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Abstract: Geometric errors are the main factors affecting the output accuracy of the parallel spindle
head, and it is necessary to perform a sensitivity analysis to extract the critical geometric errors.
The traditional sensitivity analysis method analyzes the output position and orientation errors
independently, defining multiple sensitivity indices and making it difficult to determine critical
geometric errors. In this paper, we propose sensitivity indices that can comprehensively consider
position and orientation errors. First, the configuration of the hybrid machine tool is introduced, and
the TCP position error model is derived. Then, the tool radius and the effective cutting length are
introduced, and the sensitivity indices are defined. After that, the sensitivity analysis of the 3-DOF
parallel spindle head is performed using the proposed sensitivity indices, and six critical geometric
errors are extracted. The machining accuracy of the parallel spindle head can be greatly improved
by improving the critical geometric errors. The proposed sensitivity analysis method can provide
important guidance for machine tool accuracy design.

Keywords: parallel spindle head; sensitivity analysis; sensitivity indices; critical geometric errors

1. Introduction

Due to the large demand for complex parts, five-axis machine tools are widely used in
production practice [1,2]. Among them, hybrid machine tools combine the advantages of
high stiffness, low inertia, and high flexibility of the parallel mechanism and the advan-
tages of a large working space for the series mechanism, which have higher machining
efficiency compared with traditional five-axis machines and become ideal configurations
for aerospace machining [3–5].

Accuracy performance is the main index that evaluates the effectiveness of machining,
fabrication, and deburring [6–8]. The factors affecting the accuracy of machine tools mainly
include geometric errors, thermal errors, load-induced structural deformation errors, and
servo errors [9,10]. Among them, geometric error is the main error source, accounting for
40–50% of the total error source [11]. For the hybrid machine tool, due to the existence of a
large number of limbs and passive joints, the geometric error of the parallel spindle head is
the main factor causing the error [12,13]. Therefore, how to improve the geometric accuracy
of the parallel spindle head is the key to ensuring the machining accuracy of the hybrid
machine tool.

There are two ways to improve the geometric accuracy of parallel spindle heads:
precision design and error compensation [14]. Precision design refers to the elimination
of possible error sources in the design, manufacturing, and assembly of machine tools by
optimizing materials and structures and ensuring assembly quality [15]. The corresponding
error compensation technology, mainly through the establishment of an error model and
the measurement and identification of each error parameter, compensates the identified
error in real time in practical application to improve the accuracy [16,17]. Whether it is a
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precision design or error compensation, it is important to evaluate the error parameters.
Therefore, establishing the relationship between the error parameters and output errors and
performing a sensitivity analysis is the key to accuracy improvement. By comparing the
sensitivity indices, the structural errors that have a greater impact on machining accuracy
can be extracted so that more attention can be paid to them in the process of design,
manufacture, assembly, and use.

Error modeling is used to establish the relationship between the geometric error
parameters and the output errors [18]. According to the different methods of mathematical
description of joint motion, the error modeling methods can be divided into the matrix
method [19,20], the screw method [21,22], and the vector method [23,24]. The matrix
method, taking the D-H method as an example, mainly establishes a local coordinate
system in each component, describes the motion relationship of adjacent components
through the homogeneous transformation matrix, and constructs the relationship between
each error parameter and the output error with the matrix product, differentiation, and
other operations. However, the presence of multiple limbs and passive joints of parallel
mechanisms makes the matrix method very difficult to model. The screw method represents
the instantaneous motion of the moving and rotating joints by means of screws and then
obtains the motion of the moving and rotating joints by integrating the screws. However, the
complexity of the derivation, the lack of practical physical meaning of the error parameters,
and the severe parameter redundancy greatly limit its use in error modeling of parallel
mechanisms. The vector method is used to construct closed-loop vector equations and then
differentiate each parameter and simplify them by vector operations to obtain the transfer
relationship between the error parameters and the output error. The vector expression form
is intuitive, and the physical meaning is clear, which is very suitable for the error modeling
of parallel mechanisms with closed-loop structural features, and the closed-loop vector
method is used for geometric error modeling in this paper.

Error sensitivity refers to the influence of each geometric error parameter on the output
error, and sensitivity analysis can guide the extraction of the critical geometric error of the
mechanism [25] and provide a basis for the optimization of mechanical performance [26,27].
The sensitivity analysis of the geometric error is mainly divided into two types: local
sensitivity analysis (LSA) and global sensitivity analysis (GSA) [28]. LSA is mainly used
to analyze the effect of geometric error on the output error when the tool is located at a
particular pose, while GSA analyzes the average effect of error parameters on the output
error in the entire workspace. Patel [29] analyzed the error sensitivity of the Hexapod
parallel machine tool by approximate linear error mapping. Fan [30] analyzed the sensitivity
of the 3-PRS parallel mechanism and identified its critical errors using the partial differential
method based on the error transform vector. Defining the sensitivity index is the key
to sensitivity analysis. Since the output error contains both position and orientation
errors, multiple sensitivity indices exist when the elements in the output error vector are
analyzed independently in the traditional sensitivity analysis method. And the position
and orientation errors are inhomogeneous, making it difficult to compare multiple error
sensitivity indices and thus difficult to identify critical geometric errors. Jiang [31] and
Du [32] used the Monte Carlo algorithm to analyze the sensitivity of the 3-DOF parallel
spindle head as well as the 2UPR-RPU over-constrained parallel manipulator, respectively,
but they constructed two sensitivity indices for output position and orientation, respectively,
which are still difficult to compare. To solve this problem, the influence of geometric error
on the tool orientation error is ignored, and only the tool center point (TCP) position error
is considered to construct the error sensitivity index in Refs. [33–35], which can reduce the
number of sensitivity indices and facilitate the comparison. However, the tool orientation
error also has a large impact on the machining accuracy, and ignoring the orientation error
leads to incomplete error sensitivity analysis. Li [36] proposed a sensitivity analysis method
for the position and orientation errors by introducing the average cutting length, but the
method actually converts the orientation error into the positional error of a point on the
tool, whereas in the actual cutting process, the actual cutting is performed not just at a point
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on the tool, and thus the method cannot fully reflect the impact on machining accuracy. In
addition, most of the sensitivity analysis methods are based on the error values of position
and orientation errors or the TCP position error modulus to model the sensitivity indices;
however, when the tool is in different poses, the same position error values bring different
impacts on machining accuracy, and the traditional methods cannot consider the impacts of
the error values on the machining accuracy in different pose, which results in an incomplete
analysis of the error sensitivity. In summary, it is necessary to propose a single sensitivity
index that comprehensively considers position and orientation errors and can directly
evaluate the effect of geometric errors on machining accuracy at each pose.

In this paper, a new method of sensitivity analysis is proposed. By introducing the tool
radius and effective cutting length, a sensitivity index that can comprehensively consider
the position and orientation errors is defined, which solves the problem that the traditional
sensitivity indexes are difficult to compare and cannot fully reflect the machining accuracy.

Following this section, in Section 2, the configuration of the hybrid machine tool is
introduced, and the TCP position error model is derived using the closed-loop vector method.
In Section 3 the error sensitivity indices are defined. In Section 4, the error sensitivity of
the 3-DOF parallel spindle head is analyzed using the proposed sensitivity indices, and the
simulation results are discussed. Finally, the conclusion of this paper is given.

2. Configuration and Error Modeling
2.1. Configuration

Figure 1 shows the five-axis hybrid machine tool studied in this paper, which consists
of a working platform and a 3-DOF parallel spindle head mounted on a column. A base
platform and a moving platform are connected by three identical PRRU limbs to form the
3-DOF parallel spindle head, as shown in Figure 1b. Here P, R, and U denote prismatic,
revolute, and universal joints, respectively. The three P joints are actuated joints. The
parallel spindle head can realize Z-direction movement and rotation around the X and Y
axes and cooperate with the XY platform to realize 5-DOF motion. The XY platform is
essentially two perpendicular linear axes with a very simple structure, making it easy to
compensate for geometric errors. The 3-DOF parallel spindle head has a complex structure
with a large number of limbs and passive joints, resulting in a large manufacturing and
assembly error. And the nonlinear motion characteristics of the parallel spindle head lead
to difficulties in compensating for its geometric errors. Therefore, the geometric error
of the 3-DOF parallel spindle head is the main source of geometric error in the five-axis
hybrid machine tool. This paper mainly analyzes the error sensitivity of this 3-DOF parallel
spindle head.
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2.2. TCP Position Error Modeling

In kinematic studies, the 3-PRRU structure can be simplified to a 3-PRS mechanism.
For each limb, its closed-loop vector equation is constructed.

H + RTTRiai = Ribi + RiRBiqi + RiRBiRCili (1)

where ai, bi, and li are shown in Figure 2. H = [x y z]T denotes the vector OO’, qi represents
the drive vector, Ri represents the rotation matrix of each limb, and RBi and RCi denote the
rotation matrices of the P and R joint. RTT represents the orientation matrix of the moving
platform, which is described using the T-T angle [37,38] to decouple the rotation around
the Z’ axis from the other two rotations.

RTT =

cos ϕ − sinϕ 0
sin ϕ cos ϕ 0

0 0 1

 cos θ 0 sin θ
0 1 0

− sinθ 0 cos θ

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

cos ψ − sinψ 0
sin ψ cos ψ 0

0 0 1

 (2)
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The error transfer relationship for the parallel spindle head is obtained by taking a
partial derivative of Equation (1).

∆H + ∆α× (RTTRiai) + RTTRi∆ai =
Ri∆bi + ∆qiRiRBiqi/qi + (RiRBi∆θBi)× (RiRBiqi) + ∆liRiRBiRCili/li
+(RiRBi∆θBi)× (RiRBiRCili) + (RiRBiRCi∆θCi)× (RiRBiRCili)

(3)

Here, ∆ denotes the error vector. ∆ai and ∆bi denote the geometric error vector of ai,
bi, respectively. ∆qi and ∆li denote the input error of the P joint and the length error of the
link, respectively. ∆θBi and ∆θCi are the orientation error vectors of orientation matrix RBi
and RCi, respectively. ∆H = [∆x ∆y ∆z]T and ∆α = [∆αx ∆αy ∆αz]T denote the position and
orientation error of the center of the moving platform, and a total of 42 error parameters
are included in this error model, i.e., dr = [∆qi ∆li ∆aix ∆aiy ∆aiz ∆bix ∆biy ∆biz ∆θBix ∆θBiy
∆θBiz ∆θCix ∆θCiy ∆θCiz] (i = 1, 2, 3).

Use wi to denote RiRBiRCili and multiply wi on both sides of Equation (3).

wi
T∆H + [(RTTRiai)×wi]

T∆α = wi
TRi∆bi + ∆qiwi

TRiRBiqi/qi

+[(RiRBiqi)×wi]
TRiRBi∆θBi + ∆li −wi

TRTTRi∆ai
(4)
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Similarly, using vi to denote RiRBiRCie2, multiply vi on both sides of Equation (3).
Here, e2 = [0 1 0]T.

vi
T∆H + [(RTTRiai)× vi]

T∆α = vi
TRi∆bi + [(RiRBiqi)× vi]

TRiRBi∆θBi

+[wi × vi]
TRiRBi∆θBi + [wi × vi]

TRiRBiRCi∆θCi − vi
TRTTRi∆ai

(5)

Combining Equations (4) and (5) gives:

Adp = Bdr (6)

where dp = [∆HT ∆αT]T and dr = [dr1
T dr2

T dr3
T]T. dri is the geometric error vector of limb

i. dri, A, and B can be expressed as:

dri = [∆qi ∆li ∆ai
T ∆bi

T ∆θBi
T ∆θCi

T]
T

A =



w1
T [(RTTR1a1)×w1]

T

w1
T [(RTTR2a2)×w2]

T

w1
T [(RTTR3a3)×w3]

T

v1
T [(RTTR1a1)× v1]

T

v2
T [(RTTR2a2)× v2]

T

v3
T [(RTTR3a3)× v3]

T


, B =



τ1
τ2

τ3
ρ1

ρ2
ρ3

,

where:

τi =
[

wi
TRiRBiqi/qi 1 −wi

TRTTRi wi
TRi [(RiRBiqi)×wi]

TRiRBi 01×3

]
ρi =

[
0 0 −vi

TRTTRi vi
TRi [(RiRBiqi)× vi]

TRiRBi + [wi × vi]
TRiRBi [wi × vi]

TRiRBiRCi

] (7)

Equation (6) contains both position and orientation vectors and is not suitable for error
sensitivity analysis. Since the position error of the TCP is affected by both the position and
orientation errors of the moving platform, the TCP position error model is derived to avoid
the non-uniformity of the position and orientation errors. When the tool length is L, the
TCP position can be expressed as:

P = H + RTT ·
[
0 0 L

]T (8)

where P = [X Y Z]T. Derivation of the above equation gives:

dP = CdpTT (9)

where dpTT = [∆x ∆y ∆z ∆ϕ ∆θ ∆ψ]T represents the pose error based on the T-T angle, and we
can obtain the transformation relationship between [∆ϕ ∆θ ∆ψ]T and [∆αx ∆αy ∆αz]T as:∆αx

∆αy
∆αz

 =

dψcϕsθ − dϕcϕsθ − dθsϕ
dθcϕ− dϕsϕsθ + dψsϕsθ

dϕ− dϕcθ + dψcθ

 = D

∆ϕ
∆θ
∆ψ

 (10)

Based on Equations (6), (9) and (10), the TCP position error transfer model can be
expressed as:

dP = C


1 0 0
0 1 0
0 0 1

D−1

A−1Bdr = Tdr (11)

Observing Equation (6), the coefficients of ∆biz and ∆qi, and ∆θBiz and ∆θCiz are the
same; they are redundant with each other and have the same effect on the output error, and
the coefficient of ∆θCiy is 0, which does not have any effect on the terminal error. In order
to simplify the analyzing process, we keep only one of them for the redundant parameters
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and eliminate ∆θCiy. T can represent the transfer relationship between the geometric error
parameters and the TCP position error. The use of the T for error sensitivity modeling
avoids the problem of difficult comparisons caused by the non-uniformity of the output
position and orientation errors.

3. Definition of Sensitivity Indices
3.1. Introduction of the Sensitivity Indices

Geometric error sensitivity indices are used to evaluate the effect of geometric error
parameters on the output errors. By comparing the sensitivity indices of each error param-
eter, it is possible to extract the error parameters that have a high impact on the output
error, i.e., the critical geometric error parameters from the error parameters. The sensitivity
indices are mainly categorized into local sensitivity indices (LSI) and global sensitivity
metrics (GSI). Here, the LSI is used to evaluate the effect of geometric error on the output
error at a particular pose, while the GSI is used to evaluate the average effect of geometric
error on the output error over the entire workspace.

In the traditional sensitivity analysis method, the definition of sensitivity indices
is directly related to the output of the error model, and a total of six sensitivity indices
are generally defined for three position errors and three orientation errors. And the non-
uniformity of the position and orientation leads to non-uniformity between the defined
sensitivity indices. The non-uniformity of the sensitivity indices as well as their excessive
number lead to an inability to effectively determine the critical geometric errors that have a
large impact on the output errors. For example, a certain geometric error may have a large
impact on orientation error but a small impact on position error, and then it is not possible
to make a comparison using six sensitivity indices.

In order to solve the problem, some scholars have simplified the sensitivity indices us-
ing only position or orientation errors [39,40], which, although convenient for comparison,
cannot fully reflect the impact of error parameters on machining accuracy. Figure 3 shows
the comparison of machining errors of milled slots in three different output error cases;
the cutting area of the tool is represented by an envelope cylinder. Due to the presence
of geometric errors, the actual tool does not overlap with the commanded tool and the
non-overlapping portion leads to machining errors, resulting in overcut or undercut. The
TCP position (TP) errors are the same in all three cases, and the tool orientation (TO) errors
are different. The TO errors in Figure 3a,c are equal in size and opposite in direction, and the
TO error in Figure 3b is zero. The TO error in Figure 3a increases the machining error and
has the largest machining error, and the TO error in Figure 3c decreases the machining error
and has the smallest machining error. Figure 3 illustrates that it is not reasonable to use the
TP error or TO error alone to evaluate the machine error; so, to perform a comprehensive
geometric error sensitivity analysis, the effects of both position error and orientation error
must be considered.

In addition, most of the traditional error sensitivity analyses are based on the values of
TP and TO errors (e.g., ∆X ∆Y ∆Z ∆ϕ ∆θ ∆ψ) or the TP error modulus (|dP|) for sensitivity
indices modeling; however, when the tool is in different orientation, the same TP or TO
error values bring different impacts on the machining accuracy. As shown in Figure 4,
Figure 4a,b show the machine in two different poses, and the TP and TO errors are the
same in both cases; however, due to the different machine poses, the impact of the same TP
error on the machining is different.

Therefore, it is unscientific to use the output error values for direct sensitivity modeling
under different orientations, and there is a need to propose a single sensitivity index that
comprehensively considers position and orientation errors and can directly evaluate the
effect of geometric errors on machining accuracy at each pose.
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3.2. Definition of the Sensitivity Indices

According to the analysis in Section 3.1, the consideration of output position or
orientation errors cannot fully reflect the influence of geometric error on machining accuracy,
and the essence of machining error is the error between the actual cutting area and the
theoretical cutting area. Given the tool radius R and tool length L, define the effective
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cutting length for Le. As shown in Figure 5, A1B1 represents the theoretical tool axis, and
the actual tool axis is A2B2 after being affected by geometric errors. That is, the theoretical
cutting area is a cylinder with A1B1 as the central axis and R as the radius, and the actual
cutting area is a cylinder with A2B2 as the central axis and R as the radius after being
affected by geometric errors. The portion of the theoretical and actual cutting area that fails
to intersect is the machining error (the amount of overcut or undercut). The theoretical
cutting area is denoted as Ω1, and the actual cutting area is denoted as Ω2. The volume of
Ω1 is V, and the volume of the part that fails to intersect is V1. For each geometric error
parameter, the resulting machining error V1 can be found at each pose, and wi = V1/V can
then be used to define the LSI and GSI.
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Thus, the sensitivity indices definition can be converted into a problem of solving the
volume of the intersecting part of two spatial cylinders, which can be solved efficiently
by the Monte Carlo method [41]. The Monte Carlo method is a stochastic simulation
method based on probability and statistical theory methods that uses random numbers to
solve computational problems. In order to randomly select points uniformly within the
theoretical cutting region, a cuboid containing Ω1 is first constructed, as shown in Figure 5.
Since the cross-product result of two vectors is always perpendicular to the original two
vectors as long as it is not 0, the three normal vectors of the cuboid are solved using the
characteristics of the cross-product operation.

n =
A1B1

|A1B1|
(12)

a =
n× [1 0 0]T∣∣∣n× [1 0 0]T

∣∣∣ (13)

i f a =
[
0 0 0

]T, a =
n× [0 1 0]T∣∣∣n× [0 1 0]T

∣∣∣ (14)

Since we need to take only any cuboid containing the theoretical cutting area, [1 0 0]T

and [0 1 0]T are taken, and other vectors can be taken.

b =
n× a
|n× a| (15)
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The three unitized normal vectors of the cuboid are obtained according to
Equations (12)–(15). Here, a, b, and n are the three unitized normal vectors of the cuboid,
and random points can then be selected:

Q = A1 + rand(−R, R) · a + rand(−R, R) · b + rand(0, Le) · n (16)

Q is the position vector of a randomly taken point Q within the outer cuboid of Ω1. rand(−R, R)
denotes the random number selected in [−R R]. Assuming that a total of N points is randomly
taken in this cuboid and assuming that there are m out of N points that fall within Ω1 and n out
of m points that fall within Ω2, the parameter wi can be expressed as follows according to the
Monte Carlo method:

wi = 1− n/m (17)

Specifically, the determination of whether the point Q is within the cutting area is:

i f A1Q× n < R and 0 < A1Q · n < Le, Q ∈ Ω1 (18)

i f A2Q× n2 < R and 0 < A2Q · n2 < Le, Q ∈ Ω2

here n2 = A2B2
|A2B2|

(19)

If the point Q satisfies Equation (18), then Q is located in the theoretical cutting area,
m = m + 1. If the point Q satisfies both Equations (18) and (19), then Q is located in the
intersection of the theoretical cutting area and the actual cutting area, n = n + 1. Thus, for a
given input vector and geometric error parameter vector, the LSI solution process using the
Monte Carlo method can be expressed as Algorithm 1.

Algorithm 1: LSI solving algorithm based on Monte Carlo method

INPUT: dr, L, Le, N, q
Begin
Step 1. Solve the coordinates of the points A1, B1, A2, and B2 corresponding to dr and q based on
the error kinematic model.
Step 2. Solve for n, a, and b according to Equations (12)–(15).
Step 3. Randomly generate N points inside the least outer cuboid according to Equation (16).
Step 4. Determine the number m of points within Ω1 and the number n of points in the region
where Ω1 intersects with Ω2 among the N points according to Equations (18) and (19).
Step 5. Then, the LSI corresponding to the error parameter dr and input vector q can be expressed
as wi = 1 − n/m.

The GSI can be defined as the integral of the parameter wi over the entire workspace,
indicating the average effect of each geometric error on machining accuracy for all possible
poses. The GSI can be expressed as:

Wi =

∫
W widW∫

W dW
(20)

where W represents the working space of the parallel spindle head, corresponding to the
motion space of the three input axes. Critical geometric errors that have a significant impact
on machining errors can be determined based on the LSI and GSI defined in this paper.

4. Error Sensitivity Analysis of the 3-DOF Parallel Spindle Head

In this section, the geometric error sensitivity of the 3-DOF parallel spindle head is
analyzed, and the critical errors are given based on the proposed sensitivity indices. Since
we are more concerned with the accuracy characteristics in the full workspace, the proposed
GSI is utilized here for the GSA. The motion range of the 3-DOF parallel spindle head is
qi ∈ [300 550] (i = 1, 2, 3). The tool radius is set to R = 10 mm, the tool length is set to
L = 150 mm, and the effective cutting length is set to Le = 35 mm. Since the three limbs of this
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3-DOF parallel spindle head are perfectly symmetrical, the sensitivity indices of the same type
of error on its different limbs are the same, e.g., GSI(∆a1x) = GSI(∆a2x) = GSI(∆a3x). Therefore,
it is sufficient to calculate the sensitivity indices corresponding to the error parameters of only
one of the limbs for the actual calculation. Here for limb 1, the GSI corresponding to each
geometric error parameter is calculated, and the results are shown in Figure 6.
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In order to show its percentage size more clearly, the GSI corresponding to each error
is plotted in the form of a pie chart, as shown in Figure 7. For the accuracy design, we need
to find the critical error parameters that have a large impact on the machine accuracy, and
the errors with a defined percentage of more than 5% are considered the critical geometric
errors, and according to the analysis results, the critical geometric errors are identified as
∆θBix and ∆θCix (i = 1, 2, 3).
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In order to validate the proposed sensitivity analysis method, all the geometric position
and orientation errors of the machine tool are set to 0.1 mm and 0.1◦, respectively. The
comparison of machine accuracy is carried out in the case of R = 10 mm and Le = 35 mm.
The maximum, mean, and root mean square (RMS) values of the actual cutting volume
error across the whole workspace for the four different cases of error parameters in Table 1
are shown in Figure 8.
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Table 1. The four machine accuracy design parameters used in the simulation.

Case Critical Geometric Errors Other Geometric Errors

1 Keep the initial value unchanged Keep the initial value unchanged
2 Reduce by half Keep the initial value unchanged
3 Keep the initial value unchanged Reduce by half
4 Reduce by half Reduce by half
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Figure 8. Maximum, mean, and root mean square (RMS) values of the actual cutting volume error
across the whole workspace for the four different cases.

The relative magnitudes of the maximum, mean, and RMS values of the cutting
volume error are consistent in all four cases. Taking the maximum value as an example,
compared with the initial design parameters, the output accuracy is improved by 59.60%
after reducing the critical geometric error, while the output accuracy is improved by only
4.55% after reducing other geometric errors. Considering the 63.15% improvement in
output accuracy when reducing all geometric error parameters, a good improvement in
machine accuracy can be achieved by reducing the critical geometric error. Meanwhile,
since the number of critical errors (six) is much smaller than the number of remaining
geometric errors, reducing the critical geometric errors achieves a better improvement of
the machine accuracy, indicating that the critical geometric errors identified in this paper
have a significant effect on the machine accuracy.

In addition, in order to illustrate the applicability of the proposed sensitivity analysis
method more effectively, the cutting volume errors for the four different cases of error pa-
rameters in Table 1 are compared after replacing different R and Le. Cases a–f in Table 2
correspond to the six cases of tool radius, as well as the effective cutting length, and the accu-
racy comparisons are shown in Figure 9. Since Figure 8 illustrates that the relative magnitudes
of the maximum, mean, and RMS values are consistent across the four cases, only the mean
values are compared. Simulation results show that under different machining parameters,
only changing the critical geometric error can improve the machine accuracy well, which
verifies the effectiveness of the sensitivity analysis method proposed in this paper.
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Table 2. Six cases of the tool radius and the effective cutting length.

Case R/mm Le/mm

a 6 25
b 6 45
c 8 25
d 8 45
e 12 25
f 12 45
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5. Conclusions

A sensitivity analysis method is proposed in this paper for the geometric error of
3-DOF parallel spindle heads. By establishing the TCP position error model, the non-
uniformity of the output position and orientation is avoided. By introducing the tool radius
and effective cutting length, the spatial error of the machine tool is directly converted into
the machining error, and a single sensitivity index that can comprehensively consider the
position and orientation errors is proposed, which solves the problem of the traditional
sensitivity analysis method not being able to analyze the output position and orientation
error uniformly. Meanwhile, since the defined sensitivity indices do not rely on the expres-
sion of a coordinate system, they can reflect the impact of errors on machining accuracy
under different poses. Based on the sensitivity analysis method proposed in this paper,
quantitative information on the sensitivity of the geometric error parameters and their
effect on machining errors is obtained. Six critical errors are extracted, and the validity of
the extracted critical errors is verified by simulations. By improving the critical errors, the
machining accuracy of the parallel spindle head can be greatly improved. The sensitivity
analysis method proposed in this paper can provide important guidance for the accuracy
compensation of five-axis machine tools.

In this paper, only the error sensitivity analysis method of the parallel spindle head
has been investigated, but we have not carried out the accuracy improvement research on
the physical prototype on the basis of error sensitivity analysis. Subsequently, optimization
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algorithms based on sensitivity analysis methods can be developed to improve the accuracy
performance of machine tools.
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