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Abstract: The development of agricultural robots is an increasingly popular research field aiming
at addressing the widespread labor shortages in the farming industry and the ever-increasing food
production demands. In many cases, multiple cooperating robots can be deployed in order to reduce
task duration, perform an operation not possible with a single robot, or perform an operation more
effectively. Building on previous results, this application paper deals with a cooperation strategy that
allows two heterogeneous robots to cooperatively carry out grape harvesting, and its implementation
is demonstrated. More specifically, the cooperative grape harvesting task involves two heterogeneous
robots, where one robot (i.e., the expert) is assigned the grape harvesting task, whereas the second
robot (i.e., the helper) is tasked with supporting the harvesting task by carrying the harvested grapes.
The proposed cooperative harvesting methodology ensures safe and effective interactions between
the robots. Field experiments have been conducted in order firstly to validate the effectiveness
of the coordinated navigation algorithm and secondly to demonstrate the proposed cooperative
harvesting method. The paper reports on the conclusions drawn from the field experiments, and
recommendations for future enhancements are made. The potential of sophisticated as well as
explainable decision-making based on logic for enhancing the cooperation of autonomous robots in
agricultural applications is discussed in the context of mathematical lattice theory.

Keywords: agricultural robots; cooperation; harvesting; cooperative harvesting; robot operating
system; autonomous navigation

1. Introduction

The use of robots in agriculture has been proposed as a solution to various challenges
facing the agricultural industry including increasing farming costs, labor shortages, in-
creasing demands for food production, and the need for environmentally friendly farming
solutions [1–6]. The potential benefits of employing robots in agriculture have driven
research for several years and have resulted in experimental as well as commercially avail-
able robotic platforms. The implementation of operational agricultural robots involves
an array of supporting technologies including localization (in a greenhouse or outdoor
environments), navigation (within crop rows), vision (target plant recognition, e.g., for
banana detection [7], pomegranate identification [8], grape cluster detection [9,10] or plant
detection for weed control [11]), robotic manipulator control, and power management to
name a few. Vision in particular is considered essential for fully autonomous operation.
The proposed solutions are usually domain-specific instead of being comprehensive as
unifying solutions. Examples of the application of agricultural robots can be found in
various crops and for various associated tasks such as corn fertilization [12], weed control
in lettuce and broccoli [11], or harvesting strawberries [13]. Automated sensing solutions
for viticultural and vinicultural tasks have also been pursued in mapping, monitoring, and
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management [14,15], including using robots in typical tasks performed by humans, such
as pruning grapevines [16], harvesting [17], spraying [18], monitoring [19,20], maturity
estimation [21], and weeding [22].

Cooperative robots in agriculture have been proposed and developed in research set-
tings [23–26]. There are some advantages to deploying multi-robot teams in an agricultural
setting. Most significantly, multiple robots can carry out the work in a field in less time than
a single robot would, because a larger area can be covered while the robots are working in
parallel. Most research studies in this area have focused on tasks such as spraying [27,28]
and monitoring [29]. These approaches take advantage of the ability of robot teams to cover
more area than when a single robot is used. In this case, it is common that the robot team is
comprised of identical robots, with all members having the same capabilities regarding task
completion. Therefore, control, coordination, area coverage, localization, and navigation
are the main themes explored. A mechanism for area allocation and path coordination is
required [30–33]. In other cases, there are tasks that can be undertaken more effectively by
using cooperating robots. The task can only be completed by heterogeneous robots, whose
skills are complementary. Examples of this can be found when heterogeneous robots are
employed, each equipped with software and hardware designed to tackle different goals in
the overall task. In many studies, cooperation in such a scenario is implemented as teams
of unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) working
together. In this case, UAVs are tasked with mapping and monitoring the work area using
cameras, while the ground robots carry out the actual task using manipulators (e.g., in [34]).
In [35], a case study is described, where cooperating heterogeneous unmanned vehicles
can maximize the information gathered from the field in order to construct crop models
which would then be exploited for task planning. Multiple cooperating UGVs have been
also used in rice harvesting [36].

Other cooperative approaches involve human–robot cooperation, as is the case in the
study presented in [37]. A manned tractor acts as a leader while a robot tractor follows
autonomously. There are also examples of cooperation between multiple manipulators
in the literature, such as cooperative harvesting of aubergines [38] or coordinated apple
harvesting [39]. In the grape harvesting task presented in [17], the proposed robot is
designed to perform concurrent grape harvesting using two robotic arms. In [40], the
robot tracks a human operator who manually picks fruit in order to assist by carrying the
collection crate, but also to create a harvesting map.

There are only a few autonomous grape harvesting robotic systems reported in the
literature (e.g., [17,41]) and, to the authors’ knowledge, there are no cooperative grape
harvesting solutions. This paper proposes such a heterogeneous robotic system with the
focus being on the cooperative execution of the harvesting task. The rationale behind this
approach is the fact that viticultural robots have size limitations due to the narrow width
of a vineyard row. Therefore, a single robot can only carry a limited number of grapes.
By employing one or more helper robots dedicated to carrying grapes, this limitation
is minimized. Extending the work presented in [42], which dealt with the coordinated
navigation of two robots inside a vineyard, the present paper introduces and demonstrates
a cooperative multi-robot harvesting system as a solution to the aforementioned grape
capacity problem. The concepts presented in [42] are further refined in order to integrate
the actual harvesting operation. The harvesting scenario that has been implemented
for the purposes of this paper involves two heterogeneous robots navigating inside the
rows of a grapevine in a leader–follower formation. The robot team consists of an expert
robot responsible for harvesting and a helper robot responsible for carrying. At certain
predefined positions, the robots stop, and the expert robot performs the harvesting, while
the helper robot carries the harvested grapes. The paper describes the two robotic platforms
and the additional equipment that were used in order to fulfill the requirements of their
distinct roles in the cooperative harvesting scenario. In addition, the various software
subsystems (sensing, navigation, communication) and the related algorithms necessary for
the implementation of the cooperative robot system are examined. The desired functionality
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of the robots has been validated in field experiments in an actual vineyard. The paper
describes the field experiments, and the observations that have been made are discussed to
support the validation of the system and the evaluation of the cooperative approach.

A theoretical consideration of this work regards decision-making based rigorously on
logic. Note that decision-making in machine learning, including agricultural applications,
is typically pursued through classic modeling techniques by optimizing an “objective
function” using training data. Recall that classic modeling is traced back to work by Newton
and Gauss, whereby a parametric model is fit to measured data in the Euclidean space
RN for optimal parameter estimation. However, objective functions cannot accommodate
either semantics or logic. An interesting approach has been proposed in the literature for
decision-making by an inclusion measure function in the context of the “lattice computing
(LC) paradigm” including (lattice-ordered) data semantics as well logic for explainable
decision-making [43], as discussed below.

The present paper is structured as follows: In Section 2, the hardware and software
used in the field experiments are presented. In Section 3, the field experiments are described
and the experimental results are presented. Section 4 discusses the experimental results,
and in Section 5, conclusions and recommendations for further extensions of the work
are made.

2. Materials and Methods

This section describes the robotic platforms and the various subsystems and algorithms
that contribute toward the cooperative grape harvesting task. While all the subsystems
are necessary for effective cooperative operation, emphasis is placed on the cooperative
strategy proposed in this paper, the effectiveness (successful execution) and efficiency (task
duration) of which will be examined in the field experiments.

2.1. Robotic Platforms

The robotic platforms chosen for the implementation of the harvesting experiments
were the RB-Vogui and RB-Eken wheeled robots by Robotnik [44] because they offer
complete solutions for indoor and outdoor operations and include sensing, navigation, and
communication capabilities. The robots are designed such that they can also be customized
to fit the needs of the desired task. In terms of software, since they are ROS-based systems,
their software can be customized by integrating custom ROS nodes and packages. Both
robots operate under ROS Melodic installed on a Linux-based computer. They are equipped
with various sensors including 2D and 3D LiDAR sensors, GPS, and depth cameras. GPS
accuracy was improved by pairing the robots with one Real-Time Kinematics (RTK) base
for each robot. Additionally, the robots were equipped with temperature and humidity
sensors in order to monitor environmental conditions as well as the temperature inside the
robots.

Each robot was assigned a different role in the harvesting task. On one hand, the
RB-Vogui robot (the expert robot) was assigned the actual harvesting role; for this, it was
fitted with a Kinova Gen3 arm carrying a depth camera for grape recognition and a custom
cutting tool as the end effector for cutting the grapes. Moreover, it has an Nvidia Jetson
AGX Orin to handle the computationally intensive machine vision operations. To meet the
power demands of the additional hardware, a 24 V battery was added and placed inside a
custom steel box located at the back of the robot, which also houses the Orin computer, the
electronics for the environmental monitoring sensors, and a network hub which connects
the arm and the Orin computer with the robot. On top of this box, two removable grape
cluster baskets were placed. On the other hand, the RB-Eken robot (the helper robot) acted
as the helper in the harvesting task by collecting and storing the harvested grapes, since it
has a much larger load capacity (300 kg) than the RB-Vogui robot. It features a Universal
Robots UR10e arm (12.5 kg of load capacity) with an OnRobot RG2 gripper as the end
effector and a large storage basket for storing grapes.
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2.2. Software Architecture

The software developed for the various functions carried out by the robots was ar-
ranged as ROS packages in the robot operating system installed on the robots. Each package
has its own functionality and handles a particular task. These custom packages work in
conjunction with the pre-installed packages which ensure the robots’ basic functionality
such as sensing, motor control, power management, manipulator drivers, etc. Figure 1
shows the custom packages operating on the robots.
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More specifically, the following packages were implemented:

• Controller package. The controller package is responsible for the coordination of all
packages. It gathers information published from all packages and transmits it to the
base station. It receives commands from the base station and initiates the task. It is
also responsible for the communications between the robots.

• Sensors package. This is the package that collects the readings received from the
custom Arduino-based data collection hardware that was specifically developed for
these robots and includes temperature and humidity sensors.

• Arm package. This package includes methods that determine the manipulator’s
movements and predefined poses. Depending on the arm type (Kinova Gen3 or
UR10e) the arm package also includes methods to control movement sequences for
harvesting and basket handling.

• Navigation package. The navigation package contains methods related to the robot’s
localization, planning, and movement, including methods for positioning robots
relative to the vineyard row and relative to each other. It also publishes the current
position and orientation of the robot to the system.

• Measurements package. This package is responsible for gathering and synchronizing
sensor measurements and statuses from all devices on the robotic system, and then
publishing it to the system.

• Gripper package. This package is used to control the gripper and the cutting tool.
• Marker package. The marker package operates on the RB-Eken robot and is used to

detect the Aruco marker fixed at the back of the RB-Vogui robot. When a marker is
detected, the package publishes marker pose information to the system, to be used in
other packages.

• Task package. This is the package that is responsible for initiating and managing the
task received from the base station. Depending on the robot (RB-Vogui or RB-Eken) it
executes the appropriate methods that perform the task and coordinates the robot’s
actions. The package continuously publishes the status of the task to the system.

• Vision package. This package contains the methods concerning the machine vision op-
erations required by the RB-Vogui robot. The package loads the machine vision models
and, when requested by the system, grapes and stem recognition are performed. The
package publishes the location of the detected objects.
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2.3. Base Station

The base station consists of a laptop computer and a wireless access point to which
the robots and the laptop are connected. Through the purpose-built base station’s software,
the operator is able to select the desired task (in this case harvesting), plan the desired path,
select where the robot is to perform harvest, and define various task parameters such as
the percentage of grapes to be harvested in the case of green harvesting. Additionally, the
operator can oversee the progress of the task by viewing the robots’ location in the vineyard,
monitoring the various measurements collected by the robots’ sensors, and observing their
camera feeds. In addition, the base station’s software allows for saving the data collected
by the robots as well as their progress logs in a database for later examination.

In order to plan the path that the robots are to follow during the harvesting task,
the user must first select the map of the target vineyard. Vineyard maps are produced in
advance using images taken from an aerial drone, deployed to conduct a comprehensive
aerial survey of a vineyard. These high-resolution images are then processed in such a way
that the maps contain location information and features such as the vineyard rows and
other obstacles. This processing is carried out in Agisoft Metashape, a software application
specifically designed for processing aerial imagery. The software generates three map types:
an orthomosaic, a high-resolution composite image of the vineyard, and a binary image.
The binary image, in particular, is generated by extracting and classifying the Digital Point
Cloud (DPC). This classification results in the creation of a Dense Elevation Model (DEM)
comprising various classes of objects and ground points. By subtracting the DEM of ground
points from the overall DEM, a DEM of differences (DDM) is obtained. This DDM serves
to filter out the crop heights while excluding ground-related information. As a result, a
binary DDM is produced, which is then used in the generation of the navigation path, in
conjunction with the orthomosaic image. More specifically, the generation of the navigation
path consists of three steps: (1) the preprocessing step, which provides the field images
in an appropriate format, (2) the crop row detection algorithm which uses the Hough
transform to detect the angle of the crop lines, and (3) the navigation mapping process to
define the final route for the robots [45]. In the process of developing the navigation system
for in-row waypoints, users have the flexibility to choose the desired distance between
waypoints and save this configuration for future use. Additionally, the waypoints for turns
between rows are determined by identifying the peaks of the rows, which are then used
as circular points for navigation calculations. The user is able to select different areas of
the vineyard in which the robots are to operate, and the corresponding waypoints for the
entire mission (from an initial location to an end location) are generated.

The generated waypoints are characterized by whether they are locations where
harvesting is to be performed or not. The user can select at which waypoints the robots
are to stop and perform harvesting. This enables the robots to focus harvesting in specific
locations (for example around vineyard trunks) where a larger concentration of grapes is
expected to occur. It also enables green harvesting, usually taking place before veraison,
where only a percentage of grapes need to be harvested.

Finally, the base station’s computer hosts a server based on the MQTT messaging
protocol, which handles communications with the robots. Through the MQTT protocol,
the base station can send commands to the robots, receive status reports from the robots,
and forward messages sent from one robot to the other. The robots are equipped with the
mqtt_bridge ROS package which is responsible for converting MQTT messages to ROS
messages and vice versa. This allows two-way communication between the robots and the
base station and between each other.

2.4. Localization and Navigation

In order to perform navigation, the robots need to first localize themselves in the
environment. To achieve this, the robots possess a suitably transformed local copy of the
aforementioned vineyard map, indicating the location of the vineyard rows. Localization
is achieved using the adaptive Monte Carlo localization (AMCL) method [46]. More
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specifically, the AMCL method is a probabilistic algorithm that uses sensor readings
to produce an estimate of the robot’s pose in 2D. The possible poses of the robots are
represented as a distribution of particles. During the operation of the robot, the laser scans
received from the LiDAR sensors are continuously compared against the known map, and
a particle filter is applied in order to determine the likelihood of each particle being in
the actual state (pose) of the robot. The particles with higher likelihoods of representing
the actual pose of the robot are used in subsequent iterations of the algorithm to produce
new particle distributions. The method is adaptive because the size of the sample sets
varies using the KLD (Kullback–Leibler Distance) sampling method. The probabilistic
nature of the method is suitable for robot localization in the vineyard since discrepancies
between LiDAR measurements and the preloaded map are to be expected; as opposed to
the preloaded map, vineyard rows do not have smooth surfaces due to varying foliage
density. Therefore, starting from a known initial state (position and orientation), the pose
of the robot needs to be estimated and continuously updated.

Having established the location and orientation of the robot in the vineyard, the robot
needs to move from one location to the next. The map coordinates of the waypoints as
estimated by AMCL are then used by the Timed Elastic Band (TEB) motion planning [47].
The algorithm generates an initial trajectory connecting the current location to the next
waypoint. While the robot is moving, the trajectory is optimized in real-time based on
multi-objective optimization. The objectives are the duration of motion and the distance
from obstacles and are constrained by robot velocity and acceleration factors. The behavior
of the algorithm can be altered by providing different weights to the optimization objectives
and also by setting parameters such as the minimum allowed distance to the obstacles.
The ability to adjust this particular parameter is important since a robot can be required to
approach the vine at a small distance in order to perform the harvesting.

While AMCL and TEB motion planning operate on location in the map coordinate
frame, the paths generated by the base station are lists of waypoints expressed in terms
of GPS (latitude/longitude) coordinates. Therefore, for the robots to be able to plan and
execute their motion, the received list of GPS waypoints is first converted to a list of local
map coordinates at the beginning of the task. This is possible since the robots are also
equipped with GPS devices whose signal is corrected using RTK bases, as mentioned in
the previous section, and so the robots’ position in both coordinate systems (local map and
GPS) is known at any time. The conversion of GPS latitude/longitude coordinates to map
coordinates involves a series of steps. First, the GPS coordinates of the initial location of the
robot and the desired GPS coordinates of a waypoint (goal location) have to be converted to
the UTM (universal transverse Mercator) coordinate system. This involves the calculation
of the meridional arc and then the eastings and northings, which are the distances in meters
from the central meridian and the equator, respectively. Then, the difference between the
initial and goal coordinates yields the map coordinates of the goal location according to
Equation (1):

xmap = xutm − xutm0

ymap = yutm − yutm0 ,
(1)

where (xutm0 , yutm0) and (xutm, yutm) are the UTM coordinates of the starting location and
the goal location, respectively, and (xmap, ymap) are the resulting map coordinates of the
goal location. These coordinates can then be utilized by the local planning TEB algorithm,
and the robots are able to sequentially visit each of the waypoints of the prescribed path.

2.5. Coordinated Navigation

In addition to their ability to move toward prescribed locations, the robots are able
to navigate in a coordinated manner inside the vineyard. The preliminary coordination
algorithm was presented in [42]. In the leader–follower architecture adopted here, the
expert robot is visiting the waypoints produced by the software of the base station and
received at the beginning of the mission. At each waypoint, the expert robot transmits a
command to the helper robot to move in such a way so that the helper robot is always a
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waypoint behind. In other words, the expert robot instructs the helper robot to always
occupy the expert robot’s previous position. The expert robot waits until the helper robot
reaches that position and is notified when this happens. In the case where the waypoint
reached by the expert robot is designated as a harvesting position, the helper robot is
instructed to prepare to support harvesting. Preparing for harvesting support means that
the helper robot is required to first roughly approach the expert robot and then fine-tune its
position so that it rests at a preset distance of 40 cm and also assumes the same orientation
as the expert robot, using visual cues as is described later in Section 2.6. At this distance, the
UR10e manipulator on the helper robot can reach the expert with ease and is able to assume
any poses necessary to successfully carry out cooperative harvesting. The navigation
algorithms for the coordination of the two robots are summarized in the flowcharts of
Figure 2 below.
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2.6. Vision

Vision is used in two specific tasks, which are necessary for cooperative harvesting,
namely grape and stem detection, and positioning the robots relative to each other in
preparation for harvesting.

2.6.1. Grape and Stem Detection

The vision ROS package resides in the Jetson Orin platform, which is external to the
robot’s main computer. It is therefore launched remotely at startup, but it is part of the
same ROS network as the robot. The vision package is responsible for storing the vision
pre-trained models and performs grape and stem recognition and localization via a 3D
camera upon request from the main system. For this research, the You Only Look Once
(YOLO) v7 E6E model was chosen since it is well-suited for object detection.
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To train the model, a dataset that comprised 10,000 photos was collected. These photos
represented various objects, such as grapes, trunk, and ripening phases of the vineyard.
Two methods were used to capture the images: (a) a DJI Mavic Mini Drone, which flew
between the rows of the vineyard, and (b) a handheld camera operated by an individual
walking through the vineyard rows. To optimize the annotation process, the software
“Label Studio” was used because it allows image annotation by multiple users working
in parallel. The annotation process involved the participation of 70 contributors, who
collectively annotated 3500 images using rectangular boxes. The resulting dataset consisted
of eight predefined classes that the model had to recognize: Grape, Leaves, Irrigation
System, Branches, Grass, Pillar, Stem, and finally the Trunk. However, for the harvesting
task, only two classes, namely Grape and Stem, are considered. For the training process,
the YOLO v7 E6E model was employed. The images collected from the various sources
were resized to 1280 × 724 pixels and training was conducted using four Type A100 GPU
cards. The dataset was divided into a training subset comprising 75% of the data, and the
testing subset consisted of the remaining 25%. The training process spanned 2500 epochs,
and the duration was approximately 10 days. Figure 3 shows the resulting precision for all
classes after training.
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The evaluation results demonstrate the model’s effectiveness in accurately identifying
all object classes. The results of Figure 3 show that the model is not very effective regarding
the stem class which exhibits the lowest performance. This is due to the fact that the stem
was clearly visible in significantly fewer images in the dataset compared to objects of other
classes. Figure 4 shows an example of object recognition using the robot’s camera in the
field.

It should be noted that the current vision module is limited to grape cluster recognition
and does not determine grape maturity. This means that, at this stage, the system does not
select mature grapes for picking, and the robots operate under the assumption that they
are deployed at an appropriate harvesting date.
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2.6.2. Robot Relative Positioning

Vision is also utilized for the relative positioning of the robots when the expert robot
reaches a harvesting position. This particular function of vision is handled by the marker
ROS package. When the expert robot is at a harvesting position, the helper robot is required
to position itself relative to the expert robot with greater accuracy than that possible by the
estimation of the robot’s position using the AMCL method. For this reason, a vision-based
approach is required. The marker node continuously searches for an Aruco marker in the
helper robot’s camera stream, and upon detection, it returns the marker’s pose. Therefore,
when the marker placed on the back of the RB-Vogui robot is detected, the position of the
expert robot relative to the helper robot can be determined with accuracy. This position can
then be used to adjust the helper robot’s position behind the expert robot. Figure 5 shows
the view from the helper robot’s camera and the detected pose of the marker.
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2.7. Cooperative Harvesting

When the robots have stopped and are properly positioned in a waypoint where
harvesting is to be carried out, the expert robot initiates the harvesting process by setting
its Kinova Gen3 manipulator to an observation pose, preset at an appropriate height where
grape clusters are visible, and requests grape recognition from the vision package. If a
grape is detected, then the vision package returns the 3D location of the detected grape. The
manipulator then approaches the grape, at a distance where the stem is more visible, and
stem recognition is requested from the vision package. When the stem is detected and its
location and orientation are calculated, the manipulator moves its end effector to the stem,
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performs a cut with the cutting tool, and moves in order to deposit the cut grape in one
of the two temporary collection baskets on the expert robot. It proceeds by assuming the
observation pose again to detect more grapes. This process is repeated until a temporary
basket reaches its capacity. When this happens, the expert robot instructs the helper robot to
pick up the full temporary basket and empty it into its own, larger basket. Using a similar
process as the one used for the accurate relative positioning of the two robots prior to
harvesting, the helper robot uses the position of the Aruco marker at the back of the expert
robot in order to determine the location of the two temporary baskets on the expert robot,
given that the baskets are at fixed and known positions relative to the marker. The location
of each basket is initially determined in relation to the camera’s reference frame. For this
information to be effectively utilized for the planning of the UR10e arm’s movement and
particularly to establish the goal location of its end effector, the marker’s position needs
to be expressed in relation to the robot’s reference frame. To achieve this, the position of
the center of the marker with respect to the camera (xCAM, yCAM, zCAM) is determined as
the position (xR, yR, yR) of the center of the marker with respect to the robot’s base using
Equation (2): 

xR
yR
zR
1

 =


cosθ −sinθ 0 lxcosθ − lysinθ
sinθ cosθ 0 lycosθ + lxsinθ

0 0 1 lz
0 0 0 1




xCAM
yCAM
zCAM

1

, (2)

where lx, ly, and lz are the distances of the camera from the robot’s base and θ is the marker’s
yaw. Considering the basket handle and the end effector’s fingers, the end effector’s roll
and pitch are set to constant values as required. However, in order to compensate for
possible misalignment between the robots, the yaw of the end effector takes into account
the orientation of the marker parallel to the ground plane, as seen in Equation (1). This
ensures that the end effector approaches the basket handle at right angles even if the robots
are not perfectly aligned along their longitudinal axes. With this information, the helper
robot can accurately and safely approach, grasp, and move the correct temporary basket.

During the time that the helper robot handles the temporary basket, the expert robot
is free to proceed with cutting another grape if one is detected, but it cannot deposit it to
the other temporary basket until the helper robot signals that the basket area is clear. This
reduces the time that the expert robot is idle and allows parallel but safe operation. The
number of grapes that each basket can hold can be determined in advance, based on an
estimation of the average size of the grapes of the target grape variety. This value would
depend on the target grape variety. The harvesting process continues until the expert
robot’s manipulator assumes the observation pose and does not detect any grapes. At this
time, if there are grapes inside a temporary basket, even if the basket is not full, they are
picked up by the helper robot, and when this process is completed, the robots retract their
manipulators and resume their coordinated navigation toward the next waypoint. The full
cooperative harvesting algorithm for both robots is illustrated in Figure 6.
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3. Experimental Results

To assess the methods described in the previous sections, the two robots were deployed
in a vineyard for field experiments. More specifically, the selected vineyard was in the
privately owned vineyard Ktima Pavlidis located in the region of Drama, in northern
Greece. The vineyard was previously mapped using an aerial drone, and a detailed map
that included GPS coordinates was produced. A section of the map was isolated, reflecting
the section of the vineyard in which the field experiments were to be conducted. This
map was then loaded into the base station’s software as well as the two robots. Using
this information, a path was planned as shown in Figure 7. The path included waypoints
guiding the robots from an initial position to harvesting locations inside a vineyard row.
Three harvesting locations were selected for this path.
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Figure 7. The path planned by the base station’s software. The red circle with the yellow filling is
the initial position of the expert robot. The yellow circles are waypoints and the light blue points are
waypoints where harvesting is to be performed.

At the beginning of the experiment, the robots were positioned at an initial location,
and adequate time was allowed (approximately 10 min) until an accurate enough GPS
location was retrieved. During this initialization time, the vision model was loaded. After
that, the experiment was initiated. The robots were observed to follow the intended path by
visiting the prescribed waypoints sequentially, with the intended coordinated navigation
behavior. At each waypoint, the expert robot waited for the helper robot to reach the expert
robot’s previous waypoint. When this happened, the expert robot proceeded to the next
waypoint. As anticipated, the paths followed by both robots between any two waypoints
were not straight but were executed as the result of the planning process occurring under
the TEB path planning algorithm described above. Figure 8 shows the two robots within a
vineyard row while coordinating their motions.
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waypoints inside a vineyard row.

At each harvesting location, the expert robot stopped and waited for the helper robot to
initially approach and then position itself with precision in relation to the expert robot, prior
to the actual harvesting. According to the relative positioning scheme originally proposed
in [42], the helper robot initially approached the expert robot, and then, after detecting
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the Aruco marker located on the expert robot, corrected its positioning by adjusting the
distance from the expert robot. Figure 9 shows the two robots correctly positioned prior to
harvesting.
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Figure 9. Helper robot positioned behind the expert robot, ready to support harvesting.

Regarding the cooperation between the two robots during harvesting, the process
was performed as planned by the cooperative harvesting algorithm illustrated in Figure 6.
During the experiments, it was observed that the preset grape cluster capacity of the
temporary baskets affected the synchronization of the two robots. For the field experiments,
the capacity of the temporary baskets was set to two grape clusters. As the proposed
algorithm dictates, after reaching the capacity of either one of the baskets, the expert robot
sent a message to the helper robot to empty the temporary basket and proceeded with
cutting the next grape. However, the time required for the helper robot to empty the basket
was significantly longer than the time required for the expert robot to harvest a grape
cluster. This resulted in the expert robot remaining idle for a considerable time while
waiting for the helper robot to complete its operation and for the basket area to be safe for
the expert robot’s arm to approach. This idle time will depend on the preset capacity of
the temporary basket as well as the speed of the helper robot’s arm. Figure 10 shows the
helper robot picking up and emptying the temporary basket.
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Figure 10. The helper robot (a) picks up the temporary basket and (b) empties the temporary basket
into its own storage basket.

As shown in Figure 10, the grape clusters are first deposited into the temporary basket
by the expert robot and then deposited into the storage basket. The fact that the harvested
grapes are dropped to the baskets from a certain height has the risk of damaging the grape
clusters. In order to minimize any possible damage, the following steps were taken in
advance during the laboratory tests: In the case of approaching and depositing in the
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temporary basket, the lowest possible point of a grape cluster safely clearing the basket
while the arm is moving toward the center of the basket was estimated, and also the
distance between the cluster and the basket at the time of gripper release was minimized.
In the case of the storage basket, the temporary basket was set to rotate at a low speed, and
in addition, the distance between the grape and the storage basket was also set to be as
short as possible while avoiding any possible collisions. During the field experiments, and
more specifically during grape deposition, some individual grapes were separated from
the grape clusters, but no damage to the individual grapes was observed. This is acceptable
for viniculture, where individual grape integrity is crucial, as opposed to the preservation
of grape cluster integrity.

In terms of the actual harvesting of the grapes, it was observed that the preset ob-
servation pose was appropriate, set at the approximate height where grape clusters are
present. The vision module recognized the grape clusters unobscured by leaves reliably
and, using the depth information of the camera, was able to direct the end effector of the
robotic arm to approach each grape cluster. All detected grape clusters were eligible for
harvesting. However, the stem recognition, which takes place after the initial approach
of the arm to the grape cluster, was not as reliable. This is due to the fact that for many
of the recognized grape clusters, the stem was either fully or partially occluded by the
individual grapes or by leaves. Occlusions of this kind hindered object recognition and thus
the location information for stem approach and cutting was unavailable to the arm. When
stem location information was missing, the arm was directed to assume the observation
pose and search for the next grape cluster and repeat the process. A failure to detect the
stem adds a delay of approximately 10 s in total to the process. This time includes a grape
cluster arm approach, a five-second timeout for unsuccessful stem detection, and arm
retraction. Another reason for unreliable stem recognition was image overexposure when
the grape cluster was directly exposed to the sun, especially in cases where the visible stem
was very short. Figure 11 shows the robotic arm cutting a recognized stem.
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Figure 11. Expert robot’s robotic arm cutting a grape cluster.

During the field experiments, some task quantities were recorded in order to evaluate
the efficiency of the current implementation. Table 1 shows the measured average duration
of the various tasks and sub-tasks that comprise the cooperative harvesting task and the
total time required for the entire cooperative harvesting cycle.
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Table 1. Duration of the sub-tasks in the cooperative harvesting cycle.

Task Sub-Task Duration (min)

Initialization GPS localization 10:00
Loading vision model 0:15

Harvesting Successful grape detection 0:01
Arm movement to the grape cluster 0:02

Successful stem detection 0:01
Arm movement to cut stem and cutting 0:05
Arm movement to deposit grape cluster 0:16

Cooperation Arm movement to grab and move the temporary basket 0:23
Depositing grapes to the storage basket 0:09

Arm movement to return to initial position 14
Total 1:11

It should be noted that the values stated above are approximations and are subject to
change in the following iterations of the development process. For example, the duration
of the grape cluster approach and cutting varies depending on the location of the detected
cluster. The objective of the field experiments was primarily to verify the functionality of
the prototypes and to demonstrate the feasibility of the cooperative harvesting process.
For this reason, some of the task durations are intentionally longer. More specifically, the
speed of both manipulators was lowered for safety reasons, especially while approaching
and handling the baskets. The same is also true for robot speeds during navigation. It is
clear that the efficiency of cooperative harvesting is not optimal and can be significantly
improved by a) increasing the speed of manipulators and b) improving the synchronization
of the two robots while the temporary basket is being emptied, as described above.

4. Discussion

The field experiments described in the previous section were aimed at testing the
operation of the proposed cooperative harvesting system. The experiments were conducted
successfully and the prototypes performed well in a real-world agricultural setting. The
main aspects of the robots’ functionality were (a) navigation, (b) harvesting, and (c) co-
operation. In this section, each of these aspects is discussed. The potential of explainable
decision-making based on logic for enhancing the cooperation of autonomous robots in
agricultural applications is also discussed.

4.1. Navigation

At an individual robot level, navigation is performed using established methods
for localization and planning [46,47]. These methods are used to allow the robots to
localize themselves within a pre-mapped vineyard and navigate to consecutive desired
locations accurately and safely by planning safe routes between locations. At the robot
group level, the proposed coordinated navigation algorithm was successfully utilized to
guide the helper robot to follow the expert robot to the desired locations. Inter-robot
communication was used in order to coordinate the robots’ movements so that they are
performed in stages (i.e., only one robot is in motion at any time) and also allow exchange of
location information. More specifically, WiFi communications were used for the exchange
of information between the robots [48], with each robot being controlled by a separate
ROS master. The data exchanged by the robots were limited to simple leader-to-follower
commands and locations, so there was no need for a more sophisticated communications
system with a larger bandwidth. By executing the robot motions in stages, it was ensured
that the trajectory planned for each robot movement remained constant and could not
be affected in real-time by the other robot’s movement while the two robots were in
proximity [42]. In addition, the algorithm provided a mechanism that allowed correct
positioning of the robots prior to harvesting, in order to ensure that manipulation operations
using the robotic arms were executed successfully. This was accomplished by a ROS node
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running on the helper robot that uses the camera to detect Aruco markers and calculate the
pose and distance of the expert (leader) robot, and thus determine the desired helper robot
position relative to the expert.

4.2. Harvesting

The actual harvesting operation involved a combination of machine vision and robotic
arm control on the part of the expert robot. On the machine vision side, a model was
trained so that the expert robot’s camera could be used to identify a number of objects
present in the vineyard. For the harvesting task discussed in this paper, grape cluster and
stem classes of the trained model were used. The model was trained after first assembling a
dataset of 10,000 vineyard images. When the expert robot’s camera (located on the robotic
arm) receives an image, either grape cluster or stem recognition is performed on that image.
Because the camera also provides depth information, the location of the cluster or the stem
in 3D space can be calculated. This location is then utilized to dictate arm motion and the
desired end effector’s eventual position. Potential complications that can occur in the field
are two: (a) difficulties in the object recognition phase due to occlusions or environmental
conditions and (b) recognition of objects in locations that the robotic arm cannot reach.
Recognition problems due to environmental conditions mainly relate to overexposure due
to direct sunlight on the grape cluster. Depending on the orientation of the sun compared
to the position of the two robots at the time of harvest, this problem could potentially be
reduced if the helper robot can provide a shading mechanism using its manipulator while
the expert robot is at the stage of grape recognition. Such a functionality would enhance
the benefits of using a robot team.

Regarding the movements of the robotic arm, these were a combination of predefined
poses, Cartesian planning, and goal-based planning, all performed using the MoveIt
trajectory planning ROS library [49]. Goal-based planning for both Kinova and UR10e
arms was achieved using the RRT-Connect planning algorithm. The sequence of motions
comprising the harvesting task aimed at performing the desired function while taking
into account obstacles that were not included in the internal description of the robot. For
example, after cutting the grape, the arm was set to move back in order to create some
distance between the cutting tool and the plant itself, since the robot was near the plant (at
approximately 0.5 m). The cutting tool then moves directly upwards until a desired height
is reached, so that a rotation places the cut grape on top of the temporary basket. This
sequence of motion was designed such that unpredictable plans produced by the MoveIt
library and which would damage the vine are avoided. Such unpredictable behavior was
observed in earlier laboratory experiments when the target was near the maximum distance
the arm could reach. Accuracy of motion was observed to be nominal for the Kinova arm
and therefore adequate for the grape-picking task.

4.3. Cooperation

As mentioned earlier, the two robots have separate ROS masters. The complexity of
the robots due to the large number of nodes being active on each, renders impractical the
use of a common ROS master using separate namespaces [48]. At the same time, since
the robot team only consists of two robots, the use of a ROS Multi-master package is not
necessary. As is the case with coordinated navigation described earlier, the two robots
only exchange limited information in a master–slave manner, where the master (the expert
robot) sends action messages (commands) to the slave (the helper robot), and the slave
responds when its action is complete.

Communications are achieved via a WiFi network established by the base station’s
access point. The robots do not exchange messages with each other directly, but instead,
the messages are first sent to the MQTT server running on the base station and are then
forwarded to the recipient robot. For this reason, the messages have a recipient field. More
specifically, the transmitting robot creates a ROS message which is then converted to an
MQTT message through an mqtt_bridge ROS node installed on both robots. The mqtt
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server receives the message and immediately broadcasts it. Both robots receive the MQTT
message. The message is then converted into a ROS message, but only the designated
recipient acts on the received information.

In terms of physical interactions between the robots, it was imperative that the grasp-
ing of the temporary baskets by the helper robot was as accurate as possible. This is the
reason why visual cues were utilized, through the use of a camera detecting the pose of a
large Aruco marker, whose location on the expert robot in relation to the temporary baskets
is well-defined. A ROS node constantly detecting the given marker and returning the pose
of the detected marker was developed. The helper robot is idle until it receives a command
from the expert robot. When the expert robot sends a command to the helper robot to
empty one of the temporary baskets, the helper robot samples the data published by the
aforementioned ROS node, in order to acquire the latest information on the location of the
marker, and consequently determine the location of the baskets. This is achieved through
a series of transformations that calculate the pose of the basket handles in relation to the
helper robot’s reference frame.

The proposed cooperative harvesting strategy that was evaluated in the field ex-
periments offers the capability of partitioning the cooperative task into two sub-tasks,
harvesting and carrying, each allocated to a different robot with different capabilities. This
allows the deployment of two heterogeneous robots specialized in a different portion of
the overall task. The expert robot is responsible for harvesting, and therefore it is equipped
with an arm with a specialized cutting end effector (in line with other proposed solutions
for grape cutting such as in [50]), a depth camera, and additional equipment to augment
the computational capabilities of the robot, which is necessary for the machine vision
operations. It temporarily stores the harvested grape clusters in its temporary baskets.
On the other hand, the helper robot can be significantly less complex as it only requires a
robotic arm and a transportation basket to support the harvesting operation. The helper
robot needs only to collect the grapes harvested by the expert robot by manipulating the
expert robot’s temporary baskets. The advantage of this architecture is that it is possible
that the system can be scaled such that multiple helper robots can be deployed. Waiting
times during cooperative harvesting such as those described in the previous section can
be reduced by adjusting the temporary baskets’ capacity and the operational speed of the
arms.

4.4. Logic-Driven Decision-Making Based on Data Semantics

On one hand, typical machine-learning methodologies carry out, either explicitly or
implicitly, numerical feature extraction followed by “number crunching” data processing
in the space RN, ignoring data semantics altogether. On the other hand, the LC (lattice
computing) paradigm considers semantics represented by the partial order of the data;
furthermore, data processing is pursued by the lattice-meet (u) and/or join (t) operations;
therefore, data semantics is retained throughout data processing as explained next.

Given a mathematical lattice (L,v), an inclusion measure is a function σ: L × L→[0, 1],
which satisfies, by definition, conditions (C1) u v w⇔ σ(u,w) = 1 and (C2) u v w⇒ σ(x,u)
≤ σ(x,w). An inclusion measure supports at least two different modes of reasoning, namely
Generalized Modus Ponens and Reasoning by Analogy. The following two equations
define two different inclusion measures, respectively.

σt(x,u) = v(u)/v(xtu), (3)

σu(x,u) = v(xuu)/v(x), (4)

where v : L→ R+
0 is a parametric positive valuation function, which by definition satisfies

both v(x) + v(y) = v(xuy) + v(xty) and x<y⇒ v(x) < v(y).
Previous applications in agriculture as well as elsewhere, regarding either classification

or regression, have employed an inclusion measure in a lattice of a single type of data such
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as either real numbers or tree data structures or distributions or ontologies [21,51]. The
aforementioned data are expected to be significant in agricultural applications because they
represent the real world more accurately; e.g., a distribution of measurements/estimates
represents “all order data statistics”, a tree data structure may represent more accurately
a plant, etc. Hence, original data semantics is involved in the computations without
distorting the data by arbitrarily transforming them to real numbers. In particular, in lattice
computing (LC), histograms are treated as histograms, tree data structures are treated as
tree data structures, etc. all along during data processing. In addition, note that the good
results reported in various publications have been attributed to the parametric optimization
of the underlying positive valuation function of an inclusion measure function.

An advantage of particular interest of an inclusion measure is its rigorous extension to
hierarchical data structures which emerge as the Cartesian product of disparate mathemati-
cal lattices. Hence, it becomes possible to fuse disparate types of data semantics toward
sophisticated decision-making. An additional level in a Cartesian product of mathematical
lattices regards intervals; hence, (information) granules emerge, represented by intervals,
resulting in explainability in LC, as it has already been demonstrated by granule-based
rules induced in numerous publications.

The primary objective of this work has been the development of a physical system pro-
totype of heterogeneous autonomous robots for cooperative grape harvesting as explained
above. The application of LC algorithms for sophisticated decision-making in agriculture,
also beyond viniculture, as outlined in this subsection, will be elaborated in future works,
as it has been demonstrated in [51].

5. Conclusions

This paper has described field experiments that were carried out in order to assess
the functionality of two cooperating agricultural robots in a grape harvesting scenario.
The field experiments have shown that the proposed robotic systems and the associated
algorithms that were developed have been operational and effective in a real-world setting
and have allowed the robots to perform the harvesting task successfully. The cooperative
aspect of the experiments has demonstrated the benefit of using heterogeneous robots,
where the complementary capabilities of each robot offer a more complete solution to the
harvesting task.

Further enhancements of the proposed cooperative harvesting implementation are
currently underway and include an additional process in which the helper robot returns
to a specific location to empty its storage basket and returns to the location of the expert
robot to resume the support of harvesting. Another enhancement under development is to
improve the current machine vision models in terms of object recognition accuracy and to
include additional machine vision capabilities, such as the automatic determination of the
grapes’ maturity so that the robots harvest only the mature grapes. The integration of this
grape maturity estimation capability using vision is currently ongoing and is described
in [52]. Apart from improving the existing framework for harvesting, the authors’ goal is
to proceed with the implementation and testing of other agricultural tasks such as leafing,
tying, and spraying, to be carried out by an individual or cooperating robots, in order to
provide complete robotic solutions for the viniculture industry.

Future work will transfer inclusion measure-based decision-making from the lab to the
field toward unified, explainable decision-making in cooperative autonomous agricultural
robots, potentially also involving humans.
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