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Abstract: Traditional end-effector robots for arm rehabilitation are usually attached at the hand,
primarily focusing on coordinated multi-joint training. Therapy at an individual joint level of the
arm for severely impaired stroke survivors is not always possible with existing end-effector robots.
The Arm Rehabilitation Robot (AREBO)—an end-effector robot—was designed to provide both
single and multi-joint assisted training while retaining the advantages of traditional end-effector
robots, such as ease of use, compactness and portability, and potential cost-effectiveness (compared
to exoskeletons). This work presents the design, optimization, and characterization of AREBO for
training single-joint movements of the arm. AREBO has three actuated and three unactuated degrees
of freedom, allowing it to apply forces in any arbitrary direction at its endpoint and self-align to
arbitrary orientations within its workspace. AREBO’s link lengths were optimized to maximize
its workspace and manipulability. AREBO provides single-joint training in both unassisted and
adaptive weight support modes using a human arm model to estimate the human arm’s kinematics
and dynamics without using additional sensors. The characterization of the robot’s controller and the
algorithm for estimating the human arm parameters were performed using a two degrees of freedom
mechatronic model of the human shoulder joint. The results demonstrate that (a) the movements of
the human arm can be estimated using a model of the human arm and robot’s kinematics, (b) AREBO
has similar transparency to that of existing arm therapy robots in the literature, and (c) the adaptive
weight support mode control can adapt to different levels of impairment in the arm. This work
demonstrates how an appropriately designed end-effector robot can be used for single-joint training,
which can be easily extended to multi-joint training. Future work will focus on the evaluation of the
system on patients with any neurological condition requiring arm training.

Keywords: stroke; neurorehabilitation; arm rehabilitation robot; transparency; adaptive weight
support; end-effector robot

1. Introduction

Every year, around 12.2 million people suffer from stroke worldwide [1]. It is estimated
that 82% of the needs of stroke survivors are unmet due to multiple reasons, including
poor access to rehabilitation services and limited healthcare resources [2]. Increased focus
on mobility soon after a stroke limits the amount of upper limb rehabilitation for recovery
during the early sensitive period. Furthermore, 40% of stroke survivors are left with chronic
upper limb impairments and activity limitations that impact their quality of life [3].

Rehabilitation robots were introduced to overcome some of these barriers by providing
semi-supervised high-intensity training. Rehabilitation robots for the upper limb fall under
two categories: (1) exoskeletons and (2) end-effectors. Exoskeletons, as the name suggests,
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are exterior skeletons that resemble the human limb segment’s anatomical structure to
which they are attached. They are attached at multiple points on the arm to support both
single and multi-joint training in a 3D space. Despite these advantages, exoskeletons are
bulkier, can be more expensive because of the need for more actuators, and require a longer
set-up time than end-effectors due to the strict alignment constraints of the human and
the robot axes of rotation [4]. Some popular examples of upper limb exoskeletons include
Anyexo [5], ARMin [6], Harmony [7], NESM-γ [8], CURER [9], BiEXO [10], AGREE [11],
and FLOAT [12].

End-effectors, however, are simpler robots than exoskeletons. They are attached to
the arm only at one point (usually at the hand) and hence are easy to set up. However,
most end-effectors are fully gravity-support planar robots (e.g., MIT Manus [13] and H-
man [14] making them unsuitable for training 3D movements in a non-gravity-eliminated
environment. Unlike exoskeletons, most end-effectors cannot

(a) be used for providing assisted training in single-joint movements, which may be
relevant for severely impaired patients;

(b) track human limb kinematics while interacting with a human subject during therapy
without the use of additional sensors. Previous work has demonstrated that RGB+D
cameras [15] or body-worn inertial measurement units [16] can be used to track human
limb kinematics by fusing information with the robot’s endpoint kinematics data.

Although both types of robots have their pros and cons, end-effector-based solutions
have been more popular than exoskeletons owing to their simpler structure, potentially
reduced cost due to fewer actuators, and ease of use [17]. The clinical utility of end-effector
robots can be further improved if an end-effector robot with the following features can
be developed:

(a) capable of adaptive training of single- and multi-joint arm movements in 3D with
titrated gravity support; single-joint movements would be suitable for severely af-
fected patients, while coordinated multi-joint movements would be suitable for mod-
erately impaired patients with sufficient strength but poor coordination.

(b) ability to track the joint kinematics of the human arm to provide feedback and track
progress.

Such a robot would be a versatile tool for administering a wide range of arm-therapy
activities.

Recent work along this line is the EMU robot [18], which has a six degrees of freedom
(DOFs) end-effector kinematic structure with two actuated and four unactuated DOFs.
EMU was designed for assisted training of 3D arm movements with varying levels of
gravity support, and the amount of weight support was estimated using a four DOFs model
of the human arm. It is designed to assist 3D multi-joint arm movements against gravity
using its two-actuated DOFs, which makes it unsuitable for single-joint movement training.
Safe single-joint assisted training requires at least three actuated DOFs to apply force in
any direction to cause the desired rotary movement of the (arbitrarily oriented) human
limb while avoiding undesirable forces that push or pull the limb segment from the joint.
We recently proposed the design of a self-aligning six DOFs end-effector robot, AREBO
(Arm Rehabilitation Robot), which has three actuated and three unactuated DOFs [19].
The three actuated DOFs allow the robot to apply safe forces at its endpoint that result in
pure rotational movements around a joint. The three unactuated DOFs allow it to align to
arbitrary orientations within its workspace, which reduces the constraints on the relative
position and orientation of the human subject with respect to the robot. This previous work
focused on the exposition of the kinematic structure, its optimization, and the algorithm
for estimating the human arm parameters for single-joint movements.

Physical human–robot interaction plays a crucial role in rehabilitation as it must
promote recovery while ensuring safety. The control modes for this interaction can be
broadly classified into three categories [20]: (1) assistive, (2) corrective, and (3) resistive
modes. In the assistive mode, the robot’s controller compensates for the weakness in the
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arm and helps the user to complete the task. In the corrective mode, the robot’s control law
restricts the abnormal movement patterns (due to synergy) observed in stroke subjects, thus
enforcing a desired movement pattern. When the robot controller opposes the voluntary
movements of the user, then it is operating in a resistive control mode. Any control mode
that maximizes the patient’s voluntary participation is likely to be conducive to recovery;
however, there is currently no strong evidence in support of any one control mode [21]. The
choice of a control mode for training is based on the clinician’s decision, which is based on
the nature of the patient’s sensorimotor impairments and needs. But a robot must at least
have (a) a mode that allows patients to make voluntary movements without any hindrance
(unassisted mode), and (b) an assistive mode that adapts to the patient’s capabilities.

In the current study, we present work on developing an end-effector robot to train
single-joint movements with adaptive gravity support while tracking human joint kine-
matics without the use of additional sensors. This work extends our previous work [19]
by (a) proposing a simplification to the previous kinematic structure, (b) designing, fabri-
cating, and assembling a physical prototype of AREBO (Figure 1), and (c) developing and
characterizing the robot controller for human–robot interaction during assisted training of
the single-joint movements of the arm.
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Figure 1. Picture of AREBO connected to the (A) upper arm and the (B) forearm. The body segment
proximal to the arm segment attached to the robot is constrained from moving.

2. Methods
2.1. Kinematics
2.1.1. AREBO’s Kinematic Chain

AREBO was designed to have a six DOF kinematic chain (Figure 2) to provide flexi-
bility in attaching the arm to the robot. The three proximal DOFs are actuated, which can
control the 3D position of the robot’s endpoint, while the three distal DOFs of the robot are
unactuated, forming a spherical joint centered around the robot’s endpoint, which forms
the robot’s unactuated segment (Figure 2). LetR0 be the base frame of the robot that is fixed
to the earth and letR1, R2, . . . , R6 represent the local reference frames attached to each
DOF of the robot. AREBO has six generalized coordinates corresponding to its six DOF,
θ =

[
θ1 θ2 . . . θ6

]T ∈ [−π, π)6. Figure 2 depicts AREBO’s kinematic chain along with
its Denavit–Hartenberg (DH) parameters for the transformation between subsequent local
reference frames. The origin of theR6 reference frame

(
pr ∈ R3) is referred to as the robot’s

endpoint, which is a function of the first three generalized coordinates (θ1, θ2, θ3) and the
link lengths (r1, r2). TheR6 reference frame’s orientation RR0

R6
∈ SO(3) depends on all six

generalized coordinates θ. Refer to the Supplementary Material for the detailed forward
and inverse kinematics of the robot.
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Figure 2. AREBO’s six DOFs kinematic chain with its DH parameters. The three proximal DOFs
(R1, R2, R3) are actuated and control the 3D position of the robot’s endpoint attached to the arm,
and the three distal unactuated DOFs (R4, R5, R6) help the robot to self-align to the orientation of
the arm; these three DOFs form a spherical joint around the robot’s endpoint pr.

The current design has the same kinematic structure as the one proposed by [19],
except for one modification to the unactuated segment of the robot. In [19], the axes of the
three unactuated DOFs (R4, R5, R6) did not coincide, which led to translations of the arm
that cannot be controlled by the robot. Thus, this was modified in the current design to
form a spherical joint at the endpoint, as shown in Figure 2, which addresses this issue.

2.1.2. Human–Robot Closed Loop Kinematic Chain

A closed-loop kinematic chain is formed by rigidly attaching the robot to the human
arm (the upper arm or the forearm as shown in Figure 3). The human shoulder was modeled
as a spherical joint replicating the shoulder articulation as shown in Figure 4. The reference
frame H0 is the human base frame (attached to the trunk or the upper arm as shown in
Figure 3), while the three reference framesH1,H2, andH3 are the local reference frames
corresponding to the three DOFs of the human arm. The three generalized coordinates
of the human arm are given by φ =

[
φ1 φ2 φ3

]T ∈ [−π, π)3. The origin of the H3

reference frame is referred to as the endpoint of the arm
(
ph ∈ R3), and its orientation is

given by RH0
H3
∈ SO(3).
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ph is at H3 at a distance l from its origin H0. The movements at the shoulder joint associated with
the generalized coordinates of the arm are φ1—flexion/extension, φ2—abduction/adduction, and
φ3—internal/external rotation.

We make the following assumptions on how the robot is connected to the human arm:

1. The human base frame H0 is located close enough to the robot’s base frame R0
such that the intersection between the robot and human arm workspaces has a non-
zero area.

2. The endpoint of the arm is attached to the spherical joint at the robot’s endpoint, such
that pR0

r = pR0
h , where pR0

r and pR0
h are the positions of the robot and arm endpoints

with respect to the robot’s base reference frameR0.
3. The orientation of the human base frame with respect to the robot’s base frame; RR0

H0
is assumed to be rotated around the xR0 -axis.

This type of connection between the arm and AREBO allows the robot to measure
and support two DOFs movements of the human arm (φ1, φ2), namely, (a) shoulder
flexion/extension and shoulder abduction/adduction if AREBO is attached to the upper
arm, or (b) shoulder internal/external rotation and elbow flexion/extension if AREBO
is attached to the forearm. In the rest of this paper, we assume that (a) the upper arm is
connected to the robot while detailing the different features of the system and its evaluation,
and (b) the elbow and the trunk are fixed. However, all these can be implemented for the
forearm as well, with slight modifications.

2.1.3. Optimization of Link Lengths

The robot link lengths (r1, r2) were optimized (like in [19]) for single-joint movements
of the arm by maximizing the robot’s workspace and manipulability in a plane orthogonal
to the longitudinal axis of the attached arm segment (zH3 in Figure 4). A brute force search
was implemented to find the optimal link lengths for the robot for different combinations
of the arm parameters, namely, the arm lengths, positions, and orientations of the human
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joint (H0) with respect to the robot (R0). An initial coarse search with link lengths (r1, r2)
ranging between 20 and 50 cm was conducted to locate the region near which the optimum
point exists (2 cm increments). After that, a fine search with 1 mm increments in the link
lengths revealed the optimum link lengths. Table 1 provides the details of the parameter
ranges and step sizes used for the optimization procedure. The objective function for the
optimization procedure was defined as follows:

O(r1, r2) =
1
2
(OW(r1, r2) + OM(r1, r2))

where the workspace component of the objective function OW(r1, r2) quantifies the relative
intersection between the robot’s and human’s workspaces averaged across combinations of
the human parameters; OM(r1, r2) is the manipulability of the robot in a plane orthogonal to
the arm. The details of these two components are provided in the Supplementary Material.

Table 1. Parameter values and range for the coarse and fine search used in the optimization of the
robot link lengths r1, r2. CS—coarse search, FS—fine search, l—distance between human joint and

AREBO’s attachment point, oR0
H0

=
[
ox oy oz

]T
—origin of the human joint, ψx—rotation of the

human around the xH0 -axis.

Parameter Values (cm) No of Values

r1
CS {20, 22, . . ., 50} 16

FS {33.1, 33.2, . . ., 34.9} 19

r2
CS {20, 22, . . ., 50} 16

FS {37.1, 37.2, . . ., 38.9} 19

l {15, 17.5, 20} 3

ox, oy {−10, 0, 10} 3

oz {20, 30, 40} 3

ψx (deg) {−30, 0, 30} 3

2.2. Robot Hardware
2.2.1. Mechanical Design

The three proximal joints with the motor and torque sensor assembly were intercon-
nected by two aluminium links and three custom-designed flange couplings with keyways.
The tapped hole and key on the motor shaft were utilized to prevent relative motion be-
tween the coupling and actuator. The couplings and the links were fabricated with IS
2062 plain carbon steel and 6061 aluminium alloy, respectively. The 3D model of the distal
spherical joint formed by the robot’s three unactuated DOFs is shown in Figure 5. An
elliptical plate with a shaft at one end connects the cuff with the rest of the robot (Figure 5C).
The dimensions of the ellipse were calculated to allow a range of motion of 90 degrees
for θ5. The 5th joint (R5) was formed by a circular segment placed over a shaft. Twelve
ball bearings (four on each side and four at the bottom) were strategically placed to clone
the behavior of a hinge joint atR6. Two C-shaped semi-circular aluminium profiles held
together by three spacers formed the sixth DOF.

The robot’s kinematic chain is mounted on a manually adjustable telescopic mecha-
nism to change the height of R0 from the ground. This height is varied by rotating the
handle that is attached to a bevel gear and lead screw arrangement and has a 260 mm
stroke length. This telescopic mechanism is mounted on a plus-shaped chassis constructed
from four beams made from 40 mm× 40 mm 6063 aluminium profiles with an IS 2062 plain
carbon steel stiffener at its base. Four caster wheels with brakes bestow portability to the
entire assembly.
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2.2.2. Joint Actuation and Sensing

For a person of a height of 185 mm (95th percentile) and a weight of 100 kg, the
torque required to hold the arm flexed at 90◦ against gravity is found to be 15.8 Nm [22].
Considering the dynamics of the human–robot system, the actuator requirement for the
first DOF was conservatively chosen to be around 40 Nm. The second and third actuator
torque was found to be 20 Nm using similar calculations for the arm abducted at 45◦. The
maximum angular velocity required for training activities of daily living considering both
shoulder and elbow joints is around 180 deg/s [23]. Actuators were shortlisted based on
these torque and speed requirements, and the most compact actuator among them was
integrated into AREBO. AREBO’s three actuated DOFs use individual brushless DC motors
(details in Table 2) configured through individual controllers to operate in a current control
mode. A three-stage planetary gearbox is used along with electric motors to obtain the
torque requirements at the three actuated DOFs.

Each actuated joint consists of a reaction-type joint torque sensor that is sandwiched
between the actuator’s body and the proximal segment of the joint (Figure 6); the torque
sensors are used to implement an outer torque control loop around each joint. The rotary
encoder on each brushless DC motor senses the joint position of the three actuated DOFs
(θ1, θ2, θ3); two additional rotary encoders were fitted to sense θ4 and θ5. These encoders
allow us to compute xR6 and the orientation of R5 (RR5) since we do not measure θ6
(Figure 2). The specifications of the actuators and sensors are given in Table 2.
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Table 2. Specification of actuators and torque sensors used in AREBO. The actuators are from Maxon
International Ltd. (London, UK), and the torque sensors are from Forsentek Co., Ltd. (Shenzhen,
China). Three Escon 70/10 ec motor controllers are used along with each actuator.

Motor Gearbox Torque Sensor Encoder

1st Joint
EC Flat 90, Nominal

torque—0.953 Nm, part
no. 607950

GP 52 C,
Gear ratio: 53:1, part

no. 223090
FTHC, Range—40 Nm MILE, 4096 CPT, Part

no., 651168

2nd Joint
EC Flat 60, Nominal

torque—0.563 Nm, part
no. 614649

GP 52 C,
Gear ratio: 43:1, part

no. 223089
FTHC, Range—20 Nm MILE, 4096 CPT, Part

no., 651168

3rd Joint
EC Flat 60, Nominal

torque—0.563 Nm, part
no. 614649

GP 52 C,
Gear ratio: 43:1, part

no. 223089
FTHC, Range—20 Nm MILE, 4096 CPT, Part

no., 651168

4th Joint Unactuated joint Calt, 1000 CPT, Model
no. PD30-08G1000BST5

5th Joint Unactuated joint Calt, 1000 CPT, Model
no. PD30-08G1000BST5

6th Joint Unactuated and not instrumented
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Figure 6. Structure of each actuated DOF of AREBO. Each actuated DOF has an electric motor, a
gearbox, and a torque sensor in the arrangement shown here. The torque sensor is sandwiched
between the actuator body and the proximal segment of the link (F). A flange coupling connects the
actuator to the adjacent link (D).

2.2.3. Firmware and Software

A Teensy 4.1 (PJRC.com, LLC, USA) microcontroller performs the low-level hardware
interfacing AREBO’s actuators and sensors. The three actuators are controlled through
individual pulse width modulation (PWM) lines from the microcontroller to the ESCON
70/10 motor controllers operating in the current control mode. The five encoders are
connected to ten digital lines (channel A and channel B for each encoder). Each torque
sensor is connected to an HX711 (dual-channel 24-bit precision A/D weight pressure
sensor) load cell amplifier, which connects to the microcontroller through two digital
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lines (two-wire interface). The firmware on the microcontroller runs at 200 Hz, with each
iteration of the firmware code performing sensor reading, control law execution, and data
communication with the PC. The different components of the firmware/software system
interfacing the robot are depicted in Figure 7.
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Figure 7. Block diagram to show the flow of information between the different components of
the system.

The software to communicate with the robot was written using the Unity Game Engine
(Unity Technologies, Bellevue, WA, USA). The graphical user interface communicates with
the robot for reading data and setting control modes and controller parameters. This
software reads the sensor data from the firmware via a USB serial link and logs it to the PC
at 200 Hz. The software eventually contains the games used when training arm movements
with AREBO.

2.3. AREBO Human–Robot Physical Interaction: Controller Details

As a rehabilitation robot designed for measuring and assisting arm movements, two
types of human–robot physical interactions are supported by AREBO, which are defined as
two modes of operation of the robot:

(a) Unassisted mode (UAM): This mode allows subjects to perform voluntary active
movements with no physical robotic assistance and minimal interaction forces from
the robot’s mechanical structure, which is necessary to actively engage patients during
training and assess their residual ability.

(b) Adaptive weight support mode (WSM): In this control mode, the robot and user work
together to complete a task. While the user voluntarily moves the arm, the robot
provides just the amount of weight support needed to compensate for the weakness
in the arm. The support from the robot can be fixed or adaptive depending on the
training type desired by the user.

AREBO’s controller architecture that allows the implementation of UAM and WSM is
depicted in Figure 8. The controller has the following components:

(a) Low-level current control loop: At the lowest level, a current control loop is imple-
mented by the Maxon motor controllers for each individual motor.

(b) High-level torque control loop: A high-level torque control loop is implemented for
each actuated robot using the joint torque sensors to control the interaction force(

fR0
int =

[
fint,x, fint,y, fint,z

]T
)

between the arm and AREBO applied at the robot’s
endpoint.

(c) Gravity compensation module: A gravity compensation module that computes the
torques required at the robot joints to hold the robot in a particular joint configuration
against gravity.

(d) Human joint estimation module: This module allows the estimation of the human
joint angle from the robot’s joint angles without the need for any additional sensor on
the arm.
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(e) Human arm weight support module: This module estimates the torque required to
provide a given level of weight support to the arm based on the estimate of the arm’s
joint angles.

1 
 

 Figure 8. Block diagram of the controller implemented in AREBO.

This controller is used to implement the two modes of training (UAM and WSM) with
the robot. The details of each of these modules are provided in the rest of this section.

2.3.1. High-Level Torque Control Loop

The purpose of this loop is to control the interaction force fR0
int ∈ R3 between the robot

and arm, which is represented in the robot’s base frameR0. This interaction force could
be due to the subject applying a force on the robot, i.e., the subject attempting to move
voluntarily while connected to the robot, or the robot applying a force on the arm for
assisting or resisting movements. The joint torques due to this interaction force

(
τint ∈ R6)

is given by the following:

τint[n] =
[
τint,1[n] τint,2[n] . . . τint,6[n]

]
= JT(θ[n])·fR0

int [n]

where, J(·) ∈ R3×6 is the robot’s Jacobian matrix (details in the Supplementary Material).
AREBO’s kinematic structure will result in zero torques in the last three robot DOFs, i.e.,
τint,4[n] = τint,5[n] = τint,6[n] = 0.

The torque controller for each of the three actuated joints of AREBO is a PD controller,
with the discrete-time control law for the ith DOF given by the following:

τc,i[n] = ki,1∆τi[n] + ki,2∆τi[n− 1]

∆τi[n] = τd,i[n]− τr,i[n]− τg,i[n]

where,

• n is the current time instant.
• The subscript i indicates that these are variables associated with ith DOF.
• τc,i[n] is the output of the PD controller at the time instant n.
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• τg,i[n] is the torque required to fully compensate for the weight of the robot at the
current joint configuration θ[n].

• τd,i[n] is the desired torque, which is manipulated for implementing the unassisted
and adaptive weight support control modes.

• τr,i[n] = τint,i[n] + τg,i[n] is the torque read by the robot’s joint torque sensor, which
contains the torque required to hold the robot in the current configuration

(
τg,i[n]

)
,

and τint,i[n] the torque due to the interaction force fR0
int .

• ki,1 and ki,2 are the parameters of the PD controllers. The same fixed controller param-
eters are used for the 2nd and 3rd DOFs of the robot, while these two parameters are
piecewise constant functions of the interaction torque τint,i[n] = τr,i[n]− τg,i[n] for the
1st DOF (details in the Supplementary Material).

The maximum possible bandwidth of the torque controller used was experimentally
determined to be around 2.75 Hz (details in the Supplementary Material).

2.3.2. Gravity Compensation

The gravity compensation module ensures that the robot’s actuators automatically
take care of the robot’s weight for any possible robot joint configuration θ[n]. This module
uses the current robot joint angles θ[n] to compute the torques required to maintain the
robot in that configuration against gravity using the following expression:

R3 3 g(θ) =

τg,1(θ)
τg,2(θ)
τg,3(θ)


where τg,i(θ) is the torque required at the joint i to maintain the robot in the joint configu-
ration θ.

The parameters of the gravity term g(θ) were estimated through a calibration pro-
cedure, where a PD position controller moved and held the robot at joint configurations,
while the static joint torques at the first three joints were recorded. The details of the
calibration procedure and the parameter estimation procedure are provided in the Supple-
mentary Material.

2.3.3. Human Joint Angle Estimation

The kinematics of the arm can be estimated from AREBO’s joint kinematics if three
parameters of the arm are known, namely, the length of the human arm (l), the relative
orientation

(
RR0
H0

)
, and the origin

(
rR0
H0

)
of the human base frame (H0) with respect to the

robot base frame (R0) as indicated in Figure 9. The problem of estimating these parameters
around the arm can be split into two sub-problems, which can be solved through simple
calibration procedures: estimating the (a) orientation RR0

H0
and (b) origin rR0

H0
and the arm

length l.
The orientation of the human base joint with respect to the robot’s base joint is assumed

to be rotated around the xR0-axis, i.e., RR0
H0

is parametrized by a single scalar ψx. This
parameter can be estimated from the knowledge of the plane of shoulder flexion/extension
movements with zero abduction. The calibration procedure for estimating ψx will require
the user to perform flexion/extension movements while attached to the robot, which
records its kinematics during the procedure. The endpoint kinematics of the robot can be
used to estimate the equation of the plane that contains the flexion/extension plane and,
thus, the orientation parameter ψx. The algorithm for this estimation process is provided in
the Supplementary Material (Algorithm S1).

Once the orientation parameter ψx is estimated, then RR0
H0

=

1 0 0
0 cos ψx −sin ψx
0 sin ψx cos ψx

.

With this information, we can estimate the origin rR0
H0

and the arm length l parameters
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through another simple calibration procedure. This is achieved by having the robot perform
small random movements of the arm while recording the robot’s kinematics; here, we
assume that the human base frame does not undergo any translation or rotation during
the calibration procedure. The endpoint kinematics of the robot can be used to estimate
rR0
H0

and l. The algorithm for this procedure is provided in the Supplementary Material
(Algorithm S2).

Robotics 2023, 12, x FOR PEER REVIEW 12 of 25 
 

 

 

Figure 9. Parameters in the estimation of human joint kinematics. The position and orientation of 

the human base reference frame ℋ0 with respect to the robot’s base reference frame ℛ0 and the 

distance between the point of attachment of the robot and human joint 𝑙 are given as inputs to the 

human joint estimation algorithm. 

The orientation of the human base joint with respect to the robot’s base joint is as-

sumed to be rotated around the 𝐱ℛ0
-axis, i.e., 𝐑ℋ0

ℛ0  is parametrized by a single scalar 𝜓𝑥. 

This parameter can be estimated from the knowledge of the plane of shoulder flexion/ex-

tension movements with zero abduction. The calibration procedure for estimating 𝜓𝑥 

will require the user to perform flexion/extension movements while attached to the robot, 

which records its kinematics during the procedure. The endpoint kinematics of the robot 

can be used to estimate the equation of the plane that contains the flexion/extension plane 

and, thus, the orientation parameter 𝜓𝑥. The algorithm for this estimation process is pro-

vided in the Supplementary Material (Algorithm S1). 

Once the orientation parameter 𝜓𝑥 is estimated, then 𝐑ℋ0

ℛ0 = [
1 0 0
0 cos 𝜓𝑥 − sin 𝜓𝑥

0 sin 𝜓𝑥 cos 𝜓𝑥

]. 

With this information, we can estimate the origin 𝐫ℋ0

ℛ0 and the arm length 𝑙 parameters 

through another simple calibration procedure. This is achieved by having the robot per-

form small random movements of the arm while recording the robot’s kinematics; here, 

we assume that the human base frame does not undergo any translation or rotation during 

the calibration procedure. The endpoint kinematics of the robot can be used to estimate 

𝐫ℋ0

ℛ0 and 𝑙. The algorithm for this procedure is provided in the Supplementary Material 

(Algorithm S2). 

2.3.4. Human Arm Weight Support 

AREBO provides adaptive weight support during movements by modulating the 

amount of de-weighting of the subject’s arm. The de-weighting parameter is a scalar 𝛼 ∈

[0,1], where 0 indicates no weight support and 1 indicates 100% weight support. Arm 

de-weighting requires an estimate of the torque required for holding the arm against grav-

ity, which is achieved using a model of the arm. The details of this model and the proce-

dure for estimating the model parameters are discussed in the Supplementary Material. 

This arm model provides the torques 𝛕ℎ(𝛟) = [𝜏ℎ,1(𝛟) 𝜏ℎ,2(𝛟) 0]𝑇  required to 

hold the arm against gravity in the current orientation 𝛟. Let the interaction force on the 

Figure 9. Parameters in the estimation of human joint kinematics. The position and orientation of the
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2.3.4. Human Arm Weight Support

AREBO provides adaptive weight support during movements by modulating the
amount of de-weighting of the subject’s arm. The de-weighting parameter is a scalar
α ∈ [0, 1], where 0 indicates no weight support and 1 indicates 100% weight support. Arm
de-weighting requires an estimate of the torque required for holding the arm against gravity,
which is achieved using a model of the arm. The details of this model and the procedure
for estimating the model parameters are discussed in the Supplementary Material.

This arm model provides the torques τh(φ) =
[
τh,1(φ) τh,2(φ) 0

]T required to
hold the arm against gravity in the current orientation φ. Let the interaction force on the
arm to generate this moment around the human joints be fH0

h ∈ R3, acting at the point of
AREBO’s attachment with the arm, which is given by the following expression:

fH0
h (φ) = J−T

h (φ)·τh(φ), φ2 6= ±90◦

where, Jh(φ) ∈ R3×3 is the Jacobian matrix of the arm’s kinematic chain at the arm
orientation φ. The abduction angle φ2 of the human limb is limited to be within ±45◦,
which prevents it from going into singularity, ensuring that J−T

h (φ) always exists. Partial
de-weighting can be provided by the robot when the human–robot interaction force is set
to some fraction of fH0

h ,
fR0

int (φ) = αRR0
H0
·fH0

h (φ)

where RR0
H0

is the rotation matrix representing the human base frameH0 in the robot’s base
frameR0.
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The torques at the three joints of the robot to generate this interaction force fR0
int (φ) are

given by the following:
τint(θ,φ) = JT(θ)·fR0

int (φ)

where J(θ) ∈ R3×6 is the robot’s Jacobian matrix at the robot joint orientation θ. This
τint(θ,φ) is set as the desired torque τd to the torque controller (Figure 8).

The level of assistance or de-weighting is decided by the de-weighting parameter
α, which could be either fixed or adaptive. In the case of fixed support, α is constant
throughout the session and its value is decided by the clinician. In the case of adaptive
support, the value of α is modulated within a therapy session depending on the success or
failure of movements performed by the subject on a trial-by-trial basis.

α[k + 1] = F(S[k], α[k])α[k] + ∆(S[k]), k ∈ Z>0

where,

• k is the trial number (an integer greater than 0).
• S[k] is a binary variable indicating the success or failure of trial k.

• F(S[k], α[k]) =


1, S[k] = 0

0.95, S[k] = 1, α[k] ≤ 0.5
0.98, S[K] = 1, α[k] > 0.5

is the forgetting factor that reduces the

amount of arm support following successful trials.

• ∆(S[k]) =

{
0.02, S[k] = 0

0 S[k] = 1
is the learning factor that increases the amount of de-

weighting following a failed trial.

2.4. Experiments with AREBO

The AREBO controller and its different components were tested to evaluate its perfor-
mance during physical human–robot interaction. To make the development and testing
process controlled and repeatable, we developed a mechatronic human shoulder joint
simulator, which we refer to as the shoulder joint model (SJM). The SJM was used for
carrying out all the experiments to characterize the AREBO controller, which is described
in the rest of this section.

2.4.1. Shoulder Joint Model (SJM)

This physical model of the shoulder joint was fabricated to develop, tune, and test
the AREBO controller. SJM is a two DOFs setup that has a kinematic structure like that
of the human shoulder joint, without the last DOF (H3 in Figure 3 for internal–external
rotations). The two DOFs of the SJM are actuated by two brushless DC motors and have
individual joint torque sensors (details in the Supplementary Material). Figure 10 depicts
the attachment of SJM with AREBO, where the SJM’s link is attached to AREBO’s cuff
through a three-axis load cell (Forsentek Ltd., Shenzhen, China, range: 100 N along each
axis) sandwiched between them; this load cell measures the interaction force in the local
reference frameH2, i.e., fH2

int . The SJM link has multiple threaded holes to attach the robot’s
cuff at different distances from the two DOFs (i.e., changing l). The SJM also has provisions
on its link for attaching weights to simulate different arm weights (Figure 10).

Except for its height adjustment mechanism, the two DOFs SJM assembly is rigidly
mounted on a frame like that of AREBO’s. The frame contacts the ground through four
castor wheels that enable rotation of SJM around xH0 to set ψx and translate the origin of
the human base frame H0 with respect to the robot’s base frame, R0. The brakes on the
wheels are physically engaged each time the setup is brought to its experimental position.

A linear PD position controller with a feedforward gravity compensation term was
implemented to control the movements of the SJM; the individual motor controllers were
operated in a current control mode. The details of this controller are provided in the
Supplementary Material.
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The experimental characterization of AREBO described in this section was carried out
by connecting the SJM to AREBO as shown in Figure 10 and by fixing different parameters
associated with this connection, which is described in Figure 9.
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Figure 10. Attachment of SJM with AREBO. The actuated two DOFs model of the shoulder joint has
provisions to add weight W, change the distance of attachment with the robot l, and vary the relative
orientation of humanH0 and robotR0 base reference frames.

2.4.2. Demonstration of Self-Aligning Feature of AREBO

AREBO’s three unactuated DOFs enable flexibility in the relative positioning of the
human subject with respect to the robot during therapy. To demonstrate this feature, SJM is
placed at five different locations (p1 − p4 corners of a square with 30 cm sides and center
p5 Figure 11A) and is connected to AREBO. AREBO is set to operate in the unassisted
mode with gravity compensation, while the SJM’s movements are implemented through
position control. The SJM performs the same 120 s of random movements (φ1 ∈ [0◦, 90◦]
and φ2 ∈ [−30◦, 30◦]) at each of these five positions, while the joint angles of AREBO
are recorded.
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2.4.3. Accuracy of Human Joint Angle Estimation

To evaluate how well the human joint angles can be estimated using AREBO’s joint
angles, an experiment was performed with the SJM connected to AREBO. The estimate of
the human joint angle requires information around the arm parameters, namely, the arm
length (l) and the human base frame’s orientation

(
RH0
R0

)
. The SJM was first programmed

to perform three sinusoidal flexion/extension movements in the range of 0–90◦ within
15 s while connected to AREBO. The data from this movement was used to estimate the
arm parameters. Following this, the SJM was programmed to move in a random polysine
trajectory given by the following:

φj(t) =
4

∑
i=1

Aj,isin(2π fit + νi) + Aj,0, j = {1, 2}

where φj(t) is the human joint angles simulated by the SJM, fi = {0.1, 0.2, 0.35, 0.3}Hz, and
νi is sampled from a uniform distribution between 0 and 2π. The values of

{
Aj,i
}

1≤i≤4,1≤j≤2
are chosen such that the flexion/extension movements are between 0 and 90◦ and the abduc-
tion/adduction movements are between −30 and +30◦. During this polysine movement,
the joint angles of AREBO θ(t) were recorded, which were then used to estimate the human
joint angles φ̂(t). This was achieved by first computing the forward kinematics for AREBO
to obtain the endpoint kinematics, which was then used to solve the inverse kinematics for
the arm using the arm parameters l, ψx. The estimate of the human joint angles is compared
with the ground truth from the SJM’s joint angles φ(t) obtained from its encoders. The
magnitude of the error φ̂(t) −φ(t) provides a measure of the accuracy of the human
joint angle estimation procedure, which also includes the procedure for estimating the
human arm parameters. The experiment was performed for three different arm parameter
combinations. There are several possible sources of error in this estimation procedure, one
of which is to evaluate its effect on the joint angle estimation accuracy, which is discussed
in the Supplementary Material.

2.4.4. Transparency of the Unassisted Mode (UAM)

The UAM was designed to make the robot transparent to a subject’s voluntary move-
ments when they are connected to the robot. The transparency can be quantified by the
magnitude of the interaction force

∥∥∥fH2
int

∥∥∥
2

between the robot and arm. The UAM’s trans-
parency in AREBO was tested using the SJM by programming it to re-perform random
(polysine) movements under different conditions, while AREBO’s joint angles (θ) and
SJM’s joint angles (φ), along with the interaction force fH2

int from the SJM’s three-axis load
cell, were recorded. The three different conditions that were tested include the effect of the
(a) different components of the AREBO controller, (b) misalignment between the human
and robot joint axes, and (c) different orientations of the human base frame (ψx).

Effect of the different components of the AREBO controller: In this experiment, the
following conditions were tested to evaluate the effects of the different components of the
AREBO controller:

• Control OFF: The actuators of the robot were switched off, which requires the SJM to
work against AREBO’s inertia, weight, and friction. This condition provides a measure
of the forces required to move AREBO with zero actuation.

• Only Gravity Compensation: The gravity compensation module alone is switched
on, and the output of the torque controller is set to zero, i.e., τc = 0. In this condition,
AREBO’s weight is fully compensated, and the SJM must only work against AREBO’s
inertia and friction.

• Zero Torque Control: The entire controller is enabled with the weight support parame-
ter set to zero α = 0, i.e., no weight support for the arm is provided. In this mode, the
AREBO controller works to keep the interaction force zero. The lower the magnitude
of fH2

int , the better the robot’s transparency.
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In this experiment, the SJM was placed such that the origin of the SJM’s base frame
coincided with the z-axis of the robot’s base frame zR0 , and the orientation of the SJM’s
base frame with respect to the robot’s base frame was zero, i.e., ψx ∼= 0◦.

Effect of misalignment of human and robot joint axes: In this experiment, AREBO’s
transparency was evaluated using the zero-torque controller, while the SJM was located
at different positions with respect to the robot. The SJM was placed approximately at the
corners of a square with 30 cm sides, with the center of the square coinciding with the
z-axis of the robot’s base frame (Figure 11A). The SJM was programmed to perform random
polysine movements during the experiment for all five positions of the SJM. The orientation
of the SJM’s base frame with respect to the robot’s base frame was zero, i.e., ψx ∼= 0◦.

Effects of different orientations of the human base frame: To evaluate the effect of
different trunk orientations on the robot’s transparency, the SJM was placed at different
combinations of three orientations ψx ∼ (−15◦, 0◦, 15◦ ) and at (0 cm, −15 cm) displace-
ments along the y-axis of the robot’s base frame. The SJM performed the same polysine
movement during the six takes, while AREBO was set in the zero-torque control mode.

2.4.5. Effect of the Adaptive Weight Support (WSM)

AREBO’s controller can provide either fixed arm weight support or adaptive sup-
port by modulating the de-weighting parameter α. To test the adaptive capability of the
WSM control, the SJM was programmed to simulate arm weakness by limiting the torques
produced by the SJM’s motors by an impairment factor ξ ∈ [0, 1], where ξ = 0 corre-
sponds to a healthy arm and ξ = 1 corresponds to a fully flaccid arm. The output of
the linear PD position controller and the gravity compensation module is multiplied by
(1− ξ) before it is sent to the motors. The details of the SJM controller are given in the
Supplementary Material.

The first step in this experiment was identifying the human arm model parameters
for computing torques required to hold the arm against gravity at different joint positions.
Following this, SJM was programmed to perform a series of 300 discrete point-to-point
reaching movements consisting of 3 s movement followed by 2 s of rest. The joint trajectory
for the kth trial is given by the following:

φj(t; k) =

{
λj,i[k] +

(
λj, f [k]− λj,i[k]

)
·u
(

t− 5·k− 1
)

5(k− 1) ≤ t < 5(k− 2)
λj, f [k] 5(k− 2) ≤ t < 5k

,

k ∈ {1, 2, . . . 300}
u(l) = 10l3

33 − 15l4

34 + 6l5

35 , l ∈ [0, 3]

where λj,i[k] and λj, f [k] are the initial and final positions of the joint j of the SJM for the
kth trial, u(·) is the normalized 3 s long minimum jerk trajectory, and t is the current time
instant of the experiment. Note that the final position of the kth trial will be the initial
position for the (k + 1)th trial, i.e., λj,i[k + 1] = λj, f [k]. The initial and final angles for
the flexion/extension and abduction/adduction movements were chosen so that these
movements are between 0–60◦ and 0–30◦, respectively.

The joint angle profile φj(t; k) is input as the desired angle to the position controller of
the SJM to compute the torque to be commanded from the SJM motor in joint j. To simulate
impairment of the SJM, the impairment factor was set to the following:

ξ[k] =


0.6 1 ≤ k ≤ 100
0.2 100 < k ≤ 200
0 200 < k ≤ 300

The different levels of impairment are used to evaluate how the de-weighting parame-
ter adapts to the varying impairment levels. The torque commanded from the SJM for each
trial is multiplied by (1− ξ[k]).
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The de-weighting parameter is adapted on a trial-by-trial basis depending on the
success or failure of the current trial. A trial was considered successful if the SJM reaches
within ±5◦ of the target location. In this experiment, the de-weighting parameter for the
first trial is chosen to be 0.3, i.e., α[1] = 0.3.

3. Results
3.1. Optimum Link Lengths

Figure 12 shows the heat map for the distribution of objective function O(r1, r2) as
a function of the robot link lengths r1 and r2 along with its workspace Ow(r1, r2) and
manipulability OM(r1, r2) components. All three variables showed a similar distribution
trend with a single maximum within the range of values searched for r1 and r2, which
occurred at r1 = 333 mm and r2 = 381 mm. The physical prototype of the robot was
fabricated with these optimal link lengths for the study’s experiments.
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3.2. Self-Aligning Feature of AREBO

Figure 11B illustrates the variation of the threeactuated DOFs (θ4, θ5) at the five
different locations of SJM (Figure 11A), while the SJM performed the same movement.
One-way ANOVA on θ4 and θ5 revealed a statistically significant difference for both of
the angles due to the different locations of the SJM (For θ4 : F = 73, 426.1, p = 0.0; for
θ5 : F = 12, 363.4, p = 0.0). This shows that AREBO’s unactuated segment allows the
robot to automatically align to the different orientations of the robot; the absence of this
feature will result in undesirable forces on the human limb when it is connected to the
robot. Post-hoc analysis with Bonferroni correction indicated that all pairwise comparisons
were statistically significant.

3.3. Accuracy of Human Joint Angle Estimation

The plot of the actual angle of the SJM φ(t) and the estimated joint angle φ̂(t) for
the flexion/extension and abduction/adduction joints for a particular trial is shown in
Figure 13A. The overall difference between the actual and estimated angles is summarized
by the accompanying boxplot (Figure 13B) for the different orientations of the SJM with
respect to the robot. The estimation error was similar across almost all the different
orientation conditions for the flexion/extension and abduction/adduction angles. The
only exception was the flexion/extension angle estimation error for the case when the
SJM was rotated towards the robot ψx ∼= +15◦, where the spread of the error was a
little wider; the instantaneous error in flexion/extension could be as large at ∼10◦. The
absolute median error for flexion/extension and abduction/adduction joints were 2.10 and
1.30◦, respectively.
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Figure 13. (A) Trajectories of the flexion angle (φ1)/abduction angle (φ2) recorded in SJM (blue curve)
and the estimate by AREBO (dashed black curve) for ψx~0 cases. (B) Boxplots of the errors in flexion
and abduction angles estimated by AREBO while SJM was performing random polysine movements.

3.4. Transparency of the Unassisted Mode

The magnitude of the interaction force ‖fH2
int ‖2 measured using the loadcell sand-

wiched between the endpoints of AREBO and SJM demonstrating the effect of the different
components of the robot’s controller are shown in Figure 14. As expected, the interaction
force magnitude reduces significantly with the use of the gravity compensation module
and the zero-torque controller. With the zero-torque controller, the magnitude of the in-
teraction force had a median value of 5.88 N with an interquartile range (IQR) of 3.52 N,
compared to a median of 32.21 N and IQR of 15.76 N when the controller was switched
off. One-way ANOVA revealed that the interaction forces ‖fH2

int ‖2 were significantly differ-
ent (F = 30, 431.4, p = 0.0) in the three cases (Control OFF, Only Gravity Compensation,
Zero Torque Control). The post hoc test with Bonferroni correction found all pairwise
comparisons to be significantly different.

The experiment on the effects of the position of the human joint with respect to the
robot on transparency revealed that higher interaction forces (Figure 15A) are encountered
when the SJM is behind the robot (points p1 and p2 in Figure 11A whose y-coordinates are
greater than 0) compared to the points that are in line and in front of the robot (points p3, p4,
and p5 in Figure 11A whose y-coordinates are less than or equal to 0). One-way ANOVA
showed that SJM location had a significant effect on the magnitude of the interaction forces
(Figure 15A; F = 6642.25, p = 0.0); all pairwise comparisons were significant except
between p4 and p5. The high interaction force for the SJM positions p1 and p2 is due to
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larger displacements required from the robot’s first joint θ1 when the SJM is behind the
robot (as shown in Figure 15B); larger accelerations required around this joint resulted in
larger interaction forces.
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Figure 14. Reduction in interaction forces between SJM and AREBO when different components of
the controller are implemented (*—p < 0.05 in one-way ANOVA). The median, interquartile range for
the interaction forces under the different conditions are as follows: Control OFF—32.21 N, 15.79 N,
Only Gravity Compensation—15.64 N, 10.14 N, Zero Torque Control—5.88 N, 3.49 N.
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Figure 15. Effects of the position of the human joint on interaction forces. (A) Box plot of the
interaction forces at various locations ( p1 − p5) of SJM. (B) Variation of angle θ1 at various locations
of SJM. ns—nonsignificant difference in one way ANOVA (p > 0.05).

In the experiment on the effects of the orientation of the human base frame (Figure 16),
the median value of the interaction force was similar in almost all cases, although the
interaction forces at all the orientations were significantly different (F = 659.5, p = 0.0 in
oneway ANOVA). The spread of the interaction force values was slightly higher when the
SJM was rotated towards the robot ( ψx > 0), as seen in the two boxplots corresponding
to different values of displacement along the y-axis of the robot’s base frame. The post
hoc test with Bonferroni correction revealed that except for the two interaction forces at
ψx ∼= −15◦, all the other interaction forces were significantly different from each other.
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Figure 16. The interaction forces at three different trunk orientations when SJM is (A) in line with the
robot ∆ ∼= 0 or (B) in front of the robot, ∆ ∼= −15 cm.

3.5. Training with the Adaptive Weight Support Mode

The adaptive de-weighting feature of AREBO was tested by simulating impairments
with the SJM at different levels of weakness in the joints. The amount of weakness was
held constant for 100 trials to evaluate how AREBO’s controller adapted to the impairment
level. The adaptation of the de-weighting parameter α[k] as a function of the trial number k
is shown in Figure 17A. The value of α[1] = 0.3, slowly rises to 0.6 within the first 30 trials
to compensate for the 60% impairment simulated in the SJM. After the 100th trial, α[k]
decays toward 0.2 to account for the 20% simulated impairment. After the 200th trial, the
de-weighting factor slowly decays to 0 as the SJM was simulated to behave like a healthy
arm (Figure 17A). This adaptation of the de-weighting parameter helps maintain the trial
success rate at around 70% whenever there is some residual impairment in the arm. This is
depicted in Figure 17B, which shows the success rate in the past 20 trials as a function of
the trial number; the success rate is between 60 and 80% when there is residual weakness
in the SJM, and it is 100% for a healthy arm (Figure 17B).
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Figure 17. (A) Adaptation of the de-weighting parameter as a function of the trial number when
operating the robot in adaptive weight support mode. The dotted lines are the weakness (ξ) set in
SJM for the first 200 trials, after which the ‘no weakness’ case was simulated. (B) The success rate
obtained from AREBO’s adaptive weight support algorithm. The vertical black line segments the
plot into three segments to distinguish the 60%, 20%, and 0% weakness (ξ) simulated in the SJM for
trials 0–100, 100–200, and 200–300, respectively.
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4. Discussion

This paper presents the physical realization, optimization, and characterization of
the end-effector robot—AREBO—introduced in our earlier work [19]. The present work’s
novelty is the demonstration of using an end-effector robot for sensing and safe training of
3D single-joint movements against gravity. AREBO was designed to allow training in both
unassisted and adaptive weight support modes. The robot’s capabilities were characterized
using a mechatronic shoulder joint model (SJM).

The self-aligning feature of AREBO enabled by the three distal unactuated DOFs
ensures freedom in where the subject sits with respect to the robot, unlike the case of the
exoskeleton, which has strict requirements. We firmly believe that this feature is necessary
for the robot’s usability for routine clinical use.

The pre-requisite to providing single-joint training using an end-effector robot is the
ability to estimate the movement kinematics of the arm. Although this could be achieved by
placing additional sensors on the arm, AREBO uses a model of the human arm to estimate
the kinematics of the arm. Knowledge of the estimation error is important in setting safety
limits for the arm when using the robot for assisted movement training. AREBO’s human
arm kinematics estimation algorithm resulted in an angle error that was mostly in the
range of ±5◦. The ∼1◦ backlash of the ceramic gearboxes with a three-stage planetary
reduction in AREBO’s (and SJM’s) actuators is likely to be a major source of this error.
The presence of load-dependent play in AREBO’s unactuated DOFs is also a potential
contributing factor. This angle estimation error of ±5◦ might be acceptable for training
purposes in neurorehabilitation. However, if desired, it could be made much smaller by
using harmonic drives and reducing the backlash in the unactuated structures, which will
inflate the device cost.

The use of compensation strategies (such as trunk movements) is commonly observed
in stroke survivors with arm impairments, in which case the shoulder joint position will not
be fixed. However, in upper limb rehabilitation robots, it is a common practice to assume
the trunk is fixed to avoid compensatory movements [6,9,11,24] and promote true recovery
by breaking abnormal synergies [25]. Thus, the current work used a kinematic model of the
human arm where the shoulder position and the elbow joint are assumed to be fixed; the
elbow joint can be fixed using an orthotic device during single-joint training of the shoulder.
However, to gauge the amount of error in shoulder joint estimation due to unconstrained
trunk movements, a theoretical analysis with a five DOFs kinematic model of the trunk
was performed (see Supplementary Material). As expected, the results of this analysis
indicate that the shoulder joint estimation error is of similar magnitude to the amount of
trunk movement (95th percentile absolute error, ~20◦ in flexion and ~27◦ in abduction, for
random trunk movements of ~20◦). Thus, when the trunk is unconstrained, the robot data
alone cannot provide an accurate estimate of the shoulder joint kinematics. One would
need to employ additional sensors on the human limb for accurate estimation. However,
the optimal choice for the sensing modality and the number of such sensors are unknown.

The physical human–robot interaction is implemented through two control modalities:
unassisted and adaptive weight support modes. In the unassisted mode, AREBO remains
transparent to the movements of the human subject. A robot’s transparency is often
quantified through the interaction forces/torques while a subject interacts with the robot
performing different movements. The RehabExos [26,27] and ABLE [27] robots measured
the interaction forces at the points of connection between the user and the robot, while the
Armin [28] and ANYexo [5] robots measured the peak and mean interaction torque at each
joint. In all the above cases, healthy subjects interacted with the robots while performing
movements with constraints in velocity (angular velocity in the major joint < 30◦/s and/or
the trajectory, e.g., straight, or circular path [5,28], or a pointing task [27]). In the current
study, AREBO’s transparency was quantified by measuring the interaction force and joint
torques between the robot and the SJM. AREBO’s mean interaction force was around
∼6 N, which was lower than that of the ABLE exoskeleton (∼10 N) , but AREBO’s peak
interaction force (∼15 N) was higher than the ABLE exoskeleton (∼12 N) [27]. In terms of
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joint interaction torques, the peak interaction torque along the flexion/extension axis in
ARMin and ANYexo was 2.30 Nm and 2.31 Nm, respectively. The peak interaction joint
torque for AREBO is 2.67 Nm at the 1st joint for random movements in the range of 0–90◦

with a 95th percentile angular speed of ∼50◦/s and an absolute peak speed of ∼120◦/s.
These results show that AREBO is comparable with existing non-backdriveable robots in
terms of transparency. There can, however, be slightly higher interaction forces when the
subject is seated behind the robot, due to the larger movement amplitudes and accelerations
required from the robot. Such seating positions must be avoided when interacting with
the robot to maximize transparency. Thus, when appropriately seated (in line or in front of
the robot), the safety and perception of the physical interaction with AREBO are likely to
be similar to that of the existing robots that have been evaluated with patients. It might
be possible to further lower the interaction torques by other means, including reducing
the inertia of the kinematic chain, opting for a lower speed reduction-ratio gearbox with
higher torque rating electric motors, and cable-driven transmission for the robot’s third
joint by moving the actuator closer to the base. These modifications can be explored for
future design revisions of AREBO.

The adaptive weight support training mode compensates for the arm’s weight de-
pending on the user’s impairment. By reducing the effort to lift the arm against gravity, the
arm’s residual capacity can now be allocated to move the arm and experience an increased
range of motion. In stroke, there is evidence to show that supporting the shoulder against
gravity not only increases the range of motion in the shoulder joint but also facilitates
elbow extension [29], finger extension, and gross hand opening and closing [30]. Previous
studies have also shown that training arm movements with gradual loading of the shoulder
can increase the work area of the upper limb by breaking abnormal joint coupling [25].
Such training protocols can be easily implemented with AREBO. The adaptive algorithm
used in this study adjusts the weight support based on the success/failure of movements
performed by the subject. The parameters of this algorithm (F(S[k], α[k]), ∆(S[k])) were
tuned empirically to have a success rate of around 70%, which is based on the challenge
point hypothesis [31] to increase motivation in therapy.

The stability of the robot controller interacting with the human subject is another
crucial factor for the safety and comfortable interaction between the robot and the human.
The experimental evaluations with the robot have found that the controller is stable in
both the unassisted and assisted modes. A mathematical proof of the stability of the
controllers might not be feasible without major simplifying assumptions about the feedback
controller representing the human subject. However, if the human subject is modeled as a
purely passive or a feedforward control system, a mathematical proof of stability might be
demonstrable. This study did not seek such a mathematical demonstration.

The single-joint training regimes proposed here could easily be extended for assisted
coordinated multi-joint training of the arm for less severely affected patients. This can
be achieved by taking an approach like that of the Emu robot [24] where a model of the
human arm (shoulder and elbow) can be employed, along with an appropriate calibration
procedure. One could employ a vision-based pose tracking system to estimate human arm
kinematics, which can simplify the calibration procedure for estimating the parameters of
the human arm model.

The current study presented the engineering design and characterization of AREBO,
which is only the first crucial step towards realizing this system as a useful clinical tool
for arm rehabilitation. This work has shown how an end-effector robot can be used for
training single-joint movements in 3D with adaptive gravity support, along with tracking
human limb movements without the use of additional sensors on the human limb. The
characterization of the system with a mechatronic model of the shoulder joint has provided
information about the best possible relative positioning of the robot and the human for
the most transparent interaction between them. Further work is necessary to build on the
outcomes of the current study to get the system ready for use by clinicians and patients:
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1. Extension of the algorithms for multi-joint shoulder-elbow arm training, along with
exploring the feasibility of using vision-based methods for tracking trunk, shoulder,
and elbow kinematics [32].

2. Characterizing the different components of the robot with healthy subjects, including
the algorithm for estimating human joint angles, the unassisted mode for evaluating
the transparency, and the adaptive weight support mode.

3. Development of therapy games for unassisted and adaptive weight support training
with the robot.

4. Evaluation of the usability of the robot for arm rehabilitation on different neuromus-
culoskeletal conditions.

Our current and future work is focused on addressing these issues to get AREBO
ready for evaluating its usefulness as a clinical tool for arm rehabilitation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/robotics12060149/s1, Section S1.1 AREBO Forward Kinematics.
Section S1.2 AREBO Inverse Kinematics. Section S1.3 Solving equation of the form acos β + bsin β +

c = 0. Section S1.4 Arm Forward Kinematics. Section S1.5 Arm Inverse Kinematics. Section S1.6
Optimization. Section S1.7 Schematic of Hinge Joint at Unactuated DOF. Section S1.8 AREBO Jacobian
Matrix. Section S1.9 AREBO Gravity Compensation. Section S1.10 Gains of AREBO Controller.
Section S1.11 Human Limb Model. Section S1.12 SJM Joint Actuation and Sensing. Section S1.13
Closed Loop Bandwidth. Section S1.14 Details of SJM Controller. Section S1.15 Effects of Shoulder
Abduction Joint Angle on the Estimation of the Orientation of the Human Base Frame. Section S1.16
Error in Shoulder Angle Estimation Due to Fixed Trunk Assumption. Algorithm S1 Orientation
Estimation. Algorithm S2 Estimation of Human Joint Position and Limb Length. Figure S1 AREBO’s
six DOF Kinematic Chain with DH parameters. Figure S2 Details of three DOF Kinematic Chain of
Shoulder Joint. Figure S3 Schematic of Unactuated DOF. Figure S4 Closed Loop Bandwidth for the
Actuator Used in 2nd DOF. Figure S5 Block Diagram of Controller Implemented in SJM. Figure S6
Effects of Shoulder Abduction on Human Base Frame Orientation Estimation. Figure S7 Kinematic
model of the trunk. Figure S8 Effects of Trunk Movements on Joint Angle Estimation Algorithm.
Table S1 Parameter Values and Range for the Coarse and Fine Search Used in the Optimization of the
Robot Link Lengths. Table S2 The Steps and Range of Each Actuated Joint Angle in the Estimate of
Gravity Compensation Equations (τg) of AREBO. Table S3 Specifications of Actuators and Torque
Sensors used in SJM.
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