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Abstract: Unmanned Aerial Vehicles (UAVs) are versatile, adapting hardware and software for
research. They are vital for remote monitoring, especially in challenging settings such as volcano
observation with limited access. In response, economical computer vision systems provide a remedy
by processing data, boosting UAV autonomy, and assisting in maneuvering. Through the application
of these technologies, researchers can effectively monitor remote areas, thus improving surveillance
capabilities. Moreover, flight controllers employ onboard tools to gather data, further enhancing UAV
navigation during surveillance tasks. For energy efficiency and comprehensive coverage, this paper
introduces a budget-friendly prototype aiding UAV navigation, minimizing effects on endurance.
The prototype prioritizes improved maneuvering via the integrated landing and obstacle avoidance
system (LOAS). Employing open-source software and MAVLink communication, these systems
underwent testing on a Pixhawk-equipped quadcopter. Programmed on a Raspberry Pi onboard
computer, the prototype includes a distance sensor and basic camera to meet low computational
and weight demands.Tests occurred in controlled environments, with systems performing well in
90% of cases. The Pixhawk and Raspberry Pi documented quad actions during evasive and landing
maneuvers. Results prove the prototype’s efficacy in refining UAV navigation. Integrating this
cost-effective, energy-efficient model holds promise for long-term mission enhancement—cutting
costs, expanding terrain coverage, and boosting surveillance capabilities.

Keywords: autonomous landing; machine vision; obstacle avoidance; unmanned aerial vehicles

1. Introduction

In recent years, unmanned aerial vehicles (UAVs) have rapidly developed and can be
used for academic, private, and commercial purposes [1,2]. Due to technological advances
in computer hardware and navigation software, UAVs have grown considerably in agricul-
ture, environment, and security, among others. Thus, by 2025, their value is expected to
reach USD 42.8 billion, according to Dronell’s report [3]. These UAVs have proven to be
capable of collecting large amounts of data in relatively short periods of time, allowing for
more agile and precise analysis. Their advancements have facilitated studies in archaeology,
geosciences, and spatial ecology [4–8].

The very purpose of this work was developed within research projects related to
environmental monitoring (PIGR 21-01, PIM 21-01), with one of the main objectives being
volcano surveillance. These are environments in which UAVs must integrate precise and
low-energy-consumption onboard systems to maximize flight time; enhance mapping,
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characterization, interpretation, surveillance, and risk assessment; and stimulate new
avenues of research [9]. Furthermore, in developing countries such as Ecuador, where
environmental risk is high according to a report by the European Commission in 2020 [10],
the use of UAVs for monitoring in environmental risk management plans represents a great
option to reduce operational costs and achieve broader coverage.

Considering that a UAV is composed of components that enable its control and ma-
neuverability [11], the autopilot stands out. It is an electronic device within the control
subsystem that interprets signals from a remote control or a ground control station and
emits the appropriate signals to guide the aircraft to its desired location and manner. One
of the most well-known autopilots on the market is the Pixhawk [12], which currently
features a set of position, orientation, and acceleration sensors that facilitate the handling
and control of UAVs. However, its autonomous navigation system requires additional
instrumentation to support maneuvers such as landing or obstacle avoidance, and can
even perform tasks for specific applications. Although autopilots are capable of performing
automatic takeoffs and landings, the majority of drone accidents occur during takeoff
or landing maneuvers, resulting in material losses due to hardware or software damage,
causing delays or mission aborts and, consequently, significant economic losses. Further-
more, nearly 80% of accidents and incidents occur while the aircraft is in flight or cruising,
emphasizing the importance of addressing safety measures during these critical phases [13].
These issues can be attributed to the lack of sufficient environmental feedback that would
enable the correction of differential changes from takeoff to landing points, highlighting
the need for instrumentation to support the autopilot in specific maneuvers or tasks.

The present article details the low-cost computer-vision-based Landing and Obstacle
Avoidance System (LOAS), which requires additional battery consumption but is signif-
icantly lower compared to commercial alternatives such as the Aerialtronics PENSAR
system [14] and the deep learning systems described in the related works section. The
document begins with an introduction that describes the work and addresses some related
works. Next, there is a background section that summarizes key topics such as communica-
tions, computer vision, and auxiliary maneuvers, which are crucial for the development
of the system. Following that, the methodology section presents the implementation of
the LOAS, which is an auxiliary prototype composed of a Raspberry Pi 4 single-board
computer, a LIDAR Lite v3 (Garmin) distance sensor, and a NoIR v1 camera (Raspberry
Pi Camera Module 1). This system uses the MAVLink protocol for communication with a
Pixhawk Cube 2.1 configured as a small quadcopter with an F450 frame and a maximum
payload capacity of 1 kg.

Subsequently, there is the results section, where it is worth noting that the tests were
conducted in controlled environments, facilitating their evaluation and yielding favorable
results in the execution of LOAS maneuvers. Finally, the conclusions are presented, and
future work is discussed based on the implemented LOAS.

Related Works

Guo et al. in [15] propose a LOAS that allows a UAV to autonomously land on a
moving Ground Vehicle (GV). The UAV follows the GV using an object tracker while
avoiding unexpected obstacles through path planning until it lands on the target GV. In
contrast, Singla et al. in [16] present a method to enable a multirotor, equipped with a
monocular camera, to autonomously avoid obstacles in unstructured and unknown indoor
environments. For this purpose, they propose a Deep Reinforcement Learning (DRL)
method based on Recurrent Neural Network (RNN) architecture and temporal attention.
The previous works show promising results in terms of data accuracy but demand high
computational and energy costs due to the use of trajectory generators or DRL systems.
This is inefficient for complex BVLOS applications as it leads to a loss of flight autonomy
due to high energy consumption.

White et al. in [17] present an evasion algorithm based on concepts of differential
geometry such as curvature and tangential velocity. However, this solution only yields
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good results on straight trajectories and non-dynamic objects. Similarly, Lai et al. in [18]
propose an obstacle detection system based on morphological operations and temporal
filters such as Hidden Markov Models (HMMs) and the Viterbi algorithm. The use of
morphological operations for image processing does not require high computational power,
but the cost increases when using temporal filters. Nonetheless, this can be addressed
by implementing other types of filters that demand less processing, thereby making the
proposed solution feasible for low-cost auxiliary platforms.

An additional study addressing the autonomous landing is the one conducted by
Cocchioni et al. [19]. This work proposes a landing and battery recharging system based
on a computer vision algorithm that detects helipads using the OpenCV library. This
eliminates the need for a high-performance card to carry out the task. Therefore, this
solution is particularly attractive for implementation on low-cost platforms, which aligns
with the objectives of our research.

Currently, there is a large number of studies describing the development of auxiliary
platforms. This is because UAVs are increasingly being used in more challenging and
dangerous applications for humans. An example of this is the monitoring of volcanic
activity. This can be observed in the work conducted by Di Stefano et al. in [20,21], where
a multirotor equipped with cameras is used to monitor and gather data on the Lusi mud
crater in Indonesia. Additionally, Everaerts in [22] explains the usefulness of UAVs for
remote sensing and scientific mapping due to their low cost and ease of access to the
platforms. Another example is the one presented by Flores et al. in [23], where they use a
fixed-wing UAV for volcano surveillance. This work describes the necessary requirements
for BVLOS flights, and the neccesity to equip the drone with cameras, sensors, emerging
auxiliary platforms, and a reliable communication system between the ground station and
the UAV.

2. Background

For an aircraft to carry out complex BVLOS flight missions, it is necessary to incorpo-
rate additional equipment that improves and optimizes its performance in a given mission.
One of these additions is a flight controller, such as the Pixhawk Cube, which provides a
certain degree of autonomy to facilitate flight control. However, it offers a limited autonomy
in remote area external missions. Thus, it is necessary to add auxiliary systems on board the
drone, such as obstacle avoidance or autonomous landing systems. This, in turn, implies
the use of communication and tracking systems that allow the aircraft to send and receive
information from the ground station, providing details about the flight conditions during
the mission.

2.1. Communication

To communicate with external sensors and devices, the Pixhawk Cube flight controller
uses the MAVLink flight protocol. MAVLink is a messaging protocol commonly used to
establish communication between an unmanned vehicle and its components, which may or
may not be onboard. This protocol allows for the sending and receiving of data, setting
parameters, and controlling the unmanned vehicle from the ground station. All this is
based on the definition of XML files, known as dialects, which can be sent through any
serial connection without depending on underlying technologies [24,25].

XML files are structured and packaged in an 8 to 263 byte message format, comprising
a fixed header and a variable-length byte package that makes up the message content.
The header consists of a start-of-frame identifier, a length identifier, a system identifier, a
component identifier, and a message type field. After the header, specific message data and
a verification field are included to ensure the integrity of the transmitted data [24].

Message Types

For data transmission, the MAVLink protocol has two types of messages: status
messages and command messages. Status messages are those sent from the UAV to the
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control station and provide information about the drone’s flight status. For example,
heartbeat (shows that a system or component is present and responding), system status
(indicates parameters including flight speed, battery, flight mode), global position (indicates
the altitude, longitude, and latitude coordinates of the component), among others. On the
other hand, command messages are the messages sent from the control station to the UAV.
They are commands that enable its maneuverability and parameter writing [24,25].

Both types of messages can be configured using open-source languages such as Python
and Java through the pymavlink library [24]. Table 1 presents the commands that were
used in the development of this work.

Table 1. Most common MAVLink commands.

Command ID Description

TAKEOFF 22 Launches the UAV to a specified altitude.
LAND 21 Landing the UAV.

ARM-DISARM 400 Arms or disarms the motors.

EXTENDED_SYS_STATE 245 Allows presenting or using the flight state
values of the drone.

MAV_FRAME_BODY 8 Allows controlling the movement of the
vehicle based on its position.

2.2. Flight Mode

The study of this flight characteristic is of great importance since by modifying its
general state (automatic mode) to another flight mode, the preprogrammed mission route
can be modified in real time [25]. The control of the flight mode can be carried out through
the switches of a radio control, commands sent from a control station, or by an onboard
computer [26]. Below, in Table 2, the main flight modes of quadcopters are presented.

Table 2. Principal flight modes.

Modes Description

AltHold Maintains altitude with safe roll and pitch levels

Auto

This is the general mode with which the drone starts the flight, once the
order to start the mission has been sent. While the automatic mode is
active, no flight characteristics previously set in the preprogrammed

mission can be modified

Guided
This mode allows real-time control of the mission, i.e., while in this flight

mode, orders can be given to the drone without having been
previously programmed

Loiter As its name indicates, this mode allowsnthe UAV to keep flying in the
same position despite the wind

RTL Return to the takeoff point and land
Stabilize This flight mode ensures safe levels of roll and pitch

Flight modes not only provide specific features for UAV controllability, but also divide
the flight into phases such as takeoff and landing. To strengthen navigation systems and
increase UAV reliability, there are auxiliary systems developed to assist these maneuvers
during their flight modes, which are detailed below.

2.3. Auxiliar Maneuvers

Auxiliary maneuvers play a crucial role in the operation of UAVs as they enhance
flight safety, performance, and mission capabilities. These maneuvers include takeoff,
landing, hover, and waypoint navigation adjustments. Among them, landing maneuvers
hold significant importance due to their impact on the safety of the controlled descent of the
UAV. Ensuring a smooth and precise landing is essential to prevent damage to the aircraft
and any payload it may carry. Additionally, maneuvers that enable obstacle avoidance,
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such as collision detection and avoidance, are vital for maintaining the UAV’s integrity and
preventing accidents. For this reason, the following maneuvers, crucial in environments
with unpredictable terrain, are explored in more detail.

2.3.1. Landing

A rotatory-wing UAV is a versatile flight machine because of its hovering capability,
vertical takeoff and landing, and aggressive maneuverability. In the automatic landing
problem of a rotary-wing UAV, firstly, it is required to autonomously recognize a landing
pad. After recognition, the rotary-wing UAV descends only in altitude until it has contact
with the landing pad, maintaining its position and attitudes [27].

A standard landing system typically employs both GPS (Global Positioning System)
and INS (Inertial Navigation Sensors). However, the GPS’ measurements of height can be
imprecise, so additional sensors, such as a radar altimeter or a barometric pressure sensor,
are often used in conjunction with GPS [28]. Nonetheless, GPS signals may not always be
accessible, making automatic landing impossible in many remote areas. For unmanned
helicopters, GPS and INS systems are appropriate for long-distance and low-precision
flights but are inadequate for precise and close-range flights [29]. Therefore, it is necessary
to integrate these systems to enhance accuracy and reliability.

In order to achieve a good landing, two aspects must be taken into account: detection
and control. The detection, supported with sensors or cameras, seeks to estimate the
position and orientation of the UAV. This information is used by controllers of any type
to generate guidance commands such as changes in speed, acceleration, and rotation to
follow the desired trajectory [19]; in this case it generates the trajectory followed by the
UAV to land. To cover these aspects, the most commonly used techniques for autonomous
landing are presented below.

Computer-vision-based landing processes images in order to replicate human vision
and take actions based on the perception of its environment. These actions are commonly
focused on applications such as object classification, identification, detection, localization,
segmentation, tracking, etc. In autonomous landing, its main function is to identify land-
ing zones. Landing can be performed indoors and outdoors. Indoors, being controlled
environments, have reduced disturbances and the application does not require a higher
computational effort. Whereas, while outdoors, the presence of disturbances assumes a
greater challenge for the computer vision system [28].

Another technique is guided landing, which complements the previous method be-
cause this one refers to determining the trajectory from the aircraft location to the target.
It involves determining the orientation, direction, and speed at which the desired tra-
jectory is to be traversed. There are two types of guidance: proportional guidance and
pursuit guidance.

Proportional guidance maintains the constant angle (θ) between the line of sight (LOS)
and the target, for which the yaw rotation speed is proportional to the rotation speed of the
angle between the LOS and the UAV [30]. In Figure 1, the geometry of this type of guidance
can be appreciated, where the variable Vp, which is the approach velocity, is introduced
with respect to the local axes of the UAV.

Proportional guidance for a static target is formulated from the scalar control and is
expressed as follows:

ψ̇ = λθ̇ (1)

with,
ψ̇ = yaw rate.
λ = proportionality constant.
θ̇ = theta rate.
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x

y

LOS TARGET

Vp
θ

ψ

Figure 1. Proportional guidance geometry.

For pursuit guidance, in Figure 2 one can observe its geometry and understand the
geometric rule of pure pursuit, in which the pursuer is allowed to steer towards the target
and make the direction of its velocity match the LOS [31].

x

y

LOS TARGET

Vy

Vx
Vp

θ

Figure 2. Pursuit guidance geometry.

Both guided landing and vision-based landing cannot act alone on the UAV actuators.
For this reason, they are integrated with conventional control techniques to achieve greater
robustness and autopilots have sufficient hardware and software to control a UAV with
such techniques. Their reliability makes it possible to develop specific applications, as in
the case of the described landing techniques.

2.3.2. Obstacle Avoidance

To avoid an obstacle that is present in the flight path of an aircraft that is in automatic
mode, the use of detection sensors, measurement tools, and cameras are required. In this
way, when an image is obtained through a camera, this information enters a computer in
the form of a matrix of size nxm pixels, which take their value depending on the intensities
of the color spectrum. Then, it is necessary to use mathematical tools to modify these
numbers to obtain the desired information. This data manipulation is known as image
processing [32,33].
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In image processing, various tasks are performed, ranging from adjusting the size of
an image to identifying objects or regions of interest. In this project, the goal is to detect and
select the nearest object within the field of view of a UAV. For this purpose, morphological
operations were used to eliminate or highlight features of interest in an image, thereby
separating the object of interest from the background of the image [18].

Furthermore, the most practical way to evade an obstacle present in a previously
configured trajectory is to change the flight mode of the UAV while it is on a mission.
With this, it is possible to instruct the aircraft to perform evasion maneuvers during its
mission [25,34].

In Figure 3a, we can observe how the evasion of a moving object is performed by
changing the flight mode of the aircraft to Loiter. Similarly, in Figure 3b, we can see how an
evasion maneuver of a static object is carried out by changing the flight mode to guided
and subsequently instructing the aircraft to move to a new undefined point in order to
avoid the obstacle. In both maneuvers, once the obstacle is out of the aircraft’s field of view,
it resumes the programmed flight mission.

LOITER

(a) (b)

GUIDE

Figure 3. Evasion maneuvers by changing the flight mode.

For this work, an obstacle avoidance maneuver was implemented using the guided
mode and a maneuver based on the operational principle of the loiter mode, which main-
tains the position and flight speed of the UAV constant at a specified point. This latter
maneuver will be carried out while maintaining the flight mode in guided; therefore, from
now on, it will be referred to as guided loiter [34].

3. Methodology

Considering the conditions in which monitoring missions in remote areas are con-
ducted, it is essential to minimize the energy consumption so that it does not have signifi-
cant impact on the aircraft’s autonomy and it can cover larger areas of land. The developed
prototype supports landing maneuvers and obstacle evasion, taking into account that the
LOAS must be programmed on a low-cost computational platform, and their hardware
must be lightweight enough not to affect the UAV’s performance. Figure 4 shows the
general connection diagram between the flight controller and the auxiliary prototype. The
auxiliary devices that enable the execution of the LOAS represent a load of 122 g, which is
light enough compared to the available payload.
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Pixhawk 2.1

FLIGHT CONTROLLER

Raspberry Pi 4

PROCESSING UNIT

LIDAR Lite v3

DISTANCE SENSOR

NoIR v1

CAMERA

UART

I2C CSI

Figure 4. Connection diagram.

Furthermore, this prototype has an approximate total power consumption of 3.5 [W],
providing a low-power alternative compared to commercial high-processing capacity
options that exceed 7 [W]. Even when compared to energy-efficient alternatives with
dedicated applications for detection systems, it stands as a more cost-effective choice.

3.1. Vision-Based Landing

Initially, communication is established via MAVLink messages and the flight status is
checked. Only when it is detected that the landing has started, the guidance process begins.
This algorithm has four processes, shown in Figure 5, structured according to the logic of
the algorithm. This is an ordered sequence of processes based on the scenario (whether
a helipad is present or not) that aims to execute the final process, concluding the landing
maneuver, and achieving a safe descent in a secure zone.

YES

NO

NO

NO

NO

YES

YES

YES

Autonomous 
LANDING

SAFE ALTITUDE
z - position control

z - position safe?

HELIPAD DETECTION

Decode and tracking

QR centered?

QR detected?

TEST ZONE

Movement through the points

1 2

34

5 6

7

Safe ground level?

CONTROLLED LANDING

Progressive reduction of the z
velocity until the end of landing

Figure 5. Guided landing algorithm.

The first one, called safe altitude, interrupts the automatic landing of the flight con-
troller. The landing status LANDED_STATE belonging to the EXTENDED_SYS_STATE
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message (ID = 245) is constantly checked. The start of the maneuver is conditional on
detecting the LAND command (LANDED_STATE = 4).

Then, the distance sensor measures the altitude with respect to the ground, and based
on this measurement, it decides whether an altitude correction is required. If the quadcopter
is initially above the safe altitude (a value set as a constant in the LOAS), it will descend
until it is within its range, otherwise it will maintain its altitude.

The second, called helipad detection, implements a two-stage computer vision system.
The first one identifies the presence of a QR code; if it contains the word HELIPAD, it locates
and identifies the region containing the code. Then, an object tracker is initialized, which
follows the heliport until it is centered with the camera axis. For tracking, the pure pursuit
rule described in Section 2.3.1 is applied, where the approach speed is above the LOS, and
its decomposition on the UAV’s local axes is set in the commands sent to flight controller.

The third process, called the test zone, works as an alternative to the previous one,
since it works when there is no heliport. Here, a pre-designed maneuver, corresponding
to Figure 5, identifies if the zone is safe for landing, which uses continuous altitude
measurements and its subsequent dispersion analysis in the data.

The fourth process, called controlled landing, consists of sending a landing command and
controlling its speed reference as a function of altitude according to the following expression:

LAND_SPEED =
v0

h0 − h f
(altitude − h f ) (2)

with,
LAND_SPEED = landing speed reference.
v0 = initial speed when LAND command is sent.
h0 = initial height when the LAND command is sent.
h f = height with the quad copter on ground.
altitude = continuous height measurement.

Equation (2) represents a velocity ramp calculated following the basic linear relation
(y = mx + b), in which constants (m and b) are determined by the initial and final height
points measured using the distance sensor, which is determined by the initial and final
height points measured using the distance sensor, along with a pre-defined landing speed
set in the flight controller’s parameters.

Finally, with the quadcopter on the ground, the motors are turned off to end the maneuver.

3.2. Vision-Based Obstacle Avoidance
3.2.1. Detection of Obstacles

For obstacle detection, an artificial vision technique based on morphological operations
is used to determine the object’s position relative to the aircraft, and a LIDAR Lite v3 distance
sensor is used to determine the distance between the UAV and the object. Figure 6 shows in
more detail the whole process that is carried out to develop the object detection stage.

Camera 
Calibrat ion

Camera 
init ializat ion

Color 
Detect ion

Color Filter

Contour 
Detect ion

Tracker

Posit ion

Distance

Sense 
Object

Lidar 
init ializat ion

COMPUTER VISION SYSTEM

Figure 6. Structure of the object detection stage.
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3.2.2. Color Detector with OpenCV

The objective of this stage is to determine the color of the object closest to the center of
the image captured with the NoIR v1 camera, separate it from the background, and track it.
To achieve this, the color detector primarily relies on a Gaussian filter. This filter operates
by giving higher priority to the pixels located in the center of the image and discarding the
rest [35,36]. Starting from the central pixel of the image, a 20 × 20 matrix is generated. In
this case, it serves as a convolution mask to determine the color of objects located in the
center of the image. This convolution is performed for each color space, and for each one,
the value of the pixel closest to the center of the image is determined.

When a photo is captured through a camera, it enters the computer in RGB color
space values (R for Red, G for Green, and B for Blue). However, it is more convenient
to use the HSV color space (Hue, Saturation, Value), especially when designing a color
detector. In this space, the color tone of an object is solely defined by the Hue value, with
0 representing white and 255 representing black. Therefore, the image is converted to the
HSV system [37,38]. This is illustrated in Figure 7a.

Figure 7. (a) Image in the HSV system. (b) Result of the color detector. (c) Result of the canny edge
detector. (d) Edge dilatation. (e) Final result of the obstacle detector.

3.2.3. Hysteresis Color Filter

This filter has two components. The first one is formed by the maximum and minimum
thresholds, which are obtained by calculating the mean of all the values in the convolution
matrix for each component of the HSV color space determined in the previous step. In this
way, we can define them as two vectors that delimit the three components of the HSV color
space and store these values as vectors using the np.array() command from the NumPy
library. The second component is the mask with which the input image is convolved
pixel by pixel, thereby eliminating all those pixels that are outside the threshold range. To
perform this operation, the cv2.inRange command from OpenCV is used, which returns a
binary image as a result, as shown in Figure 7b, where the white color represents the areas
that are within the defined tonal range in the color filter.

3.2.4. Contour Detector

The OpenCV library offers a simple way to implement a canny edge detector [39]
through the cv2.Canny() command [40], which when implemented gives the result shown
in Figure 7c.

In order to improve the result obtained from the edge detector, the morphological
operation of dilation is applied, which widens and joins the edges obtained with the canny
detector, making the image that enters the contour detector have more pronounced edges.
Figure 7d shows the result obtained after implementing the morphological dilation operation.
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With the dilated edges of the object of interest, the detection of all the contours present
in the image is carried out. In OpenCV, the command cv2.findContours is used to determine
if an edge is a contour. However, in order to improve the accuracy of the contour detector,
a filter is applied that removes all the contours from the image, except for the one that
corresponds to the object closest to the center of the image.

To perform this, the distance from the center of the image to each contour present
is calculated, selecting only the one with the shortest distance. This calculation involves
determining the centers of mass of the detected contours and then using the math.dist
command from the NumPy library to calculate the distance between the center of each
contour and the center of the image. The subtraction between the center of the image and
the center of each contour reveals their position relative to the drone.

Finally, with the help of the min(“Variable”) command, only the contour with the
smallest distance from the center of the image is selected. Figure 7e shows the result
obtained after implementing the contour detector. The obstacle of interest is enclosed
in a green bounding rectangle, which is then used as the input bounding box for the
initialization of an object tracker.

3.2.5. Object Tracker

Within the OpenCV library, there is the convenience of using several pre-designed
trackers. Each one has different precision levels whose efficiency depends on the application.
For this work, the KCF tracker requires the least processing resources, which yields efficient
results. This study can be observed in [41].

To initialize the tracker, the bounding box determined in the previous section is used,
along with the tracker.init() command from the OpenCV library. This command takes as
input the data of the frame in which the object was detected, along with the bounding box
that surrounds it. Once the tracker is initialized, the next step is to track the object using
the tracker.update() command from OpenCV. This command is responsible for updating the
value of the bounding box based on the new position of the pixels inside it [42]. Figure 8
shows the implemented object tracker control algorithm, which only terminates when the
tracked object leaves the drone’s field of view or if the tracker receives a false positive.

Creat ion of the Tracker 
cv2.TrackerKCF_ Create()

Init ializat ion of the 
t racker.  t racker.init ()

Obstacle 
detector.

Bounding box.Frame

Tracker update  
t racker.update(Frame)

movement?

Bounding box 
update

Yes

Lost  
it?

Yes

N o

Figure 8. Flow diagram of tracker operation.
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3.2.6. Guide Evasion

The obstacle avoidance maneuver implemented bases its operation on the change of
flight mode to guided and a maneuver based on the principle of operation of the loiter
mode, which maintains the position and speed of flight of the UAV constant at an indicated
point. This last maneuver will be performed keeping the flight mode in guided mode, so
from now on this will be known as loiter guided.

Then, first a mission is created through the Mission Planner and the Pixhawk Cube
autopilot is loaded, after that when the LIDAR Lite v3 detects that an object is at less than
3 [m] and that the object detector has already determined its position with respect to the
drone, the evasion maneuver begins.

The avoidance maneuver consists of moving the aircraft to the left or right, depending
on the position of the obstacle, until it leaves the camera’s field of view. To enact this, use is
made of the MAV_FRAME_BODY_OFFSET_NED command type message, provided by
the mavutil module of the Pymavlink library [24,43,44].

Figure 9 shows the control algorithm that describes the operation of the obstacle
avoidance system. It shows that once the obstacle leaves the camera’s field of view, the
drone resumes its mission in automatic mode and will remain in that mode if the presence
of an obstacle is not detected.

Mission in 
automat ic mode

Object  
detector =  True Guide Mode

Guide Loiter
Movement  to the 

right
Posit ion>  0

Movement  to the 
left

Tracker

Yes

N o

Yes

N o

Figure 9. Obstacle avoidance system diagram.

4. Results and Discussion

The following are the results for the auxiliary systems supporting landing maneuvers
and obstacle avoidance. These systems were implemented on a multirotor UAV in a
controlled environment to evaluate the performance of both algorithms.

4.1. Test of Autonomous Landing

Considering the importance of developing autonomous systems that assist UAV
landings in applications such as remote monitoring, where ensuring the integrity of the
aircraft is vital to avoid material and data losses, the following are the results of the
evaluation of the proposed autonomous landing.

Two scenarios were tested, when the heliport was detected and when it was not. These
tests correspond to the execution of the landing guidance algorithm where a safe altitude
of 4 [m] is established as sufficient to detect the heliport in the computer vision system, the
area covered by the test zone process is 4 [m2], the standard deviation of the data obtained
during the maneuver must be less than or equal to 16 [cm], and a lower speed limit of
20 [cm/s] is considered for the controlled landing.
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Figure 10 shows the altitude registered by Pixhawk’s IMUs and LIDAR sensor during
the maneuvers. There is a recurrent position error in Pixhawk. Table 3 summarizes
the position errors in the tests corresponding to the first phase of the algorithm. The
altitude_imu recorded data shows the most significant errors, with the highest error being
60.83% in test 1, while the lowest error is from LIDAR Lite v3 at 3.52% in test 3. This
highlights the low precision of GPS and IMU in estimating position coordinates at smaller
scales; the value recorded by Pixhawk (altitude_imu) is the most accurate estimate that
the controller can calculate based on these sensors. Regarding the algorithm’s accuracy
in correcting safe altitude, distance sensor measurements are considered for comparison
with the reference. The errors upon reaching the final position do not exceed 8%, which is
acceptable and does not affect subsequent processes.

Time Time

A
lt
it

ud
e 

[m
]

A
lt
it

ud
e 

[m
]

altitude_imu [m]
altitude_lidar [m]

altitude_imu [m]
altitude_lidar [m]

Figure 10. Altitude record without helipad detected (left) and with helipad detected (right).

Table 3. Relative errors between the onboard logging of the prototype and the GPS data.

No. Test
Initial Altitude Final Altitude

Altitude_imu LIDAR Lite v3 Altitude_imu LIDAR Lite v3

1 4.33% 4.33% 48.23% 4.71%
2 8.68% 7.89% 18.48% 17.12%
3 12.75% 3.52% 4.46% 20.61%
4 60.83% 12.08% 60.83% 12.08%

In the context of remote monitoring applications, ensuring precise altitude control is
crucial to prevent abrupt landings. During vertical descent maneuvers such as landing,
especially, it is not advisable to propagate GPS position errors as they can affect the
smoothness of the final descent curve. In this study, the implementation of a LIDAR sensor
proves to be an effective solution for verifying altitude during landing, surpassing the
limitations of Pixhawk measurements.

After completing the first stage (safe altitude), the Figure 11 shows the xy trajectory
made by the quadcopter. In Figure 11(left), when the heliport was detected, the trajectory
to center with the optical axis is unpredictable because it depends on where the heliport
was detected and how long the tracking lasted. And, in Figure 11(right) when there was no
heliport, the trajectory is irregular but corresponds to that defined by the test zone process;
here, it is shown that the ground covered was 4 [m2]. The quadcopter’s characteristic is
a vertical takeoff and landing (VTOL). For this reason, it is necessary to verify if landing
in unknown terrain is safe before doing so. The detection of a heliport represents the
successful completion of the flight mission, as it will land where it was programmed.
However, in the case of possible loss of signal or direction, the accuracy of the distance
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sensor is crucial. Although the measurement is punctual, the continuous measurement can
help successfully cover the landing zone.

x [m] x [m]

y 
[m

]

y 
[m

]

Figure 11. X vs. Y trajectory without helipad detected (left) and with helipad detected (right).

Finally, after the quadcopter recognizes where landing is safe, the controlled landing
process is executed. Figure 12 shows the variation in the z-velocity from the beginning of
the controlled landing to the end of the maneuver. Initially, there is a pronounced transient
phase, as it should be noted that prior to descent, the UAV is suspended in the air at a
constant altitude. Then, there is a progressive decrease in velocity until it stabilizes at
20 [cm/s]. This value was set after observing that at lower speeds, the UAV tends to delay
the landing significantly or remain static at a low altitude. The progressive decrease in
speed is crucial to prevent the UAV from bouncing off the ground, particularly when the
terrain is uneven, such as in volcanic environments. This precaution becomes even more
significant when fragile devices form part of the payload. Additionally, incorporating a
distance sensor to supplement GPS mitigates position errors that GPS alone may present,
which is especially important in terrain with variable altitude.

V
z 

[m
/s

]

Time

Transition Controlled Landing

Final Vz value before
Motor shutdown

Figure 12. Vz during last stage of landing.

The results presented by the autonomous landing system in the two most common
scenarios are satisfactory; a successful landing was achieved in 90% of the tests, attributing
the remaining 10% of issues to the difficulty of optimizing energy and processing capacity.
In these exceptional cases, the UAV became disoriented due to the delay in image processing
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during the helipad tracking. Furthermore, by meeting the payload and energy consumption
requirements, the prototype opens up the possibility of being applied in remote monitoring
applications such as volcanic areas, where the terrain undergoes continuous variations.
This adds an important capability for UAV safety and pilot confidence.

4.2. Obstacle Avoidance

Taking into account the flight conditions required for monitoring missions in remote
areas, a self-sufficient system that enables obstacle avoidance is crucial to prevent accidents.
The following are the results of the evaluation of the developed obstacle avoidance system.
To do this, a square sponge measuring 1 × 1 [m2] is used to simulate a potential obstacle
present in the aircraft’s flight path during monitoring.

4.2.1. Obstacle Detector Testing

Testing the operation of the designed obstacle detector and the reliability of the flight
mode change, the UAV’s flight is manually initiated and it approaches an obstacle in its
environment. When the distance sensor detects an object within 4 [m], the camera turns on
to detect the obstacle, and the flight mode switches to guided mode. At this point, the UAV
performs guided loitering, as described in Section 2.3.2 of this document.

Figure 13 shows the results obtained by the obstacle detector, where one can see in a
blue box the value of the distance at which the object is detected, and in yellow the value of
the distance at which the UAV stops.

Figure 13. Obstacle detector result.

Furthermore, to confirm that the change of modes was performed correctly and that
the position was maintained while the guided mode was set, the following is a graph
obtained from the data stored by the Raspberry Pi.

Figure 14a illustrates the variation of the drone’s position over time. It can be observed
that the drone starts by maintaining its position and then moves forward until it detects
an obstacle at t = 16. Once the obstacle is detected, the drone stops and waits for further
instructions. The same maneuver can be observed from a different perspective in Figure 14b.

(a) (b)

Figure 14. (a) Position vs. Time, (b) Position X vs. Position Y.
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The implemented system demonstrates a highly effective response time, with an error
margin of approximately 0.3 [m], as analyzed in Table 4. This error value is considered
completely acceptable, since the detection threshold used in the development of the tests
is 4 [m], allowing the drone to perform evasive maneuvers with a wide margin of safety
and assured success. These results demonstrate that the implemented obstacle detection
system ensures that the drone can perform critical missions, such as volcano monitoring,
without being damaged by collisions with obstacles in its environment. This increases the
success rate of critical missions and confidence in the technology implemented.

Table 4. UAV response to the obstacle detector for a detection threshold of 4 [m] with a flight speed
of 10 [m/s].

Test Number Detection
Distance [m]

Detection Error
[m]

UAV Stopping
Distance [m]

UAV Stopping
Error [m]

1 3.89 0.11 3.65 0.35
2 3.96 0.04 3.92 0.08
3 3.40 0.6 3.61 0.39

4.2.2. Results of the Auxiliary Obstacle Avoidance System

Once the operation of the obstacle detector has been verified, the detector is tested
together with the evader, i.e., the complete prototype. Achieving an optimal avoidance
maneuver, it is essential to consider the trajectory that will give the drone the most flight
autonomy while avoiding the obstacle. In this way, the aircraft will perform the avoidance
maneuver with minimal energy expenditure, a critical factor in any drone mission [45].

One of the objectives of the avoidance system is to be completely autonomous during
the execution of the mission preprogrammed in the mission planner, since the flight will be
performed beyond the point of view. For this reason, the flight mode will always remain
automatic, and only when an object is detected at less than 3 [m] will the flight mode
change from automatic to guided. The drone will then perform a guided loiter, moving to
the right or left as described in the previous section, until the object leaves the camera’s
field of view. Once this is complete, the drone will resume the flight mission until it finishes
or detects another obstacle that may cause a collision.

Considering what was described in the previous paragraph, the planned mission is
started, which arms the drone engines, by code, and then starts the mission. In this part,
it was necessary to implement a 4 [s] waiting time between the assembly of the drone’s
motors and the start of the mission, so that the motors have enough time to reach the speed
they need to stabilize. It is crucial to keep this in mind because if it is not executed, the
drone will lose stability and orientation during startup.

From the data obtained by the Raspberry Pi during the flight, a 3D graph of the
drone’s trajectory during the mission was generated. This graph is displayed in Figure 15
in Cartesian coordinates.

Finally, the response speed of the implemented auxiliary obstacle avoidance system is
analyzed. For this purpose, the CSV file obtained by the Raspberry Pi is used, where the
distance value measured by the LIDAR Lite v3 is recorded.

When analyzing the data presented in Table 5, it can be observed that the implementa-
tion of the tracker has increased the drone’s response time, resulting in a maximum error
of approximately 1.1 [m]. Therefore, to ensure the proper functioning of this prototype,
it is recommended to set the minimum detection threshold to a value greater than 2 [m]
and to limit the flight speed to not exceed 10 [m/s], as a higher flight speed will lead to an
increase in this error.
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Figure 15. Flight path obtained from the data in the CSV file.

Table 5. UAV response speed once the prototype is implemented for a detection threshold of 3 [m]
with a flight speed of 10 [m/s].

Test Number Detection Error [m] UAV Stopping Error [m]

1 2.18 0.82
2 1.98 1.02
3 1.96 1.04

Thus, it can be affirmed that the implemented auxiliary system offers a satisfactory
response time for the development of critical missions in a wide range of applications. Ad-
ditionally, this system has been designed to work with low computational cost components,
which translates into a significant economic advantage over existing alternatives in the
market. In summary, the implemented system offers a cost-effective and highly effective
solution for monitoring missions, aerial photography, and wildlife surveillance, among
other applications.

5. Conclusions

The results demonstrate the effectiveness of using auxiliary platforms; the LOAS can
be a good option for integration into monitoring missions commonly conducted beyond
the pilot’s line of sight. Thanks to its low computational cost, this system allows aircraft
to maintain their autonomy without significantly reducing flight time and enables safe
operations even when performing tasks beyond the pilot’s visual range, which is crucial
for accident prevention during flight. In this context, artificial vision technology supported
by a distance sensor has proven to be effective in the tested environments and opens up
the possibility for continuous improvement as science advances in enhancing processing
capabilities with greater energy efficiency.

Artificial vision, thanks to the development of deep learning, provides increasingly
better results in object detection. However, its implementation requires high processing
power, which is not convenient for systems onboard UAVs. Nonetheless, a low-cost
processing method to detect objects through artificial vision is the use of morphological
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operations, which can determine important characteristics of an object, such as color, edges,
and shape, among others, and use them to separate it from the background and determine
its position in the frame. The inclusion of low computational cost precisely limits the
capabilities and operations of any equipment. In the case of UAVs, it is necessary to
opt for this type of system because they also face very limited operating times. Therefore,
addressing critical maneuvers such as obstacle avoidance and autonomous landing remains
a challenge that seeks to find a balance between energy utilization and the effectiveness of
auxiliary systems supporting these maneuvers.

6. Future Work

Once it is verified that the implemented system works efficiently, it is proposed to
enhance the program by using a more powerful processing card that minimally impacts
energy efficiency while enabling the visualization of the aircraft’s surroundings on a screen.
Additionally, a camera with a wider focal aperture will be included, and presence sensors
will be placed on the sides of the aircraft. This will enable the detection of objects on all
sides of the UAV and determine the most effective route that the UAV should follow.

The developed landing system is intended to be used in multicopter-type aircraft
focused on volcanic monitoring and agriculture. With this, it is expected that the drone
will have a secure landing system that allows it to land on flat terrains, free from water
or objects.
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