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Abstract: 3-XXRRU parallel manipulators (PMs) constitute a family of six-degrees-of-freedom (DOF)
PMs with three limbs of type XXRRU, where R and U stand for revolute pair and universal joint,
respectively, and XX indicates any actuated two-DOF mechanism that moves the axis of the first
R-pair. The members of this family share the fact that they all become particular 3-RRU structures
when the actuators are locked. By exploiting this feature, the present paper proposes a general
approach, which holds for all the members of this family, to analyze the instantaneous kinematics,
workspace, and kinetostatic performances of any 3-XXRRU PM. The results of this study include the
identification of singularity conditions without reference to a specific actuation system, the proposal
of two specific dimensionless performance indices ranging from 0 to 1, the determination of the
optimal actuation system, and the demonstration that 3-XXRRU PMs, when appropriately sized and
actuated, possess a broad singularity-free workspace that is also fully isotropic. These findings hold
significance in the context of the dimensional synthesis and control of 3-XXRRU PMs. Moreover,
when combined with the closed-form solutions for their positional analysis, as demonstrated in a
previous publication by the same authors, 3-XXRRU PMs emerge as intriguing alternatives to other
six-DOF PMs. The efficacy of the proposed approach is further illustrated through a case study.

Keywords: parallel manipulators; instantaneous kinematics; singularity analysis; workspace;
motion control

1. Introduction

Parallel manipulators (PMs) [1] feature an end effector (platform) connected to a frame
(base) by means of a number of kinematic chains (limbs) that can be of any type (i.e., either
open or closed or even hybrid chains). The multiple connections between the platform and
base make PMs stiffer and more precise than their serial counterparts but, at the same time,
make their kinematics more complex and their workspace smaller.

Usually, the number of limbs is equal to the degrees of freedom (DOF) of the PM,
and the limbs are open chains with one actuator per limb, which is located on or near
the base to reduce the mobile masses [1–4]. The higher the limb number, the smaller the
workspace since the number of possible limb collisions increases. Thus, reducing the limb
number without changing the DOF number and actuators’ locations is of interest. Such
a goal is reachable by using hybrid chains as limbs where more than one actuator per
limb, located on the base, controls as many joint variables through a suitable closed-chain
transmission. In the literature, a number of six-DOF PMs with only three limbs and more
than one actuator per limb have been proposed (see [5–14], for instance).
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In this context, the authors of the present paper together with Meneghini [15] have
proposed a family of six-DOF PMs with three limbs of XXRRU type1, where R and U stand
for revolute pair and universal joint, respectively, and XX indicates any actuated two-DOF
mechanism that moves the axis of the first R-pair. In addition, they have shown that both
the direct and the inverse position analyses of 3-XXRRU PMs are solvable in closed form.

The presence of singularities [16–22] can further reduce PMs’ useful workspace. By
considering the relationship between actuated-joint rates (inputs) and platform twist (out-
put) as an input–output relationship (hereafter named IOR) [16–20], singularities are mech-
anism configurations where the one-to-one correspondence, which the IOR2 states, between
actuated-joint rates and platform twist fails. With reference to the IOR, two instantaneous
kinematics problems are definable: the instantaneous inverse kinematics (IIK) problem,
which is the determination of one set of actuated-joint rates compatible with one assigned
platform twist, and the instantaneous forward kinematics (IFK) problem, which is the de-
termination of one platform twist compatible with one assigned set of actuated-joint rates.
Accordingly, three main types of singularities are identifiable [16]: (I) serial singularities,
which are mechanism configurations where the IIK is unsolvable, (II) parallel singularities,
which are mechanism configurations where the IFK is unsolvable, and (III) the mechanism
configurations where both the problems are unsolvable.

Serial singularities are by definition configurations from which the platform cannot
exit by moving along any direction (twist), that is, there is a local reduction in the platform’s
DOF number. Such a condition occurs at the workspace boundaries. Differently, parallel
singularities are by definition configurations where the actuated joints are not enough to
fully control the platform twist, that is, somehow, there is a local increase in the platform’s
DOF number. This condition can occur only in PMs and, unfortunately, it usually occurs
inside the workspace. The duality, the virtual work principle states between instantaneous
kinematics and statics, brings one to conclude that, at a parallel singularity, a small load
(even elementary) applied to the platform needs infinite generalized torques at least in
one actuator to be equilibrated. Moreover, the nearer the PM configuration to a parallel
singularity, the higher the internal loads in the links and the generalized torques in the
actuators. In short, a PM must stay far enough from parallel singularities to avoid its
breakdown. That is the reason why parallel singularities must be identified during PMs’
design and must be avoided during functioning. Therefore, the existence of parallel
singularities constitutes a further limitation to the useful workspace of a PM, which might
be even tighter than the one due to there being a high number of limbs.

The 3-XXRRU PMs, as proposed in [15], all share a common characteristic: when the
actuators are locked, they all transform into specific 3-RRU structures (refer to Figure 1). In
each RRU limb of these structures, the axes of the first three R-pairs are parallel, while the
axis of the fourth R-pair (i.e., the one fixed to the platform) is perpendicular to the axes of
all the other R-pairs3. Leveraging this characteristic, this paper presents a general approach
applicable to all such PMs. This approach is used to analyze the instantaneous kinematics,
workspace, and kinetostatic performance of any 3-XXRRU PM.

The key findings of this study are as follows:

(i) Identification of singularity conditions without the need to reference a specific actua-
tion system;

(ii) Introduction of two dimensionless performance indices ranging from 0 to 1;
(iii) Determination of the optimal actuation system;

1 The sequence of capital letters indicates the types of joints or sub-mechanisms encountered by moving from
the base to the platform along the limb.

2 It is worth noting that the input–output instantaneous relationship (IOR) of manipulators is always linear and
homogeneous both in the actuated-joint rates (inputs) and in the platform twist (output) [16,18] since it is the
time derivative of the mechanism constraint-equation system which is holonomic and time independent for
manipulators.

3 It is worth noting that a U joint consists of two R-pairs in series with mutually orthogonal axes, which intersect
one another at a point, named the center of the U joint.
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(iv) Demonstration that suitably sized and actuated 3-XXRRU PMs offer a broad, singularity-
free workspace that is fully isotropic.

These results hold significant relevance for the dimensional synthesis and control
of 3-XXRRU PMs. Moreover, the availability of closed-form solutions for their position
analysis problems positions 3-XXRRU PMs as intriguing alternatives to other six-DOF PMs.
The effectiveness of the proposed approach is further illustrated through a case study.

The paper is organized as follows. Section 2 provides the necessary background
materials on 3-XXRRU PMs, deduces their IOR for a general geometry, and presents their
singularity analysis together with how to evaluate their kinetostatic performances. Then,
Section 3 applies the found singularity conditions and performance indices to a case study,
and Section 4 discusses the results. Finally, Section 5 draws the conclusions.
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Figure 1. Notations: (a) a 3-RRU structure generated from a 3-XXRRU PM by locking the actuators
and (b) the i-th RRU limb, for i = 1, 2, 3, of the 3-RRU structure.

2. Materials and Methods

By considering each limb of a PM as a unique articulated joint whose DOF number is
equal to the limb connectivity4 [21–23], the general mobility criterion5 [21,22] brings one to
conclude that adding any number of limbs with connectivity equal to six does not reduce
the mobility of the platform with respect to the base (i.e., the resulting PM architecture
always has six DOFs). Limbs of XXRRU type have connectivity equal to six when the two
DOFs provided by the XX mechanism do not replicate any DOF provided by the remaining
RRU kinematic chain. In particular, the first three R-pairs of the RRU chain (Figure 1b),
which have parallel axes, generate a planar motion with a motion plane perpendicular to
the axes of these R-pairs. Then, the fourth R-pair of the RRU chain (i.e., the one adjacent
to the platform) adds a rotation around an axis that is parallel to the above-said motion
plane. Therefore, in order to make the platform motion a general six-DOF motion through
an XXRRU limb, the further two DOFs of the XX mechanism must provide either a general
reorientation of the above-said motion plane (i.e., a general change in the direction of the
axes of the first three R-pairs) or a translation perpendicular to the above-mentioned motion
plane together with a particular reorientation of the same plane that involves only one DOF.
If these conditions are respected in all three XXRRU limbs, the resulting 3-XXRRU PM will
have six DOFs.

4 The connectivity of a limb is by definition the DOF number of the kinematic chain constituted by platform and
base uniquely connected by that limb.

5 Such a criterion counts the DOF number, l, of a spatial mechanism through the formula l = 6(m − 1) − ∑
i=1,6

(6 −

i)ci where m is the number of rigid bodies and ci is the number of constraints with i DOF among the m bodies.
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When the actuators are locked, all of the 3-XXRRU PMs, presented in [15], become
3-RRU structures (Figure 1). In the i-th RRU limb (Figure 1b), for i = 1, 2, 3, the axis, (Ai,
ni)6, of the first R-pair is located through the coordinates of a point, Ai, belonging to it, and
a unit vector, ni, parallel to it. The axis, (Ci, mi), of the fourth R-pair, fixed to the platform,
is located through the coordinates of the center, Ci, of the U joint and a unit vector, mi,
parallel to it. Without losing generality, point Ai is chosen lying on the plane perpendicular
to ni that passes through Ci.

With these notations, the actuated two-DOF mechanism, XX, of the i-th limb may
change only two parameters chosen among the Ai coordinates and/or the ni components
by respecting the above-defined mobility conditions. Moreover, parallel singularities of 3-
XXRRU PMs correspond to configurations of the 3-RRU sub-structure at which the platform
can perform elementary motions.

2.1. Input–Output Instantaneous Relationship

The IOR of any 3-XXRRU PM of this family is deducible by time differentiating its
constraint equation system, which is writable as follows (see Figure 1b; hereafter, a bold
letter denotes a vector and a bold capital letter referable to a point denotes the position
vector of that point measured in a reference system fixed to the base):

(Ci −Ai) · ni = 0 i = 1, 2, 3 (1a)

mi · ni = 0 i = 1, 2, 3 (1b)

The time derivative of system (1) is:

.
Ci · ni =

.
Ai · ni + (Ai −Ci) ·

.
ni i = 1, 2, 3 (2a)

.
mi · ni = −mi ·

.
ni i = 1, 2, 3 (2b)

Let P and ω be a point fixed to the platform and the angular velocity of the platform,
respectively. Since points Ci and unit vectors mi, for i = 1, 2, 3, are fixed to the platform, the
following relationships of rigid-body mechanics hold [23]:

.
Ci =

.
P +ω× (Ci − P) i = 1, 2, 3 (3a)

.
mi = ω×mi i = 1, 2, 3 (3b)

whose introduction into Equations (2a) and (2b), after some simple rearrangements that
use the properties of the mixed product of three vectors, yields:

ni ·
.
P + [(Ci − P)× ni] ·ω = ni ·

.
Ai + (Ai −Ci) ·

.
ni i = 1, 2, 3 (4a)

(ni ×mi) ·ω = mi ·
.
ni i = 1, 2, 3 (4b)

6 Hereafter, a line will be denoted (P, u) where P is a point belonging to the line and u is a unit vector parallel to
the line.
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Equations (4a) and (4b) are writable in matrix form as follows:

[
NT HT

03×3 MT

]( .
P
ω

)
=



n1 ·
.

A1 + (A1 −C1) ·
.
n1

n2 ·
.

A2 + (A2 −C2) ·
.
n2

n3 ·
.

A3 + (A3 −C3) ·
.
n3

m1 ·
.
n1

m2 ·
.
n2

m3 ·
.
n3


(5)

where 03×3 is the 3 × 3 null matrix and $̂ =

( .
P
ω

)
is the platform twist; whereas N, M, and

H are 3 × 3 matrices defined as follows:

N =
[
n1 n2 n3

]
, M =

[
(n1 ×m1) (n2 ×m2) (n3 ×m3)

]
, (6a)

H =
[
(C1 − P)× n1 (C2 − P)× n2 (C3 − P)× n3

]
; (6b)

In system (5),
.

Ai and
.
ni, for i = 1, 2, 3, are linearly related to the actuated-joint

rates through linear and homogeneous expressions that depend on the type of two-DOF
mechanism XX, which is present in the XXRRU limb. System (5) is the IOR of a generic
3-XXRRU PM.

2.2. Singularity Analysis

The singularity analysis, which is the determination of the geometric/analytic condi-
tions that identify the singular configurations (singularities), practically consists of analyz-
ing the IOR of the PM, that is, system (5) for a 3-XXRRU PM.

Regarding the possible actuation choices for these PMs, system (5) immediately reveals
that, if the XX mechanisms only move points Ai, for i = 1, 2, 3, (i.e.,

.
n1 =

.
n2 =

.
n3 = 0),

the last three equations, which simply become MT ω = 0, always provide ω = 0 out of
singularities that make det(M) = 0. That is, with this actuation choice, the platform can only
translate and the 3-XXRRU becomes a 3-DOF translational PM (TPM). The so-obtained
TPM is somehow a more general geometry of the Cartesian TPM proposed by Kim and
Tsai in [24,25]. Moreover, since

.
Ai only appears in the dot product ni ·

.
Ai, the only motion

direction of point Ai that causes a platform motion is the one along ni. In particular, since
the time derivative of ni · ni = 1 yields ni ·

.
ni = 0, choosing

.
Ai = ai

.
ni where ai is an

arbitrary scalar constant would give ni ·
.

Ai = aini ·
.
ni = 0, that is, no effect on the platform

motion. In short, the XX mechanism of the i-th XXRRU limb can devote at most one actuator
to move point Ai and must move it only along ni, and an actuated prismatic (P) pair with
sliding direction parallel to ni that moves point Ai does not affect the platform translation
through the term ni ·

.
Ai when the direction of ni changes and the P pair is locked.

Differently, the same analysis, reveals that if the XX mechanisms only change the
directions of unit vectors ni, for i = 1, 2, 3, (i.e.,

.
A1 =

.
A2 =

.
A3 = 0), the platform can

perform a general 6-DOF motion since
.
ni, for i = 1, 2, 3, appears in all six equations of

system (5). In particular, since, in the last three equations of system (5),
.
ni appears only in

the dot product mi ·
.
ni, the component of

.
ni that makes the platform orientation change

is only the one along the direction of mi. Moreover, since, in the first three equations of
system (5),

.
ni appears only in the dot product (Ai −Ci) ·

.
ni, the component of

.
ni that makes

the platform translate is only the one along the direction of (Ai −Ci).
The conclusion is that the most effective actuation system is a two-DOF mechanism

that, firstly, controls the ni direction and then, after having obtained the desired platform
orientation, locks the ni direction through a system of clutches and brakes, and, eventually,
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uses one of the two actuators previously used to change the ni direction to make the
platform translate toward the desired final pose by moving Ai along the ni direction.

The above discussion of the possible actuation choices makes clear that when one
entry of the six-tuple that appears on the right-hand side of system (5) is equal to zero,
even though

.
Ai and/or

.
ni are different from zero, some of the actuated-joint rates are

indeterminate for an assigned platform twist, that is, a serial singularity occurs. Therefore,
from an analytical point of view, a serial singularity occurs when, provided that

.
Ai and/or

.
ni are different from zero, at least one of the following six conditions is satisfied:

ni ·
.

Ai + (Ai −Ci) ·
.
ni = 0 i = 1, 2, 3 (7a)

mi ·
.
ni = 0 i = 1, 2, 3 (7b)

Differently, a parallel singularity occurs when the six-tuple on the right-hand side of
system (5) is assigned, but the corresponding platform twist is not computable by solving
system (5). This can happen if and only if the determinant of the 6 × 6 matrix (parallel
Jacobian) that multiplies the platform twist on the left-hand side of system (5) is equal
to zero. Since this parallel Jacobian is an upper triangular block matrix, the following
relationship holds [26,27]:

det
(

NT HT

03×3 MT

)
= det(N)det(M) (8)

where, by remembering definition (6a), the following geometric/analytic explicit expres-
sions of det(N) and det(M) can be introduced:

det(N) = n1 · (n2 × n3), det(M) = (n1 ×m1) · [(n2 ×m2)× (n3 ×m3)]. (9)

Therefore, a parallel singularity occurs if and only if one or the other of the following
two conditions is satisfied:

n1 · (n2 × n3) = 0, (10a)

(n1 ×m1) · [(n2 ×m2)× (n3 ×m3)] = 0 (10b)

Since the left-hand sides of both Equations (10a) and (10b) are mixed products of unit
vectors, Equation (10a) (Equation (10b)) is satisfied if and only if the three unit vectors ni,
for i = 1, 2, 3, (the three unit vectors ni ×mi, for i = 1, 2, 3) are all parallel to a unique plane.
From a kinematic point of view, the analysis of system (5) reveals that, when Equation (10a)
(Equation (10b)) is satisfied, even though the actuated joints are locked, that is, even though
.

Ai = 0 and
.
ni = 0 for i = 1, 2, 3,

.
P (ω) has an indeterminate component along the direction

perpendicular to the unique plane the three unit vectors ni, for i = 1, 2, 3, (the three unit
vectors ni ×mi, for i = 1, 2, 3) are parallel to, that is, the platform can translate along (rotate
around a line parallel to) that direction.

2.3. Evaluation of Kinetostatic Performance

From a geometric point of view, the absolute value of the mixed product of three unit
vectors, ui, for i = 1, 2, 3, where ui can be either ni or ni ×mi, is equal to the volume of
the rhombohedron (Figure 2) whose three non-parallel edges are parallel to the three unit
vectors ui, for i = 1, 2, 3, and have a length equal to one. Such a volume ranges from 0,
when the rhombohedron is flattened, to 1, when the rhombohedron is a cube, and, in this
case, can be used as an dimensionless index, say ju (≡|u1 · (u2 × u3)|), of the distance of
a non-singular configuration from a parallel singularity since the greater the volume is,
the further away the configuration is from satisfying Equation (10). Such an index can be
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analytically expressed as a function of two angles, θ1,u and θ2,u (Figure 2), which range
from 0◦ to 90◦, as follows:

ju ≡ |u1 · (u2 × u3)| ≡ |λ1λ2λ3| = cos θ1,u sin θ2,u (11)

where λi, for i = 1, 2, 3, are the three eigenvalues of matrix U =
[
u1 u2 u3

]
.
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Equations (8), (9) and (11) bring one to build the following index, J, for evaluating the
kinetostatic performance of a 3-RRU configuration7:

J ≡ |n1 · (n2 × n3)||(n1 ×m1) · [(n2 ×m2)× (n3 ×m3)]| = jn jn×m = cos θ1,n sin θ2,n cos θ1,n×m sin θ2,n×m (12)

From a static point of view (Figure 3), the i-th limb applies to the platform one force,
Fini, where Fi is the signed magnitude, parallel to ni and with its line of action passing
through Ci, and one moment, Mi(ni × mi), where Mi is the signed magnitude, parallel
to (ni × mi). Thus, the equilibrium equations of the platform are (Fe and Me,P are the
resultant force and the resultant moment about point P of the external force system applied
to the platform):

∑
i=1,3

Fini + Fe = 0 (13a)

∑
i=1,3

Fi[(Ci − P)× ni] + ∑
i=1,3

Mi(ni ×mi) + Me,P = 0 (13b)

which, in matrix form, become:

[
N 03×3
H M

]


F1
F2
F3
M1
M2
M3

 = −
(

Fe
Me,P

)
(14)

The first three equations of system (14) show that when jn (≡ |n1 · (n2 × n3)|) is
equal to 1 (i.e., matrix N is isotropic [28]), by changing the direction of Fe, the condition
|Fi| ≤ ‖Fe‖, for i = 1, 2, 3, is always satisfied (i.e., no limb must apply a force with a
magnitude greater than the one of Fe). Analogously, when a pure moment Me,P (i.e., Me,P 6=
0 and Fe = 0) is applied to the platform and jn×m (≡ |(n1 ×m1) · [(n2 ×m2)× (n3 ×m3)]|)
is equal to 1 (i.e., matrix M is isotropic [28]), the last three equations of system (14) show
that, by changing the direction of Me,P, the condition |Mi| ≤ ‖Me,P‖, for i = 1, 2, 3, is
always satisfied (i.e., no limb must apply a moment with a magnitude greater than the
one of Me,P). Accordingly, hereafter, a 3-RRU configuration with jn = 1 (jn×m = 1) is named

7 With reference to Figure 1b, it is worth stressing that the positive direction, toward which the unit vectors ni
and mi, for i = 1, 2, 3, point, is arbitrarily chosen and that it does not affect the values of jn and jn×m.
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isotropic with respect to Fe (Me,P). Of course, the best redistribution of loads among the limbs
occurs at configurations that are isotropic with respect to both Fe and Me,P, that is, when
J = jn jn×m = 1, hereafter named fully isotropic.
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3. Results

This section proves the effectiveness of the relationships deduced in Section 2 by
applying them to the analysis of a 3-XXRRU PM with the geometry shown in Figure 4. In
particular, the relationships deduced in Section 2 are used here for the determination of the
free-from-singularity workspace of that 3-XXRRU PM and of its kinetostatic performances
inside that workspace.
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The geometry of the studied 3-XXRRU PM has the peculiarity (see Figure 4) that
the axes of the three R-pairs adjacent to the platform share a common intersection, point
C3, and are mutually orthogonal. As a consequence, this particular geometry allows the
introduction of a Cartesian reference system Opxpypzp (Figure 4), fixed to the platform
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with origin, Op, coincident with C3 and coordinate axes coincident with the axes of the
three R-pairs adjacent to the platform.

With reference to Figure 4 and the general notations of Figure 1, the following further
specific notations are introduced. xp, yp, and zp are the unit vectors of the xp, yp, and zp
coordinate axes, respectively, of the Opxpypzp reference system and are chosen so that
xp ≡ m1, yp ≡ m2, and zp ≡ m3. O0x0y0z0 is a Cartesian reference system fixed to the
base. l1 and l2 are the lengths of the segments C3C1 and C3C2. In the i-th limb, for i = 1,
2, 3, point Bi is the intersection of the second R-pair’s axis with the plane perpendicular
to ni and passing through Ci; also, di and fi are the lengths of the segments AiBi and BiCi,
respectively. Moreover, one assumes that the XX mechanism can, firstly, freely orientate
unit vector ni and then make the platform translate toward the desired final pose, which,
as explained in Section 2.2, is the best actuation technique for 3-XXRRU PMs.

Since the actuation system can freely orientate unit vectors ni, for i = 1, 2, 3, the
choice of moving them so that they are always mutually orthogonal is assumed. Such a
choice makes all the reached 3-RRU configurations isotropic with respect to Fe (i.e., with
jn = 1). Therefore, the kinetostatic performance of each 3-RRU configuration could degrade
only because of a jn×m value lower than 1 and can be evaluated by using only the jn×m
index. Nevertheless, for this particular geometry and ni motion strategy, the demonstration
that follows shows that the index jn×m is equal to one, too (i.e., the platform moves by
keeping the 3-XXRRU configuration fully isotropic). Indeed, with reference to Figure 5, the
following explicit expressions can be written.

n1 = −m2 sin θx + m3 cos θx
n2 = m1 sin θy + m3 cos θy

n3 = −m1 sin θz + m2 cos θz

(15a)


n1 ×m1 = m3 sin θx + m2 cos θx
n2 ×m2 = m3 sin θy −m1 cos θy
n3 ×m3 = m2 sin θz + m1 cos θz

〉
⇒ jn×m =

∣∣cos θx sin θy cos θz − sin θx cos θy sin θz
∣∣ (15b)

Moreover, since unit vectors ni, for i = 1, 2, 3, are moved by keeping them mutually
orthogonal, the following system of three equations in three unknowns must be satisfied

: 
n1 · n2 = (−m2 sin θx + m3 cos θx) · (m1 sin θy + m3 cos θy) = cos θx cos θy = 0

n1 · n3 = (−m2 sin θx + m3 cos θx) · (−m1 sin θz + m2 cos θz) = − sin θx cos θz = 0
n2 · n3 = (m1 sin θy + m3 cos θy) · (−m1 sin θz + m2 cos θz) = − sin θy sin θz = 0

(16)

whose solutions are (cosθx, sinθy, cosθz) = (0, 0, 0), which implies (sinθx, cosθy, sinθz) =
(±1, ±1, ±1) and (sinθx, cosθy, sinθz) = (0, 0, 0), which implies (cosθx, sinθy, cosθz) = (±1,
±1, ±1). Both these solutions, when introduced into Equation (15b), yield jn×m = 1, which
demonstrates what has been declared above.
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Figure 5. Geometric relationships among the unit vectors ni, mi, and ni × mi, for i = 1, 2, 3, in the
platform of the 3-XXRRU shown in Figure 4.
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With the above-reported assumptions and choices, the free-from-singularity orien-
tation workspace was numerically determined by using the following data (l.u. stands
for arbitrary length unit; the points’ coordinates are measured in O0x0y0z0): A1 = (1, 1,
0)T l.u., A2 = (0, 3, 2)T l.u., A3 = (0, 0, 2)T l.u., l1 = 1.5 l.u., l2 = 2 l.u., d1 = d2 = d3 = 3 l.u.,
f1 = f2 = f3 = 2.5 l.u. Figure 6 shows the so-determined free-from-singularity orientation
workspace (the parameters φ1, φ2, and φ3 on the axes are the ZYZ Euler angles that locate
the orientation of Opxpypzp with respect to O0x0y0z0). Figure 7 shows the volume inside
which point C3 moves while the directions of unit vectors ni, for i = 1, 2, 3, are modified
(by keeping them mutually orthogonal) to make the platform reach the orientation shown
in Figure 6 (the coordinates of point C3 measured in O0x0y0z0 are reported on the axes of
Figure 7).
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Figure 6. Computed free-from-singularity orientation workspace (the parameters φ1, φ2, and φ3 on
the axes are the ZYZ Euler angles that locate the orientation of Opxpypzp with respect to O0x0y0z0):
(a) 3D view, (b) projection onto the φ1φ3-plane, (c) projection onto the φ1φ2-plane, and (d) projection
onto the φ2φ3-plane.



Robotics 2023, 12, 138 11 of 15Robotics 2023, 12, 138 11 of 15 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Volume inside which point C3 moves while the directions of unit vectors ni, for i = 1, 2, 3, 

are modified (by keeping them mutually orthogonal) to make the platform reach the orientation 

shown in Figure 6 (the coordinates of point C3 measured in O0x0y0z0 are reported on the axes): (a) 

3D view, (b) projection onto the xz-plane, (c) projection onto the yz-plane, and (d) projection onto 

the xy-plane. 

4. Discussion 

The numerical procedure adopted to determine Figures 6 and 7 firstly considers ma-

trix N as a rotation matrix, since unit vectors ni, for i = 1, 2, 3, must be kept mutually 

orthogonal, and expresses matrix N through the ZYZ Euler angles (1, 2, 3) with 1, 

3[, [ rad and 2[0, [ rad. Then, it discretizes the values of 1, 2, and 3 by select-

ing a number, say k, of equally spaced values in their ranges, computes the corresponding 

k3 platform poses, and keeps only those compatible with the link lengths. Eventually, the 

k value is increased until the shape of the determined workspace does not change; such a 

condition was reached for k = 40, and Figures 6 and 7 refer to k = 40. Accordingly, Figures 

6 and 7 display the workspace restricted to the fully isotropic configurations, hereafter 

named the fully isotropic workspace. 

The analysis of Figure 6 highlights that the fully isotropic orientation workspace in-

cludes an ample portion of the parallelepiped (i.e., 1, 3[, [rad and 2[0, [rad) col-

lecting all the possible orientations the platform could assume as a free rigid body. More-

over, the sizes of the excluded regions depend on the chosen link length, which brings one 

to conclude that, during design, the link lengths can be sized for an assigned fully isotropic 

orientation workspace. 

Accepting non-singular configurations with jn  jn,min < 1 and jn×m  jn×m,min < 1, where 

jn,min and jn×m,min are two constant values not equal to zero, is another design choice that 

Figure 7. Volume inside which point C3 moves while the directions of unit vectors ni, for i = 1, 2,
3, are modified (by keeping them mutually orthogonal) to make the platform reach the orientation
shown in Figure 6 (the coordinates of point C3 measured in O0x0y0z0 are reported on the axes):
(a) 3D view, (b) projection onto the xz-plane, (c) projection onto the yz-plane, and (d) projection onto
the xy-plane.

4. Discussion

The numerical procedure adopted to determine Figures 6 and 7 firstly considers matrix
N as a rotation matrix, since unit vectors ni, for i = 1, 2, 3, must be kept mutually orthogonal,
and expresses matrix N through the ZYZ Euler angles (ψ1, ψ2, ψ3) withψ1, ψ3∈[−π, π] rad
and ψ2∈[0, π] rad. Then, it discretizes the values of ψ1, ψ2, and ψ3 by selecting a number,
say k, of equally spaced values in their ranges, computes the corresponding k3 platform
poses, and keeps only those compatible with the link lengths. Eventually, the k value is
increased until the shape of the determined workspace does not change; such a condition
was reached for k = 40, and Figures 6 and 7 refer to k = 40. Accordingly, Figures 6 and 7
display the workspace restricted to the fully isotropic configurations, hereafter named the
fully isotropic workspace.

The analysis of Figure 6 highlights that the fully isotropic orientation workspace
includes an ample portion of the parallelepiped (i.e., φ1, φ3∈[−π, π] rad and φ2∈[0, π]
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rad) collecting all the possible orientations the platform could assume as a free rigid body.
Moreover, the sizes of the excluded regions depend on the chosen link length, which brings
one to conclude that, during design, the link lengths can be sized for an assigned fully
isotropic orientation workspace.

Accepting non-singular configurations with jn ≥ jn,min < 1 and jn×m ≥ jn×m,min < 1,
where jn,min and jn×m,min are two constant values not equal to zero, is another design choice
that could be adopted to obtain the desired free-from-singularity workspace. Such an
approach might also be implemented by modifying the control strategy in an already
manufactured machine.

Whatever the adopted design criteria happen to be, the above case study proves that, in
the family of 3-XXRRU PMs, suitable combinations of geometries and control strategies can
be selected which provide good kinetostatic performance in an ample free-from-singularity
workspace.

The 3-RRU structure studied in Section 3 lends itself to better illustrate the parallel-
singularity conditions (i.e., Equations (10a) and (10b)) through Figures 8 and 9. Figure 8
shows two singular configurations of this structure that satisfy Equation (10a). In particular,
the three unit vectors ni, for i = 1, 2, 3, are all parallel to the x0y0-coordinate plane with the
three R-pair axes (Ai, ni), for i = 1, 2, 3, that are not coplanar in Figure 8a and are coplanar in
Figure 8b. The analysis of Figure 8 clearly shows that the particular disposition of the first
three R-pair axes of each limb makes platform translation possible along the z0-coordinate
axis. Differently, Figure 9 shows one singular configuration of the same structure that
satisfies Equation (10b). Indeed, in such a configuration, the three unit vectors ni ×mi,
for i = 1, 2, 3, are all parallel to the x0y0-coordinate plane. The analysis of Figure 9 clearly
shows that the particular disposition of all the R-pair axes makes the platform rotation
possible around the axis (C3, z0).
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Figure 8. Two singular configurations of the 3-RRU structure of Figure 4 that satisfy Equation (10a):
(a) the three unit vectors ni, for i = 1, 2, 3, are all parallel to the x0y0-coordinate plane with the three
R-pair axes (Ai, ni), for i = 1, 2, 3, that are not coplanar, and (b) all three R-pair axes (Ai, ni), for i = 1,
2, 3, lie on the x0y0-coordinate plane indicated by the dashed line.

Eventually, the possible types of XX mechanisms that implement the optimal control
strategy identified in Section 2 deserve a more detailed discussion. Firstly, the orientation
of ni can be obtained by using any parallel pointing system8 (PPS) among the many
proposed in the literature (see, for instance, Refs. [29,30]). Then, by placing a partially
actuated cylindrical(C) pair9 on the mobile platform of the PPS, with the translation that is
alternatively actuated by one of the two actuators that moves the PPS platform and with

8 A PPS is a 2-DOF PM that is able to freely orientate one line fixed to its platform by keeping one point of the
line fixed to the base. They are employed in many applications like the motion of a telescope or of a parabolic
antenna, etc.

9 It is worth noting that a C-pair can be obtained by putting in series a prismatic (P) pair and an R-pair whose
axis is parallel to the sliding direction of the P-pair and that such a PR chain is easy to actuate. In such a PR
chain, the R-pair will be the first non-actuated R-pair of the remaining RRU chain of the XXRRU limb.
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the C-pair axis that passes through the center of the spherical motion the PPS imposes to
its platform, the desired translation of point Ai along the ni direction can be added to the
orientation of ni. The non-actuated rotation of the added C-pair plays the role of the first
non-actuated R-pair of the remaining RRU chain of the XXRRU limb. In order to better
illustrate this description, Figure 10 shows a possible XXRRU limb where the PPS is a
spherical five-bar linkage10. Of course, the system of brakes and clutches that allows the
actuation of the translation in the C-pair by means of one of the two actuators used to
orientate the PPS platform needs an ad hoc design that depends on the chosen PPS.
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the three unit vectors ni ×mi, for i = 1, 2, 3, are all parallel to the x0y0-coordinate plane.
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Figure 10. Example of the XXRRU limb where the PPS is a spherical five-bar linkage: the two R-pairs
with a solid underscore are the two actuated pairs, adjacent to the base, that control the orientation of
unit vector ni, whereas the P pair with a dotted underscore is the alternately actuated/locked P pair
that moves point Ai along the direction of unit vector ni.

5. Conclusions

This study investigates the instantaneous kinematics, workspace, and kinetostatic
performance of a novel family of six-DOF three-legged parallel manipulators (PMs) recently

10 The spherical five-bar linkage is a particular PPS consisting of five binary links sequentially connected, to form
a single-loop, through R-pairs whose axes share a common intersection point. This R-pair axes’ arrangement
guarantees that their intersection point is fixed to the frame (i.e., the links’ motion is spherical) and that any
line, which is fixed to a mobile link and passes through the above-mentioned intersection point, keeps that
point at rest during the link motion. In Figure 10, the blue lines are the R-pair axes.



Robotics 2023, 12, 138 14 of 15

introduced by the authors in a previous publication. These PMs all share the common
feature that, when their actuators are locked, they transform into 3-RRU structures and are
collectively referred to as 3-XXRRU manipulators.

The examination of the instantaneous kinematics of 3-XXRRU PMs led to the deriva-
tion of a general expression for their input–output instantaneous relationship (IOR). Subse-
quently, the analysis of this IOR unveiled that the singularity conditions for these manip-
ulators can be expressed in a straightforward and easily interpretable geometric manner.
This insight provides valuable guidance for selecting an effective actuation system.

In combination with the static analysis of 3-XXRRU PMs, these findings led to the
proposal of two dimensionless indices, ranging from 0 to 1, which measure the proximity
of a non-singular configuration to the nearest parallel singularity. These indices can be
employed in the dimensional synthesis of these PMs. Utilizing these indices, a suitable
control strategy has been devised to maintain manipulator isotropy, particularly concerning
the resultant force of external forces applied to the platform.

Lastly, a specific platform geometry has been introduced, enabling the attainment of
an ample fully isotropic workspace.

6. Patents

Simas H., Simoni R., Meneghini L., Di Gregorio R.: Manipulador paralelo 3XXRRU
com três pernas e seis graus de liberdade com volume de trabalho ampliado. 2023;
Brazil Patent Application No. BR 10 2023 013289 8; Instituto Nacional da Propriedade
Industrial -Brazil.
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