...

...
ISEα6 ISEβ6

 =

[
0.069 0.294 0.328 8.600 63.949 24.320
0.001 0.096 0.452 0.389 3.778 1.341

]T

(35)

ISEclosed =

[
0.082 0.174 0.039 0.740 4.202 3.769
0.198 0.010 0.742 0.265 0.107 0.010

]T

(36)
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ISEα1(i = 1, 2, . . . 6): ISE value of α1.
ISEβ1(i = 1, 2, . . . 6): ISE value of β1.
ISEopen: ISE value of all the joint angles corresponding to open-loop.
ISEclosed: ISE value of all the joint angles corresponding to closed-loop.
The continuous motion test results show that CSR is unable to adjust its posture in

the open-loop motion mode, resulting in poor motion accuracy. In particular, when the
joint angle is relatively large, the errors will expand more severely. On the contrary, the
dual-loop motion mode has a good tracking performance on the expected trajectory. That
indicates its dynamic and steady-state accuracy are both relatively high.

6.4. Discussion

According to Section 5.1, there are multiple types of errors during CSR’s motion. All of
these will affect CSR’s accuracy. Thus, the closed-loop control can significantly improve its
motion effect. The three types of experiments show the dual-loop mode always has the best
steady-state and dynamic performance. In particular, during the continuous motion test,
the CSR in dual-loop motion mode not only has higher accuracy but also smoother motion.
That successfully verifies the feasibility and superiority of the dual-loop control strategy.

According to Section 5.2, the instability may occur during the continuous execution of
the single-loop mode, i.e., the single-loop mode is without a reliable steady-state. The tests
of Sections 6.1 and 6.2 show that the more rotating joints and the greater the rotation angles,
the more pronounced the instability. In contrast, the dual-loop control strategy notably
improves the accuracy of each joint and maintains the motion accuracy well. That verifies
the importance of the force-loop.

In essence, the dual-loop control strategy not only solves the problem of low accuracy
in the open-loop mode, but also solves the defect of low stability in the single-loop mode.
After verification, the dual-loop mode can greatly improve the motion performance of CSR
and meet the requirements of most engineering applications.

7. Conclusions

This article designs a type of cable-driven snake-like robot. The robot not only has joint
angle sensors to detect the robot posture status, but also has force transducers to collect the
driving force data of the cables. Moreover, these two sensors are installed on the CSR in a
very compact way via the ingenious structural design. Afterwards, through studying the
kinematic model based on the link eigen vectors and the corresponding inverse dynamics,
the kinematic and dynamic variables needed for dual-loop control could be calculated. As
a result of studying the sources of the errors during CSR’s motion and the practicability
of closed-loop control, a reliable, stable, and high-precision dual-loop control strategy is
proposed. Finally, the experiments have fully proved the effectiveness of the dual-loop
control strategy.

In the future, we will study a more intelligent control strategy that can automatically
adjust the PID parameters according to the environment load. Moreover, the sources of
error will be subjected to more elaborate analysis. Thus, the more adaptable and accurate
control strategy of CSR can be realized.
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