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Abstract: Reinforcement learning (RL) is explored for motor control of a novel pneumatic-driven soft
robot modeled after continuum media with a varying density. This model complies with closed-form
Lagrangian dynamics, which fulfills the fundamental structural property of passivity, among others.
Then, the question arises of how to synthesize a passivity-based RL model to control the unknown
continuum soft robot dynamics to exploit its input–output energy properties advantageously through-
out a reward-based neural network controller. Thus, we propose a continuous-time Actor–Critic
scheme for tracking tasks of the continuum 3D soft robot subject to Lipschitz disturbances. A reward-
based temporal difference leads to learning with a novel discontinuous adaptive mechanism of Critic
neural weights. Finally, the reward and integral of the Bellman error approximation reinforce the
adaptive mechanism of Actor neural weights. Closed-loop stability is guaranteed in the sense of
Lyapunov, which leads to local exponential convergence of tracking errors based on integral sliding
modes. Notably, it is assumed that dynamics are unknown, yet the control is continuous and robust.
A representative simulation study shows the effectiveness of our proposal for tracking tasks.

Keywords: reinforcement learning; Bellman error; continuum soft robot; constant curvature

1. Introduction

The essential feature of RL is that it provides a reinforcement signal based on the
value function evaluation to compute the present action aiming to learn a task. Such a brief
statement deploys a powerful motor learning paradigm [1] from control application through
the Actor–Critic scheme, well substantiated by adaptive dynamic programming [2], and
optimal control [3] schemes. Recently, model-based (regressor) adaptive and model-free
(neural networks) controls have been proposed to deal with uncertainty [4–6].

Conventional RL schemes typically require state and action space exploration, de-
manding massive trials and data to tune and test the system in broad operational conditions.
It makes conventional RL an option for some software applications, but are risky for hard-
ware systems. Then, it has been claimed that further research is needed to introduce explicit
stability bounds and clear implementation procedures to implement RL schemes for a
physical system, such as a robot. However, a distinct feature of the RL massive literature is
lack of stability conditions [7], with few exceptions. Then, translational research is required
to yield a novel RL scheme with stability analysis, particularly for highly nonlinear sys-
tems such as robots, but stability is definitively a requirement for uncertain and disturbed
complex deformable (soft body) robots.

We are interested in the particular class of pneumatic-driven continuum soft robots.
For these robots, implementing a conventional RL is prone to failure when attempting to op-
erate it away from its narrow operational margin, thus requiring novel RL designs equipped
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with stability analysis. The stability analysis does not represent a nuisance, unnecessary
design requirement, or an elegant, irrelevant usage of mathematics; by contrast, stability is
tantamount to guaranteeing the operation of the systems under certain conditions. Thus,
stability analysis is required for any novel motor control scheme for nonlinear uncertain
models, such as continuum soft robots. Given that RL aims at computing the present action
that yields the desired state of a system at a given cost, computational architectures have
been studied to explore to state-action space, which has led to software architectures rather
than RL’s stability conditions. Thus, large batches of trials, even millions, are regularly
carried out for a particular system until it learns the task and a particular set of discrete
admissible controls. However, when such a system is a physical entity, like a robot, there is
no room for such trials, but it must operate within stability margins. The trial-and-error
mechanistic approach of RL tuning is forbidden for robots since fatal failure may arise.
Unfortunately, stability requirements for RL applications for robots have not permeated
into the computational RL community; better phrased, why does the immense majority of
RL literature lack stability? It is worrisome that this fact is not a worry, but rather the norm,
in the practice of RL for robots [7], including for deformable (soft) robots [8]. Although the
early approaches of RL dynamical systems are used, the principal developments in recent
years have improved the algorithms on a finite set of states and controls.

Nonetheless, RL has an enormous advantageous prevalence over “conventional” con-
trol in the sense that RL deals with two metrics (performance index and tracking error) while
conventional control deals with only one metric (tracking error). RL evaluates performance
to issue a reinforced signal to the action (control), which seems very interesting for novel
systems, such as the continuum soft robot subject to varying density and a non-constant
center of mass [9]. Then, the question arises of how to design a sound (stability-based)
RL scheme considering its deformation, which is the essential feature that distinguishes it
against conventional rigid-body robots.

In this paper, we entertain the explicit need for rigorous stability of a model-free RL
scheme for continuum soft robots [9], where reward evaluates continuous deformation
coordinates. Our proposed scheme is similar to adaptive neurocontrol away from optimal-
like control. However, it differs from the former because a second neural network (the
Critic or Critic NN) aims to enforce the asymptotic stability of the temporal difference error
equation in continuous time. Additionally, a so-called Actor NN aims at inverse dynamics
compensation. This scheme is called the Actor–Critic Learning of Motor Control. Unlike
traditional Actor–Critic schemes [10,11], novel adaptive mechanisms are introduced for
neural weights that allows tightly and complex intertwined nonlinear Actor–Critic neural
architectures to emerge, substantiated by the closed-loop stability analysis for tracking
tasks of the uncertain continuum 3D soft robot subject to Lipschitz disturbances.

Contribution and Organization

The contribution amounts to a novel RL scheme for a novel continuum soft robot [9],
using a particular actuation topology [12]. RL’s relevant role evaluation performance is
exploited to reinforce the neurocontroller based on the approximation of Bellman’s temporal
difference. It represents the accumulated reward-based value function, approximated by the
Critic NN using a novel adaptive mechanism of weights with nonlinear neural activations,
while the Actor NN compensates approximately for inverse dynamics. A chatterless
integral sliding mode is introduced to guarantee error tracking [13]. Overall, tracking
with performance evaluation is guaranteed, assuming no knowledge of complex dynamics
subject to disturbances, yet with a smooth control action.

This manuscript is organized as follows. Section 2 introduces the preliminaries and
problem statement. Section 3 presents the RL design, with stability analysis in the Appendix.
Simulations are presented in Section 4 for a 3D continuum soft robot motion tracking an
aggressive trajectory, with discussions of the overall scheme presented in Section 5. Finally,
concluding remarks are given in Section 6, addressing some advantages and concerns of
the proposed scheme.
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2. Preliminaries and Problem Statement

Interestingly, there exist hundreds of papers indexed in the academic metasearch
engine Scopus under the keywords RL and soft robot addressing a variety of RL implemen-
tations to non-rigid-body systems; however, only 24 papers deal precisely with soft-robots;
only two mention stability [14,15]; yet, none included any formal stability analysis. Though
this amazing body of literature is rapidly changing and will hopefully soon be address
stability, this situation speaks for itself about the significant worldwide effort to exploit
the powerful characteristics of RL to soft robots. However, it also shows that the solid
foundations of RL are taken for granted for novel applications; for example, it meets the
theoretical assumptions of the original approach, but is without any rigor to study the
subtleties on how to include the differences of each novel system with stability. Not only
that, but stability analysis also paves the way to substantiate a specific design within the
specificities of each new system; that is, stability analysis tailors the design according to
what a particular system is. The result is an efficient RL custom design for the system under
study, not a general design for a particular system, which typically leads to conservative
and inefficient RL designs. Overall, this brief literature assessment shows the tendency of
RL implementations to a large class of systems, including deformable-body robots. This
approach limits and weakens its effectiveness since, in practice, each new system differs in
many aspects from the ideal one considered initially. Impressive empirical results of the
literature empower RL as a viable option worth studying; however, its prime will be high-
lighted, arguably, when synthesized through stability analysis to deliver an asymptotically
stable RL approach for a specific system.

2.1. On Continuum Soft Robots

Soft robots can be classified by their actuation into four types [16]:

• Fluidic Elastomer soft robots (FESRs): This type of soft robots has pneumatic/hydraulic
chambers embedded into their bodies, which induce body deformation when pres-
surized. It can generate movements such as bending, elongation, torsion, and a
combination of these movements. For example, the STIFF-FLOP comprises a series
of identical elastomeric soft actuators with internal pneumatic chambers to unlock
three-dimensional movement and a central chamber for stiffness variation via granular
interference phenomena [17].

• Cable-driven soft robots (CDSRs): The robot has external or internal cables that
generate deformation by tension variation. However, the type of movement and
workspace depend on the number and position of cables, which means that there are
more control inputs and rigid elements where cables pivot. Furthermore, the exerted
force of this type of actuator depends directly on cables tension and not on stiffness.
An example is depicted in [18], where a four-cable-driven soft arm is presented.

• Shape-memory polymer soft robots (SMPSRs): This type encompasses robots com-
posed of polymers with a thermally induced effect, which allows them to go from an
initial state to a deformed state. However, SMPSRs do not produce high strain and are
usually applied when small deformations are required.

• Dielectric/electroactive polymer soft robots (D/EPSRs): This type of robots are
based on deformation phenomena in response to electricity. However, due to their
high voltage amplification, their doped elastomer is the most disadvantageous and
risky option.

By comparing the actuation mechanisms of these types of soft robots, it is recog-
nized that FESRs have the best relationship between applied force and deformation, given
that applied energy (either pneumatic or hydraulic) continuously deforms the elastomer,
translating into viscoelastic forces of continuum media, i.e., a change in the distance be-
tween each pair of particles in the material. On the other hand, there are three types of
morphologies for soft robots that show continuous deformation [19]:
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• Cylindrical morphology: The robot’s body is shaped like a cylinder of elastomeric
material, with pressure inputs (chambers) radially distributed along an internal radius.
When a chamber is pressurized, the body presents a controlled curvature along the
extensible center of the robot. Usually, this morphology is built using inextensible
braided threads to mitigate radial and circumferential deformations so that the robot’s
configuration can be approximated with a minimum set of linearly independent
variables principally used as control inputs actuated by pneumatic chambers.

• Ribbed morphology: The robot is composed of three elastomer-based layers. The
top and bottom layers have internal ribbed-like structures with multiple rectangular
channels connected to fluid transmission lines, whereas the middle layer is a flexible
but inextensible restriction. In an active state, where fluid pressurizes a group of
chambers, bending is produced. An example is presented in [20] with a soft arm of six
ribbed-like segments designed as a manipulation system.

• Pleated morphology: Consists of discrete sections (plates) of elastomeric materials
evenly distributed and separated by gaps. At the bottom part, a high-stiffness silicon
layer is used to work as an inextensible restriction. Additionally, the top part has
hollow cavities (in each plate) connected to a central chamber. When it gets pressurized,
each plate experiences balloon-like deformations translated into bending of the high-
stiffness silicon layer along the direction of the layer with lower stiffness. An example
is presented in [21], where a soft manipulator has six segments with cylindrical cavities,
and a pleated-shaped soft gripper is used for grasping purposes.

Among these morphologies, the cylindrical morphology is the one that allows to
approximate robot’s deformation through a finite number of variables due to the radial
distribution of their pressure entries while simultaneously allowing relatively easy char-
acterization of their geometric variables. Additionally, four types of movement can be
distinguished [22]: axial (elongation and retraction of length; see Figure 1b), bending (see
Figure 1c), circumferential (translated as torsion; see Figure 1d) and radial (expansion
and contraction of cross-sectional area; see Figure 1e). Notice that these movements are
achieved by imposing different deformation restrictions.

(a) Undeformed state (b) Axial deformation (c) Bending
(d) Circumferential
deformation (e) Radial deformation

Figure 1. Characteristic deformations of a cylindrical-shaped soft robot.

Thus, we consider in this paper the soft robot defined as a cylindrical-shaped soft body
composed of elastomeric material moving from continuous controlled body deformation.
Moreover, we refer to a continuum soft robot as a soft robot with continuous infinitesimal
deformation of the distance between their particles, and it must not be confused with what
was referred to as a continuum robot 20 years ago [23].

2.1.1. Deformation Coordinates

The proposed soft robot has circumferential and radial restrictions so that it can
only have axial and bending deformations, i.e., increasing (or decreasing) its length l and
performing flexion in the direction of an azimuth angle φ (notice that this is achieved
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when two or more internal chambers are activated). Given these constraints, we consider
constant cross-sectional geometry, which gives rise to defining a curved central axis that
passes through the body’s geometric center, known as the backbone (see Figure 2a) [24]. By
definition, soft robots have variable curvature along the backbone, i.e., for each cross section
of the body, there exists a different curvature. To generate low-cost computation modeling,
a constant-curvature approach is used, assuming a single s-curve parameterized by an arc
(see Figure 2a), which resembles the body as a segment, hence giving a single curvature
κ along the segment, which may vary along time. Therefore, a vector of deformation
coordinates qe is defined as

qe = (l φ κ)T . (1)

The constant curvature parameterizes the backbone of a soft robot by a radius of

curvature rk =
1
κ

and a curvature angle θ = κl. On the other hand, the constant-curvature
approach has the advantage of enabling an additional space named Actuation space (AS),
defined by the l vector which contains all length variables l1, l2, . . . , ln corresponding to the
n-actuation elements of the robot. Hence, two direct kinematic mappings arise:

• From actuation space l to configuration space qe (AS → CS), related to the actu-
ation mechanism, which in this case is the length of chambers. It is also known
as specific mapping.

• From configuration space qe to operational space x (CS → OS), better known as
direct kinematics [25].

(a) Deformation coordinates qe for a
constant-curvature segment s (in red
the backbone).

�2

�2

��
�2

�

�1

�1
�1 ��

(b) Direct kinematics for a constant-curvature
soft robot.

Figure 2. Deformation coordinates with respect to referential frames Σ1, Σ2.

2.1.2. Kinematics

Two frames can describe zeroth-order direct kinematics of a constant-curvature
soft robot: the inertial one Σ1 at the base of the backbone and the distal reference Σ2 at
end-effector’s frame, which can be seen in Figure 2b. Consider deformation coordinates qe
and the following homogeneous transformations:

T(qe) =

[
Rz,φ 03×1
01×3 1

][
Ry,κl e
01×3 1

][
Rz,−φ 03×1
01×3 1

]

=


S2

φ + C2
φCκl −CφSφVκl SκlCφ Cφ

Vκl
κ

−CφSφVκl C2
φ + S2

φCκl SκlSφ Sφ
Vκl
κ

−SκlCφ −SκlSφ Cκl
Sκl
κ

0 0 0 1

, (2)
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where e is the distal position point obtained by e = (rk(1 − cosθ) 0 rksenθ)T

and Cx = cos(x), Sx = sin(x), Vx = 1− cos(x). Let Cartesian position d(0)p of a parti-
cle p be within the soft body with respect to an inertial reference frame Σ0 as an analog to
movement transformation of a rigid body, i.e.,

d(0)p = d + R1
0(θ)r

(1)
p , (3)

where d is the body’s position, and rp is the relative position of point p with respect to local
reference frame Σ1; see Figure 3 (for the sake of simplicity, Equation (3) is going to be used
without superscripts, i.e., dp = d + Rrp).

��

�

��

Σ0

Σ1

(a) Particle position on the solid body.

Σ1

��

��/ 1

��/ � Σ�

(b) Position inside a soft body with respect to
a referential frame associated with the body.

Figure 3. Position of a particle in a continuum soft body.

Particle’s velocity ḋp is easily obtained by the time derivative of its position, Equation (3),
resulting in

ḋp = ḋ + Ṙrp + Rṙp. (4)

It is important to remark that for rigid bodies Rṙp = 0, the particles position with
respect to the inertial reference frame Σ1 stays constant during transformation. However,
this does not occur for soft robots because the distance between particles is variable due
to elastic deformation of the body such that Rṙp 6= 0. Additionally, Ṙ can be expressed
in terms of angular velocity ω, using equivalence Ṙ = [ω(0)×]R = R[ω(1)×], so that a
particle’s velocity in a soft body is declared as:

ḋp = ḋ + ω(0) × r(0)p + Rṙp (5)

and

vp = v + ω× rp + ṙp, (6)

in inertial and local coordinates, respectively. Now, vector rp can be calculated as a function
of deformation coordinates qe expressed in toroidal coordinates system c = (r ψ µ)T ,
where r and ψ are the radius and angle which allow it to be positioned in any point of a
cross-sectional area within the soft robot; and µ ∈ [0 1] is the variable which parameterizes
an arc length segment (note that µ = 1 is the distal point). Therefore, rp is composed by

rp(qe, c) = ds/1(qe, µ) + Rs
1(qe, µ)

rCψ

rSψ

0

. (7)
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where ds/1 gives the spatial position of a point s in the backbone, and rp/s positions any
point along the s-cross section.

From (7), the relative velocity ṙp of a particle can be obtained by taking its partial
derivative with respect to qe:

ṙp(qe, q̇e, c) =
∂rp(qe, c)

∂qe
q̇e = Jvp q̇e. (8)

where Jvp is the deformation Jacobian given by

Jvp =

µ · sin(κµl)cos(φ)(1− κr · cos(φ− ψ))
(cos(κµl)−1)(sin(φ)−κr·sin(2φ−ψ))

κ −cos(φ)a1

µ · sin(κµl)sin(φ)(1− κr · cos(φ− ψ)) − (cos(κµl)−1)(cos(φ)−κr·sin(2φ−ψ))
κ −sin(φ)a1

µ · cos(κµl)(1− κr · cos(φ− ψ)) r · sin(φ− ψ)sin(κµl) a2

, (9)

with a1 =
κ2µlrSκµlCφCψ−κµlSκµl−Cκµl+κ2µlrSκµl SφSψ+1

κ2 , and a2 = − Sκµl−κµlCκµl+κ2µlrCφ−ψCκµl
κ2 .

2.1.3. Dynamics

Consider the integral Lagrangian model based on the D’Alembert–Lagrange equation
to describes deformation of a cylindrical-shaped pneumatic soft robot of constant-curvature
in an inertial base [9]:

H(q)q̈ + C(q, q̇)q̇ + g(q)− τv = τ, (10)

with q =
(
l φ κ

)T ∈ R3 being the three-dimension vector of generalized coordinates,
H(q) ∈ R3×3 the inertia matrix, C(q, q̇) ∈ R3×3 Coriolis matrix, g(q) ∈ R3 the gravity vector,
and τv ∈ R3 the generalized viscoelastic force vector which is assumed to be separated and
oversimplified in a pure linear viscous friction term and an elastic restorative one of the
form τv = −Dv q̇ + τe with positive semi-definite viscous matrix gain Dv = (dq1 , dq2 , dq3)

T

and generalized elastic forces τe. The Lagrangian dynamic model (10) has the following
properties [9]:

• Symmetry and definite positiveness of inertia matrix: H(q) = HT(q), H(q) > 0, ∀q.
• Skew symmetry of Coriolis matrix: C(·) + C(·)T = Ḣ(q).

• Passivity:
∫ t f

t0
τ · q̇ dt = E(t f )− E(t0) ≥ −E(t0), for any E(t0).

Elastic forces τe are obtained via elastic function Ue(q) = 1
2

AE
l0
(l − l0)

2 + 1
2

IE
l0

(
κl
2 − β0

)2

proposed in [26] and Castigliano’s theorem [27], as

τe =
∂Ue

∂q
=



AE
l0

(l − l0) +
IE
l0

κ

2

(
κl
2
− β0

)
0

IE
l0

l
2

(
κl
2
− β0

)

.

2.1.4. Affine Actuation

By considering a pneumatic soft robot with c embedded cylindrical-shaped pneumatic
chambers, air injection produces a controlled force field p = (p1 p2 . . . pc)T ∈ Rc

which causes coupled deformation among all chambers inside the body. Thus, a mapping
from c pressure vectors to the n generalized force coordinates can be defined as

τ = B(q)p, (11)

where B(q) ∈ Rn×c is the input matrix as a lineal operator given by [9]:

B(q) =
∂

∂p

{
∂Up

∂q

}
=

[
. . .

∂Vi(q)
∂q

. . .
]
∈ Rn×c (12)
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In this work, a three-DoF soft robot is considered, with three identical prismatic-
shaped chambers with transverse area Ac evenly positioned such that all centroids of the
chambers’ area are placed along the circumference described by a radius rm, see Figure 4b.
Thus, the input matrix B(·) ∈ R3×3 is full rank and is rewritten as [12]

B(q) = Ac

1− κrm cos(−φ) 1− κrm cos( 2π
3 − φ) 1− κrm cos(− 2π

3 − φ)
−κlrm sin(−φ) −κlrm sin( 2π

3 − φ) −κlrm sin(− 2π
3 − φ)

−lrm cos(−φ) −lrm cos( 2π
3 − φ) −lrm cos(− 2π

3 − φ)

, (13)

where Ac(rex, w) = π
3 (rex − w)2, rm(rex, w) = 2

π (rex − w) sin(π
3 ).

�2

�3
�1

(a) The structure of the robot with each
pneumatic chamber represented by
a distinct color.

(b) Cross section showing chambers distribution,
the radius of chambers centroid rm, external
radium rex, and wall width w.

Figure 4. Soft robot proposed geometry.

2.2. Open-Loop Error Equation

Adding and subtracting the functional

Yr = H(q)q̈r + C(q, q̇)q̇r + Dv q̇r + g(q) (14)

to (10), we have the open-loop error equation

H(q)Ṡr + C(q, q̇)Sr + DvSr = τ + τe −Yr, (15)

where the extended velocity error coordinate is

Sr = q̇− q̇r (16)

for q̇r, the continuous nominal reference to be defined. System (15) has mainly been used
for control design for many Lagrangian systems, even in neuro-control applications. In the
latter case, [28] proposes an adaptive neurocontroller with an underlying integral sliding
mode to enforce robust error tracking, which does not require training nor any knowledge
of the robot with a smooth control actions.

2.2.1. Nominal Reference Design to Induce Integral Sliding Modes

Let the nominal reference be defined as

q̇r = q̇d − α∆q + Sd − Ki

∫
sgn(Sq), (17)

where ∆q = q− qd is the position error; qd and q̇d are the desired position and velocity,
respectively; and α and Ki are positive feedback gains, Sq = S− Sd, with S = ∆q̇ + α∆q,
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Sd = S(t0)e−κt. Substituting (17) into (16), an extended velocity error coordinates is
obtained as

Sr = Sq + Ki

∫
sgn(Sq). (18)

2.2.2. Control Design

Based on the seminal work of [13] for rigid robots and extended for soft robot (10) in [9],
now, in this paper, given the non-intuitive free-form deformation of the continuum soft
robot, we wonder how to consider the body deformation in the control design to guarantee
S → 0 with performance evaluation. More precisely, we are interested in designing τ
for unknown (10), considering how deformation coordinates perform, additionally to
guarantee tracking error convergence.

2.3. Problem Statement

We are interested in how to control soft robots using reinforcement learning tools,
explicitly using the Actor–Critic scheme. Necessarily, it implies introducing an additional
metric for task-performance evaluation along with error convergence. Thus, the following
problem arises:

“Design a learning mechanism that guarantees simultaneous error convergence and
task performance of a closed-loop pneumatic-driven soft robot through a control law that
evaluates online learning units for a model-free scheme.”

3. Actor–Critic Learning of Motor Control

Now, we proceed to explain in detail the proposed Actor–Critic architecture as well as
the main result called Reinforced Neurocontroller; see Figure 5.

Soft Robot

Reward

TD Error Critic NN

Critic
Adaptation

∆q, ∆q̇

xd, ẋd

qd, q̇d −KdSr

Actor NN
Actor

Adaptation

τ q, q̇

ζc

ζa
Trajectory

design
R̂

Ŷr

Figure 5. The proposed Actor–Critic scheme where each colored block corresponds to a specific role
in the scheme. Notice that it keeps the conventional neurocontroller architecture approximating Ŷr.

3.1. Reward-Based Value Function and Temporal Difference Error

Consider the following continuous value function R that depends only on the task-
dependent scalar reward r ∈ R [29];

R =
∫ ∞

t0

e−
m−t

ψ r(m)dm, (19)

where ψ is the time constant for discounting future rewards with t ≤ m ≤ ∞. Differentiat-
ing (19), one obtains

Ṙ =
1
ψ

R− r(t), (20)
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which can be rewritten in terms of an error δ, as the so-called temporal difference error for
continuous time [29],

δ = Ṙ− 1
ψ

R + r. (21)

This consistency equation is used to approximate value function (19) based only on
reward information.

Remark 1. Notice that in the proposed Actor–Critic scheme, the reward and the temporal difference
error implement the learning mechanism in the Critic NN that approximates the value function R̂,
which in turn represents the reinforcement signal used to improve the adaptation mechanism of the
Actor NN that approximates Yr by Ŷr.

3.2. Critic NN

Given that value function from Equation (19) is smooth, it can be approximated by a
neural network with finite constant weights Wc ∈ Rc and input basis Zc(·) ∈ Rc such that

R = WT
c Zc(·) + εc, (22)

where a small εc is the neural approximation error. Then, there exists a neural network
with adaptive weights Ŵc ∈ Rc that approximates (22) as follows

R̂ = ŴT
c Zc(·) (23)

where Zc(·) = σ(VT
c ζc) ∈ Rc is the sigmoid bipolar activation function, with Vc ∈ R3×c

representing fixed weights and ζc ∈ Rc being the input vector. It means that the learning
has been made. Now, using (23) instead of (22) by the equivalence principle, the temporal
difference error (21) can be written as

δ̂ = ˙̂R− 1
ψ

R̂ + r

= ˙̂WT
c σ(·) + ŴT

c σ̇c(·)−
1
ψ

ŴT
c σc(·) + r. (24)

Notice that δ̂ 6= 0 per se (it is in the neural error domain); thus, the problem becomes
in designing the adaptation ˙̂Wc such that δ̂ → 0, which translates into an appropriate
approximation of (19) by (23). Now, we have the following result.

Proposition 1. Consider the following adaptation law

˙̂Wc = −Kwsgn(Ŵc)− Ksgn(γ̂)
σc(·)

σT
c (·)σc(·)

, (25)

and

γ̂ = R̂− 1
ψ

∫ t f

t0

R +
∫ t f

t0

r, (26)

which comes from the temporal difference error δ̂. Then, selecting Kw and K large enough, the
convergence of the temporal difference error is achieved such that δ̂→ 0.

Proof. See Appendix A.1.

3.3. Actor NN

Let (14), according to the NN approximation property, be the continuous nonlinear
function; it can be represented as Yr = WT

a Za(·) + εa, with Wa ∈ Ra×3 finite constant
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weights, Za(·) ∈ Ra being the input basis, and εa being the reconstruction error. Then, the
following neural network and adaptation law are proposed

Ŷr = ŴT
a Za(·), (27)

˙̂Wa = −ΓaσT
a (·)ST

r − ΓaŴa(γ̂r)2, (28)

where Ŵa ∈ Ra×3 is the matrix of adaptive weights, Za(·) = σa(VT
a ζa) ∈ Ra is the bipolar

sigmoid activation function, with Va ∈ R4×a being the matrix of fixed weights and ζa ∈ R4

the input vector, and Γa ∈ Ra×a is positive definite gain.

3.4. Passivity-Based Reinforced Neurocontroller

Let the control signal be defined as

τ = −KdSr + Ŷr, (29)

with Kd > 0 ∈ R3×3. Then, the following main results are in order.

Theorem 1. Consider the soft robot dynamics (10) in a closed-loop with the control signal (29)
and adaptation laws (25) and (28). Thus, from Proposition 1, for high enough Ki and Kd gains,
exponential convergence of the tracking errors is guaranteed via integral sliding modes with smooth
control signals and without knowledge of the soft robot dynamics.

Proof. See Appendix A.2.

4. Numerical Simulations
4.1. The Simulator and Parameters

The soft robot aims to track a tornado-like trajectory at a distal point described by a
desired pose Xd; see Figure 6. Notice that Xd was mapped into generalized coordinates
qd via first-order inverse kinematics. Simulations were carried out in Matlab-Simulink
2021b with solver ode23tb running at an adaptive step sampling for a tolerance of 1× 10−3.
Table 1 shows the dynamic parameters and desired trajectory of the soft robot, with the
Young’s modulus value being based on experiments [30] using Ecoflex 00–30™. Initial

bending β0 was calculated through initial length and curvature as β0 =
l0 × κ0

2
.

Table 1. Soft robot parameters and the tornado-like desired trajectory.

Variable Description Value

rex External radius 0.1 m

w Wall width 0.001 m

l0 Initial length 0.9 m

β0 Initial bending 0.6285 rad

E Young’s modulus 0.15 MPa

Xd =

xd
yd
zd

 Desired pose
0.7 sin(t/50) + 0.01t sin(t) + 0.2

0.7 cos(t/50) + 0.01t cos(t)− 0.5
0.1 + 0.01t


4.2. Neural Network Architectures

The Critic NN has only one hidden layer, with input vector ζc = (−1 ∆q), where
weights connect the input layer to the hidden layer with constants Vc; initial adaptive
weights Ŵc(t0) are tuned between 0 and 1. Similarly, the Actor neural network has one
hidden layer with input vector ζa = (1

∫
Sr), where the weights connecting the input layer

and the hidden layer Va are fixed.
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4.3. Reward Design

Given that the reward function, r, encodes critical aspects to motivate the fulfillment of
the task, and the soft robots are typically equipped with low resolution (due to embedded
sensor technology being in progress), it is worth considering weight position over velocity
errors. Then, let the reward function be

r =
1
2

(
∆qT P∆q + ∆q̇TQ∆q̇

)
(30)

where P = diag(9, 9, 9), Q = diag(1, 1, 1).

4.4. Feedback Control and Adaptation Gains

The final value of feedback and adaptation gains follow the simulator’s theory specifi-
cations and numerical performance. The values for feedback gains were
Kd = diag(1000 200 200), α = diag(20 20 20), Ki = diag(0.05 0.05 0.05), and κ = 30;
and for the adaptation gains, they were K = 50, Kw = 7, and Γa = I10×10 × 4000. It aims
to promote larger reward recollection from smaller position errors, so evaluation-based
reinforcement is influenced to take action even by smaller position errors.

4.5. Results

From Figure 6, we notice that despite the fact that initial conditions are selected
away from the desired trajectory, the end-effector tracks the desired trajectory with a short
transient. This can be seen in Figure 7, where tracking error converges exponentially in
about t = 0.3 s. Figure 8a shows the bounded extended velocity error Sr that shapes the
invariant of stability, which gives rise to sliding mode at Sq = 0; see Figure 8b around
t ≥ 0.3 s. The control signals are quite smooth; see Figure 9a. Notice that τ1 corresponds
to the length coordinate l where its magnitude is much greater than τ2 and τ3 due to the
higher energy that is required to deform the material for elongation tasks. Figure 9c,d
shows the integral and temporal difference errors converging quickly, implying an accurate
approximation of the value function by the Critic NN. Finally, reward behavior is shown in
Figure 10, since it depends on the evaluation of tracking errors (30); since it has a larger
value at initial conditions, then at the beginning, it reaches its higher value. Once the end
effector reaches the desired trajectory, the reward ceases signaling that motor learning
is achieved.

Figure 6. Tracking of 3D soft robot desired (red dotted line) trajectories Xd(t), from initial pose
(green dot) shown in grey with a black backbone to a final pose shown in orange, with red backbone.
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(a) Convergence of position tracking errors
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(b) Convergence of velocity tracking errors.

Figure 7. Position and velocity tracking errors exhibit smooth convergence, with a short transient
of about 300 ms. Notice that such a performance for such aggressive trajectories, since Coriolis
(centrifugal and centripetal) forces increases as time goes by.
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(b) Invariant error manifolds are enforced after a
short transient, due to the large initial error.

Figure 8. Performance of extended velocity error Sr and invariant manifolds Sq = 0 suffers from the
increment of Coriolis forces; nonetheless, sliding modes are enforced.
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Figure 9. Cont.
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Figure 9. (a) Control signals and (b) pressure behavior, in accordance to the convergence of (c)
integral temporal difference error and (d) temporal difference error.
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Figure 10. Surprisingly, reward converges after a very short transient.

Comparative Results vs. Classical PID Controller

In order to compare how our proposal performs against others, simulations were also
carried out for the very well-known controller, such as classical model-free PID regulator,
under the same desired trajectories and initial conditions. The results are shown in Figure 11.
Generalized position and velocity errors are shown in Figures 11a and 11b, respectively.
Notice that trajectories remain bounded after a short initial response. In contrast, our
scheme converges to the origin; see Figure 7. Figure 11c,d shows the control signals and the
demanded pressures. Notice that for initial time t < 0.1, the system has a high demand of
control effort, translating into a high-pressure demand, which can be detrimental in practice.
In contrast, our scheme ameliorates this effect and achieves convergence of tracking errors
with smooth control; see Figures 7 and 9a,b.
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(a) Position errors. (b) Velocity errors.

(c) Control signals. (d) Demanded pressures.

Figure 11. [Classical PID controller]. Results obtained using PID: (a) position errors remains bounded,
similarly, (b) the velocity errors also remain bounded. (c) control signals exhibit high demand and
produces pressures (d).

5. Discussions
5.1. On the Actor–Critic Architecture with Adaptive Neural Weights

The Actor and Critic neural networks interplay to guarantee tracking, taking into
consideration the soft robot performance. The Critic NN approximates the value function
by enforcing convergence of the integral and the temporal difference error. In contrast,
the Actor NN approximates the nonlinear dynamics using online reinforcement from the
Critic NN throughout its weights and the reward. Reward design is fundamental to yield
information about the robot task performance. Given the subtleties of the soft robot, reward
design is based on the weighted sum of the position and velocity tracking errors. However,
the reward can be designed otherwise, since its interpretation depends on what promotes
learning. Adaptation of Actor–Critic’s weights is proposed based on Lyapunov stability, in
contrast to other works that use variants of the gradient descent method.

5.2. On Simulation Study

It is considered to be a Lagrangian soft robot assuming constant cross-section geometry
along the backbone, even after being exposed to exogenous and endogenous forces. In
practice, this is achieved by manufacturing inextensible threads that braid the soft robot [17]
to restrict deformation when pressurized. However, this constraint may not be enforced
for negative absolute or relative pressure or when a vacuum emerges. Further research is
needed from the material science community to considered these cases.

5.3. Advantages, Disadvantages, and Limitations

The advantages of this method are as follows: the proposed AC scheme is model-free,
i.e., no information on the soft robot dynamics is needed to implement the scheme. In addi-
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tion, neither pre-training nor initialization is required in the learning process. Surprisingly,
Actor–Critic neural network topologies are of low dimension for such difficult and complex
nonlinear soft robot dynamics, with only one hidden layer of neurons. We address the
difficult and complex soft robot continuum dynamics based on density variations that yield
a varying center of mass and a varying inertia tensor. On the other hand, as a limitation,
the model has a kinematic singularity at κ = 0, which is common with other soft robot
models, as well as the assumption of constant cross area, which is hard to enforce in practice.
Then, for practical implementations of this RL scheme, we surmise that the challenge also
includes the soft robot hardware, actuation, and sensory system.

Other modeling domains, such as FEM, have been used as an alternative to study
the approximate mechanical properties of soft robots [31,32], with quite some success in
designing and manufacturing deformable bodies. Certainly, FEM is needed to analyze
structurally optimal designs and comparisons to its continuum domain.

6. Conclusions

Contributions from many research fields have enriched soft robot knowledge, giving
rise to novel paradigms on modeling, control, and design. In this note, a novel RL controller
for a class of continuum soft robot model is addressed, contributing to the state-of-the-art
in learning how to yield 3D trajectories, taking into account online evaluation of defor-
mation performance. The stability-guaranteed, model-free neurocontroller oversees the
convergence of the tracking error and reward recollection while exploiting its structural
properties, including passivity. The key contribution comes from novel designs of nonlinear
adaptive weights of the Critic NN and Actor NN, the former of which uses discontinu-
ous terms and nonlinear activations functions to enforce convergence of TD errors δ̂. In
contrast, the latter is influenced by the reinforcement signals given by the reward and
temporal difference error. The soft robot under consideration is of the class of continuum
body deformation driven by internal pneumatic chambers. This soft robot model has a
Lagrangian structure; henceforth, our RL scheme is not limited to soft robots, but it can be
implemented in systems characterized by Lagrangian dynamics. Real-time experimental
testing has major importance in pursuing real compliance with the theory based on the
axioms and the assumptions. Ongoing effort is occuring in the development of such a
platform with special care on non-invasive measurement system and low-level pneumatic
control instrumentation [9].
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Appendix A. Stability Proof

Appendix A.1. Critic Neural Network

Consider the following Lyapunov candidate function

Vγ =
1
2

γ̂2 +
1
2

ŴT
c Ŵc. (A1)

Taking the time derivative and using (24) and (25), we obtain
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V̇γ =γ̂ ˙̂γ + ŴT
c

˙̂Wc

=γ̂

({
−Kwsgn(Ŵc)− Ksgn(γ̂)

σc(·)
σT

c (·)σc(·)

}T
σc(·) + ŴT

c σ̇c(·)−
1
ψ

ŴT
c σc(·) + r

)

+ ŴT
c

{
−Kwsgn(Ŵc)− Ksgn(γ̂)

σc(·)
σT

c (·)σc(·)

}
=− γ̂Ksgn(γ̂)− KwŴT

c sgn(Ŵc)− Kwγ̂sgn(Ŵc)
Tσc(·) + γ̂ŴT

c σ̇c(·)−
γ̂

ψ
ŴT

c σc(·)

+ γ̂r + KŴT
c sgn(γ̂)

σc(·)
σc(·)Tσc(·)

. (A2)

Selecting γ >> 1 and expressing the bounded terms as εi, we obtain

V̇γ =− γ̂Ksgn(γ̂)− KwŴT
c sgn(Ŵc)− Kwγ̂ε1 + γ̂ŴT

c σ̇c(·)− ŴT
c ε2 + γ̂r + KŴT

c ε3

≤ −K|γ̂| − Kw
∣∣Ŵc

∣∣+ |γ̂|∣∣Ŵc
∣∣|σ̇c(·)|+ γ̂r− Kwγ̂ε1 −

∣∣Ŵc
∣∣ε2 + K

∣∣Ŵc
∣∣ε3

= −(K + Kwε1)|γ̂| − (Kw − |γ̂||σ̇c(·)|+ ε2 − Kε3)
∣∣Ŵc

∣∣+ εγr

≤ −χ1|γ̂| − χ2
∣∣Ŵc

∣∣+ εγr. (A3)

where χ1 = K + Kwε1, χ2 = Kw − |γ̂||σ̇c(·)|+ ε2 − Kε3. Thus, we can always select K and Kw such
that χ1, χ2 > 0; this implies that there exists constants ε4 and ε5 modulated by εγr such that (γ̂, Ŵc)

converges to a compact set of size sup(ε4, ε5).

Appendix A.2. Proof of Theorem

Consider the following Lyapunov candidate function of the closed-loop system

VAC =
1
2

ST
r H(q)Sr +

1
2

tr(W̃T
a Γ−1

a W̃a) + Vγ. (A4)

Taking its time derivative, we obtain

V̇AC = ST
r H(q)Ṡr + ST

r
Ḣ
2

Sr + tr(−W̃aΓ−1
a

˙̂Wa) + V̇γ. (A5)

Using (15) and passivity property, Equation (A5) becomes

V̇AC =ST
r

(
−DvSr + τe − KdSr − W̃T

a σa − εa

)
− tr

(
W̃T

a (−σaST
r − Ŵa(γ̂r)2)

)
+ V̇γ

≤− ST
r (Dv + Kd)Sr + ST

r ετe − ST
r W̃T

a σa + ST
r W̃T

a σa − ST
r εa

− (γ̂r)2tr(W̃T
a (W̃a −Wa))− χ1|γ̂| − χ2

∣∣Ŵc
∣∣+ εγr

<− λmin(Kd) ‖ Sr ‖2 + ‖ Sr ‖ (ετe + εa)− (γ̂r)2tr(W̃T
a (W̃a −Wa))− χ1|γ̂|

− χ2
∣∣Ŵc

∣∣+ εγr

<− (λmin(Kd) ‖ Sr ‖ −(ετe + εa)) ‖ Sr ‖ −(γ̂r)2tr(W̃T
a (W̃a −Wa))− χ1|γ̂|

− χ2
∣∣Ŵc

∣∣+ εγr (A6)

For high enough values of Kd and of K, Kw according to A.1, there arises an invariant bounded set
in terms of (Sr, W̃a) that guarantees the boundedness of all closed-loop signals Sr, W̃a, W̃c, γ̂. It also
implies the boundedness of Ṡr by a constant η.

Now, so far, we have proven that all signals remain bounded. To show that tracking errors
converge, we need to show that an integral sliding mode is enforced at Sq = 0 in finite time. To this
end, consider the following function

Vsq =
1
2

ST
q Sq. (A7)
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Taking its time derivative of (A7) along the flow (derivative) of Sr = Sq + Ki
∫

sgn(Sq), we obtain

V̇sq =ST
q (Ṡr − Kisgn(Sq))

≤− Ki
∣∣Sq
∣∣+ ∣∣Sq

∣∣η
≤− (Ki − η)

∣∣Sq
∣∣. (A8)

We can always choose Ki > η to enforce a sliding mode condition at Sq = 0, guaranteeing the local
exponential convergence of tracking errors, i.e., ∆q, ∆q̇→ 0 as t→ ∞ [13].
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