
Citation: Junaedy, A.; Masuta, H.;

Sawai, K.; Motoyoshi, T.; Takagi, N.

Real-Time 3D Map Building in a

Mobile Robot System with Low-

Bandwidth Communication. Robotics

2023, 12, 157. https://doi.org/

10.3390/robotics12060157

Academic Editors: Konstantinos

Tsintotas, Loukas Bampis, Nitin J

Sanket, Antonios Gasteratos, Giulio

Sandini and Yiannis Aloimonos

Received: 20 October 2023

Revised: 17 November 2023

Accepted: 20 November 2023

Published: 22 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Real-Time 3D Map Building in a Mobile Robot System with
Low-Bandwidth Communication
Alfin Junaedy * , Hiroyuki Masuta , Kei Sawai, Tatsuo Motoyoshi and Noboru Takagi

Department of Intelligent Robotics, Toyama Prefectural University, 5180 Kurokawa Imizu,
Toyama 939-0398, Japan; masuta@pu-toyama.ac.jp (H.M.); k_381@pu-toyama.ac.jp (K.S.);
motoyosh@pu-toyama.ac.jp (T.M.); takagi@pu-toyama.ac.jp (N.T.)
* Correspondence: u378003@st.pu-toyama.ac.jp

Abstract: This paper presents a new 3D map building technique using a combination of 2D SLAM
and 3D objects that can be implemented on relatively low-cost hardware in real-time. Recently, 3D
visualization of the real world became increasingly important. In robotics, it is not only required
for intelligent control, but also necessary for operators to provide intuitive visualization. SLAM is
generally applied for this purpose, as it is considered a basic ability for truly autonomous robots.
However, due to the increase in the amount of data, real-time processing is becoming a challenge.
Therefore, in order to address this problem, we combine 2D data and 3D objects to create a new 3D
map. The combination is simple yet robust based on rotation, translation, and clustering techniques.
The proposed method was applied to a mobile robot system for indoor observation. The results
show that real-time performance can be achieved by the system. Furthermore, we also combine
high and low-bandwidth networks to deal with network problems that usually occur in wireless
communication. Thus, robust wireless communication can be established, as it ensures that the
missions can be continued even if the system loses the main network.

Keywords: real-time 3D mapping; simultaneous localization and mapping (SLAM); mobile robot;
low-bandwidth communication; long-range (LoRa); point cloud

1. Introduction

Representing the real world in 3D visualization became increasingly important. In
robotics, 3D maps unlock smarter capabilities for the robots [1]; for example, environmental
exploration and localization [2], search and rescue [3], motion planning and automation [4],
monitoring [5], and some others. Utilization of 3D maps remains challenging, especially
for real-time implementation using mobile devices. Due to limited computing and memory
resources, the amount of data brings a significant burden to the onboard processing, which
can slow down overall performance [6,7]. On the other hand, missions and data collection
have to be continued. Therefore, data compression is required to handle this issue.

In ground exploration missions, mobile robots are one of the most widely used tech-
nologies due to their mobility and adaptation to environments. Wheeled [8,9] or crawler
robots [10,11] all became essential parts for both domestic and industrial applications.
In domestic applications, they are more popular as service robots, for example, cleaning
kitchens [12], cleaning floors such as the Roomba, and indoor observation [13]. Meanwhile,
for industrial applications, many of them are intended for agriculture [14,15], hazardous
tasks, saving human lives, and disaster response [16].

In order to work intelligently, maps are required in robot operations, even more so for
autonomous control [17,18]. Simultaneous localization and mapping (SLAM) is generally
applied for this purpose. It builds a map of the environment, and at the same time, locates
the robot position on the map [19]. In addition, SLAM is also considered a basic ability and
is highly encouraged for explorer robots [20,21]. Apart from the reasons above, SLAM can
be used to provide an intuitive visualization (i.e., maps) of what the environment looks

Robotics 2023, 12, 157. https://doi.org/10.3390/robotics12060157 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12060157
https://doi.org/10.3390/robotics12060157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-4615-4983
https://orcid.org/0000-0002-8609-5746
https://doi.org/10.3390/robotics12060157
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12060157?type=check_update&version=2

Robotics 2023, 12, 157 2 of 28

like [22]. It helps humans better understand the current situation. These are the reasons
why the development and applications of SLAM were a major research topic for at least
the last decade. SLAM is not only used by the robots, but is also useful for the humans.

In this paper, we focus on how to achieve real-time implementation of 3D map building.
We believe that nowadays the development of SLAM and its related matters should be
applicable and real-time oriented. There were several techniques related to this concern.
In [23], a combination of perpendicular 2D data from two 2D laser scanners is proposed. The
observations are accomplished in indoor regions with two mobile robots in parallel. Then,
translational and rotational values are applied to the perpendicular data to construct a 3D
point cloud map. However, real-time computation cannot be achieved since the combination
is achieved offline, which requires around fifteen minutes; similarly as in [24,25], where offline
computation is performed. Next, the fusion of a 2D light detection and ranging (LiDAR)
and a depth camera [26] or a stereo camera [27] was developed. The cameras are used to
improve the accuracy of 2D SLAM. Although additional information was combined, only
a 2.2% to 3.6% improvement can be achieved. Furthermore, it also results in increased
computational requirements.

Real-time implementation of large amounts of data is challenging, especially for
processing requirements. As mentioned previously, one of the solutions is to compress
the amount of data. The other solution is, of course, increasing the processing capability.
In [2,22], real-time computation of 3D map building can be achieved using mobile robots.
They use an Intel Core i7-4790K CPU 32 GB RAM and a Core i7-3555LE CPU 8 GB RAM,
respectively. The method requires 1.56 s out of 3 s to update the map with 1.33× of
data downsampling [22]. A mobile robot system in [28] performed 3D mapping with
high quality and repeatability. It employs a Velodyne Puck LITE 3D laser scanner and an
inertial measurement unit (IMU) sensor to run an online SLAM algorithm. However, in the
implementation, the mobile robot was steered remotely using a wireless joystick, and the
amount of data will be nearly impossible to implement on low-cost hardware to perform
real-time observation. Modern SLAM algorithms, such as ORB-SLAMs [29–31], may also
run in real time on embedded systems [32,33]. Nevertheless, they rely on multithreading,
which is also limited in this system.

In real-world situations, degraded communication may occur during missions [2],
especially in restricted areas that require kilometers of operating distance [10]. Therefore,
to handle this issue, we also combine high and low-bandwidth networks in the system, i.e.,
Wi-Fi and long-range (LoRa). Wi-Fi, due to its high bandwidth, has a short communication
range and is thus easily affected by environments; for example, buildings, trees, tunnels,
underground, sea water, and some others. LoRa, on the other hand, has a much longer
communication range and is more robust to the environments [34]. Furthermore, LoRa can
maintain its communication for several kilometers even in urban areas [35], and its network
can be scaled to increase the number of nodes [36]. Similar to [37], which combines Wi-Fi
and a radio-frequency (RF) module (200 kbps) for sharing data between two mobile robots
and constructing a 3D map, network limitations force the system to compress the data for
real-time performance. The difference is that we use a lower communication bandwidth of
about 6.01 kbps–22 kbps, which requires further data compression. Furthermore, they still
require the high-bandwidth network to construct a full 3D map.

There are two restrictions in the proposed system, i.e., limited onboard computing
resources and low-bandwidth communication. Based on the state-of-the-art above, a new
technique is required in order to perform real-time 3D map building. Therefore, we propose
a new real-time 3D map building technique using the combination of 2D SLAM and 3D ob-
jects. The technique is applied and focused on the mobile robot system with Wi-Fi and LoRa
as the communication networks, as shown in Figure 1. Wi-Fi is used as the main communi-
cation network, with LoRa serving as a backup. Multi-bandwidth networks proved their
impact on signal interference, shadowing, and wireless communication attenuation [38,39].
Hence, robust wireless communication can be established.

Robotics 2023, 12, 157 3 of 28

Robotics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/robotics

Figure 1. System configuration overview.

The contributions of this research can be summarized as follows: (1) The system

Figure 2. Installed devices on the mobile robot.

Figure 3. GUI to interact with the mobile robot wirelessly.

Figure 1. System configuration overview.

The contributions of this research can be summarized as follows: (1) The system
utilizes low-cost devices, i.e., a Raspberry Pi controller and LoRa devices on the mobile
robot, and an entry-level PC controller with an Intel Core i5-10210U CPU 8 GB RAM for
controlling and monitoring the mobile robot. (2) We combine high and low-bandwidth
networks to establish a robust wireless communication system. All observation data need
to be sent wirelessly, creating a new data size restriction, and hence data compression is
required. Lastly, (3) lightweight and efficient algorithms must be developed. All developed
algorithms have to be simple, can be installed on low-cost hardware, and have real-time
capabilities. These introduce the main target of the system, which performs the proposed
method in real-time at a refresh rate of at least 1 Hz for both communication bandwidths.
A real-time system is essential for operators as it gives direct results about environmental
conditions. 3D maps will also increase intuitiveness to better understand the environment.
Finally, a fully wireless communication system enables a barrier between the operators and
observation fields, which increases safety for some crucial missions, such as search and
rescue and disaster response.

The rest of this paper is organized as follows. In Section 2, the system configuration
is described. Section 3 explains the proposed approach in detail. Section 4 shows the
experimental results with its discussion. Last but not least, Section 5 is the conclusion and
future work.

2. System Configuration
2.1. Hardware Design

In this system, there is a PC controller, a LoRa transceiver, and a mobile robot, as
shown in Figure 1. The PC controller is used by an operator to control and monitor the
mobile robot. It is also connected to the LoRa transceiver to communicate with the mobile
robot through the low-bandwidth communication using LoRa devices. Figure 2 shows
several devices installed on the mobile robot. We use a 2D LiDAR and a LiDAR camera as
the main sensors to observe the environment. By using both sensors, 2D and 3D data can
be provided from the mobile robot.

Robotics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/robotics

Figure 1. System configuration overview.

The contributions of this research can be summarized as follows: (1) The system

Figure 2. Installed devices on the mobile robot.

Figure 3. GUI to interact with the mobile robot wirelessly.

Figure 2. Installed devices on the mobile robot.

The hardware specifications are summarized in Table 1. The LoRa transceiver is
basically used to convert serial data from LoRa devices to USB signal. Thus, the PC
controller can read the serial data and communicate with the mobile robot. The same

Robotics 2023, 12, 157 4 of 28

as in [40], there are two LoRa devices used on the PC controller and the mobile robot to
increase the communication bandwidth. This is intended for sending large data, such as
2D and 3D data when using the low-bandwidth communication.

Table 1. System hardware specifications.

PC Controller Core i5-10210U CPU 8 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps)

LoRa Transceiver ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2
Arduino Mega 2560

Mobile Robot

Dimension: 350 mm × 200 mm × 200 mm
Rear-drive brushed DC motor
Servo motor with Ackermann steering
Li-Fe battery 6.6 V/1450 mAh ×3
H-bridge MOSFET motor driver
Raspberry Pi 4B 4 GB RAM; IEEE 802.11ac (353 kbps–9 Mbps)
IMU module LSM9DS1 (3-DoF accel-gyro-magneto) @100 Hz
Rotary encoder SG2A174 ×2 (80 ppr, 200 µs rates) @5 kHz
A/D converter module ADS1115 @860 Hz
ES920LR 920.6-928.0 MHz ×2 (6.01 kbps–22 kbps); ES920ANT ×2
Hokuyo 2D LiDAR UBG-04LX-F01 (240◦ scan angle, 0.06–4 m) @25 fps
Intel RealSense LiDAR camera L515 (depth: 640 × 480 0.5–9 m, color:
1920 × 1080) @30 fps

2.2. Software Design

We developed a graphical user interface (GUI) using MATLAB, as shown in Figure 3.
The GUI is used by the operator to interact with the mobile robot wirelessly. There are
monitoring gauges, a connection menu, command buttons, and a canvas for drawing the
map result in real time.

Robotics 2023, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/robotics

Figure 1. System configuration overview.

The contributions of this research can be summarized as follows: (1) The system

Figure 2. Installed devices on the mobile robot.

Figure 3. GUI to interact with the mobile robot wirelessly. Figure 3. GUI to interact with the mobile robot wirelessly.

The mobile robot has two missions or tasks, these are the observation task and com-
mand task. Figure 4 depicts the task flow in the system. First, the operator starts the
mission by using the start button on the GUI. The GUI then sends a start command to the
mobile robot for the observation task.

Robotics 2023, 12, 157 5 of 28Robotics 2023, 12, x FOR PEER REVIEW 2 of 10

Figure 4. Task flow in the system.

Figure 5. Environmental condition for experiments.

3. Proposed Approach

In order to generate a 3D map, 2D SLAM and 3D objects are combined, as depicted

in Figure 6. This method enables the system to perform real‐time observation even

though the low‐bandwidth communication is used. The exchanged data can be

compressed while maintaining the map accuracy. The next subsections explain important

parts of the approach. As mentioned earlier, a shared control method is applied in the

system. Therefore, the 3D object extraction algorithm is performed by the mobile robot,

while 2D SLAM and 2D–3D combination method are performed by the PC controller.

Figure 4. Task flow in the system.

In this task, the mobile robot observes the environment autonomously by sending
all observation data to the PC controller. They communicate through the communication
thread. This task is intended to build a map for the first time. After finishing the observation,
both the PC controller and the mobile robot enter the command task. It enables the
command buttons on the GUI, and thus the operator can command the mobile robot based
on the first map result. In this task, the mobile robot performs the operator’s commands
and all the observation data are also sent to the PC controller to update the map result. This
is an iterative task and will be terminated when the operator presses the stop button on
the GUI.

In this system, a shared control method is applied. It means that the algorithms
are divided to both the PC controller and the mobile robot, as explained in Figure 4. For
example, 2D SLAM, a rapidly exploring random tree (RRT) path planning, 3D map building,
and GUI are installed in the PC controller. Meanwhile, the mobile robot runs the movement
and observation algorithms, such as 3D object extraction, 2D data observation, fuzzy
logic control (FLC)-based wall follower and path follower, and obstacle avoidance. This
method is especially useful for small robots that are unlikely to carry heavy computers [7].
Furthermore, parallel computing can also be performed. This paper, however, focuses
more on the real-time 3D map building using the proposed system, especially with the
low-bandwidth communication. In addition, all algorithms in the mobile robot are written
in C++, which is preferred for real-time applications.

2.3. Experimental Environment

We applied the proposed method for indoor observation in our laboratory. Figure 5
shows the environmental condition. It has 16.59 m2 of large with a lot of cluttered objects
inside it. All experiments were carried out in this field, including our datasets for simulation
purposes when developing the algorithms. Based on hardware specifications, the objects
should have a minimum height of 10 cm, and hence the 2D LiDAR sensor can detect them.
In this system, the mobile robot is able to reach an average speed of 0.15 m/s (maximum
0.46 m/s). Therefore, all algorithms need to have real-time capabilities.

Robotics 2023, 12, 157 6 of 28

Robotics 2023, 12, x FOR PEER REVIEW 2 of 10

Figure 4. Task flow in the system.

Figure 5. Environmental condition for experiments.

3. Proposed Approach

In order to generate a 3D map, 2D SLAM and 3D objects are combined, as depicted

in Figure 6. This method enables the system to perform real‐time observation even

though the low‐bandwidth communication is used. The exchanged data can be

compressed while maintaining the map accuracy. The next subsections explain important

parts of the approach. As mentioned earlier, a shared control method is applied in the

system. Therefore, the 3D object extraction algorithm is performed by the mobile robot,

while 2D SLAM and 2D–3D combination method are performed by the PC controller.

Figure 5. Environmental condition for experiments.

3. Proposed Approach

In order to generate a 3D map, 2D SLAM and 3D objects are combined, as depicted in
Figure 6. This method enables the system to perform real-time observation even though
the low-bandwidth communication is used. The exchanged data can be compressed
while maintaining the map accuracy. The next subsections explain important parts of
the approach. As mentioned earlier, a shared control method is applied in the system.
Therefore, the 3D object extraction algorithm is performed by the mobile robot, while 2D
SLAM and 2D–3D combination method are performed by the PC controller.

Robotics 2023, 12, x FOR PEER REVIEW 3 of 10

Figure 6. Proposed approach for 3D map building.

(a) (b)

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of 2D

SLAM.

3.2. 3D Object Extraction

Figure 8. Image frame projection from the LiDAR camera.

Figure 6. Proposed approach for 3D map building.

3.1. 2D Simultaneous Localization and Mapping (SLAM)

Although this paper is focused on real-time 3D map building, it will be difficult to
understand without explaining how and what kind of 2D data are used in the system.
Hence, this subsection will briefly explain how to observe and manage the 2D data. First,
2D observation data from the LiDAR sensor is compressed for about three-time downsam-
pling [40]. The main reason is, of course, the use of LoRa as low-bandwidth communication.
This gives the system a balance between data size and map accuracy. Then, the compressed
2D data will be encoded with the 3D data to be sent to the PC controller.

On the PC controller side, we used MATLAB to develop the mapping algorithms.
They include 2D SLAM and 2D–3D combination to construct a 3D map. MATLAB uses
graph-based SLAM to create a 2D map [41,42]. A pose estimation of the mobile robot may
have an error with the real pose, as well as the estimated map since they are related [43].
The error will increase as the mobile robot wanders throughout the environment. They
are usually caused by the sensors’ accuracy and the environmental condition. That is why
the graph-based SLAM has a loop closure parameter that will always try to correct the

Robotics 2023, 12, 157 7 of 28

errors. It determines whether or not the current mobile robot pose was previously visited.
This is calculated within a small radius by matching the current measurement with all
the previous measurements. SLAM is also considered as a basic fundamental problem for
a truly autonomous robot [20], where a precise pose is needed to build a map, and the
map is also needed to estimate the pose. Therefore, the SLAM problem can be formulated
as follows:

P(x1:t, m|z1:t, u1:t) (1)

where P in (1) is the graph-based SLAM probability distribution, xt is the mobile robot
pose at a specific time or measurement, m represents the map, zt is observation data from
the sensors, and ut is the controls of the system. Both pose and map are unknown, and
they can be solved by calculating the observation data at the beginning of the algorithm.
Then, probabilistic models of the observation and motion can be formulated as (2) and (3),
respectively.

P(zt|xt) (2)

P(xt|xt−1, ut) (3)

where in (2), the observation relates to the pose, and the new pose is described by the
previous pose and its control (3). In addition to the pose graph map, MATLAB also has
an occupancy grid map as the output of the 2D SLAM algorithm. Figure 7a,b shows an
example of both maps.

Robotics 2023, 12, x FOR PEER REVIEW 3 of 10

Figure 6. Proposed approach for 3D map building.

(a) (b)

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of 2D

SLAM.

3.2. 3D Object Extraction

Figure 8. Image frame projection from the LiDAR camera.

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of
2D SLAM.

The occupancy grid map is generated from the pose graph map, where every cell has
a probabilistic value ranging from 0 (empty space) to 1 (occupied space). In the 2D–3D
combination process, we use both the pose graph map and the occupancy grid map as
the references for 3D objects to be combined. The pose graph map generates positions
and orientations of the mobile robot relative to the map, and the occupancy grid map
generates information of empty, occupied, or untraveled space. In the system, the 2D
SLAM is executed every time step to build a 2D map.

3.2. 3D Object Extraction

The LiDAR camera has two outputs, i.e., color and depth. In this approach, we only
use the depth information to extract objects using 3D analysis [44]. Figure 8 shows the
image frame projection from the camera.

Robotics 2023, 12, 157 8 of 28

Robotics 2023, 12, x FOR PEER REVIEW 3 of 10

Figure 6. Proposed approach for 3D map building.

(a) (b)

Figure 7. An example of (a) a pose graph map and (b) an occupancy grid map as the output of 2D

SLAM.

3.2. 3D Object Extraction

Figure 8. Image frame projection from the LiDAR camera.

Figure 8. Image frame projection from the LiDAR camera.

First, it calculates the real-world coordinates (xc, yc, and zc) using the right-angled
triangle principle (4–6).

xc = zgtan
[(

xg −
resw

2

) FoVw

resw

]
(4)

yc = zgtan
[(

yg −
resh

2

) FoVh
resh

]
(5)

zc = zg (6)

where xg and yg are the pixel coordinate, while zg is the depth measurement at xg, yg. FoVw
and FoVh are the camera field of view which are 70◦ and 50◦, respectively. resw and resh are
the camera resolutions which are 640 pixels and 480 pixels, respectively.

The 3D object extraction flowchart is shown in Figure 9. We developed a simplification
of the fast-growing neural gas (FastGNG) algorithm, called simplified FastGNG, to extract
3D objects from the depth information or point clouds. The standard GNG algorithm uses
an iterative method as the learning strategy [45]. Thus, it is difficult to increase the learning
speed as a sample node is added to a current network after errors are accumulated with
many times of sampling data. FastGNG, on the other hand, is a modification of the standard
GNG algorithm, which has a new growing method to enhance the learning speed [46,47].
General objectives such as clustering, feature extraction, and topological mapping can be
accomplished using this algorithm.

Robotics 2023, 12, x FOR PEER REVIEW 4 of 10

Figure 9. 3D object extraction flowchart.

connections, as shown in Figure 10.

Figure 10. Clusters of nodes and connections of 3D objects.

Figure 9. 3D object extraction flowchart.

Robotics 2023, 12, 157 9 of 28

We proposed a simplification of the FastGNG algorithm to further increase the learning
speed and match with the main purpose of this paper. The following are notations used in
the simplified FastGNG algorithm:

D : a set of 3D point cloud data (input);
A : a set of sample nodes;
wi : a 3D vector of i-th node;
ci,j : a connection between i-th and j-th node;
L : an internal loop parameter of the algorithm;
lmin, lmax : parameters to set the minimum and maximum connection length;
Pedge(v) : the probability of a sample v is the edge, v is a 3D vector;
Pnode(v): the probability of adding a sample v to the network.

The learning process is then arranged based on following steps:

Step 1. Generate a set of sample nodes A using Pedge(v). This generates edge nodes of
the depth input to simplify the learning process. The left, right, top, and bottom
node of v should be known. α is a constant. The higher the α value, the higher the
difference in Pedge(v) value between the edge node and the non-edge node. Hence,
making it easier to extract the edge nodes.

Pedge(v) = max(ed1, ed2) (7)

ed1 = max(|dL− dR| − dL α, |dL− dR| − dR α) (8)

ed2 = max(|dT − dB| − dT α, |dT − dB| − dB α) (9)

dL =
∥∥∥v− wle f t(v)

∥∥∥, dR =
∥∥∥v− wright(v)

∥∥∥ (10)

dT =
∥∥∥v− wtop(v)

∥∥∥, dB =
∥∥∥v− wbottom(v)

∥∥∥ (11)

Step 2. Generate two nodes using Pnode(v) and connect them. Initially, set lmin and lmax
to any proper value with a constant β, where a higher value results in a higher
probability value. Then, initialize the phase level iP to 1.

Pnode(v) =


1.0 lmin ≤ dS1 ≤ lmax
0.0 dS1 < lmin

tanh
(

β lmax
dS1

)
otherwise

(12)

dS1 = ‖v− ws1‖, s1 = arg min
i∈A
‖v− wi‖ (13)

cnode1,node2 = 1, iP = 1 (14)

Step 3. Initialize the internal loop counter iL to 0 and calculate the lmin, lmax, and L.

lmin =


γ1 iP = 1
γ2 iP = 2
γ3 iP ≥ 3

, lmax =


δ1 iP = 1
δ2 iP = 2
δ3 iP ≥ 3

(15)

L =


ceil
⌈

#A
σ1

⌉
iP = 1

ceil
⌈

#A
σ2

⌉
iP = 2

ceil
⌈

#A
σ3

⌉
iP ≥ 3

(16)

Robotics 2023, 12, 157 10 of 28

where γi, δi, and σi (i = {1, 2, 3}) are constants for lmin, lmax, and L, respectively. We
set higher values of γi, δi, and lower values of σi for a lower phase. Thus, lmin and
lmax values are the opposite of the phase level iP. This will speed up the learning
process in the first phase, and be slower but more detailed in the higher phases. #A
is the number of sample nodes.

Step 4. Generate a new node v using Pnode(v) (12) and increase the loop counter iL. Then,
calculate the nearest node s1 (13) and the second nearest node s2.

iL = iL + 1 (17)

s2 = arg min
i∈A\{s1}

‖v− wi‖ (18)

Step 5. Add the new node v (step 4) to the network with a new index r, and update the
connection c. Skip the connection if it already exists. Go to step 4 if iL is less than L.

wr = v (19)

c
{

cs1,r = 1, cs2,r = 1, cs1,s2 = 0 dS1 < dS12 > dS2
cs1,r = 1, cs1,s2 = 1 otherwise

(20)

dS12 = ‖ws1 − ws2‖ (21)

dS1 = ‖v− ws1‖, dS2 = ‖v− ws2‖ (22)

Step 6. If there are nodes having more than two connections, remove the longest connection.
Repeat the removal process until all nodes have a maximum of two connections.

Step 7. As a result of the connection deletion in step 6, remove the nodes having no
connection at all, and increase the phase level iP. Stop the process when the stopping
criteria are satisfied or iP is more than the max_phase parameter. Otherwise, return
to step 3.

iP = iP + 1 (23)

Now, let us move to the post-processing methods. These are as important as the
simplified FastGNG in compressing the depth information and correcting defects from the
previous step.

3.2.1. Ground Removal

In this system, we need to remove the ground nodes since we already have the ground
information from the 2D SLAM. The set of the 3D point cloud data D is needed for this
calculation.

Gnd(v) =
{

0 dGx < gx ∧ dGy > gy ∧ dGz < gz
1 otherwise

(24)

dGx = |vx − wix|, dGy =
∣∣vy − wiy

∣∣, dGz = |vz − wiz|, i ∈ D (25)

where gx, gy, and gz are the thresholds based on the minimum distance between input
nodes. The ground nodes having Gnd(v) = 1 are then removed from their network. They
basically have no neighbors on the y-axes, and hence we use this information to determine
the removal process.

Robotics 2023, 12, 157 11 of 28

3.2.2. Node Reduction

This method reduces the nodes in a straight connection to further compress the point
cloud data. Thus, an angle between two connections θv is used.

θv = cos−1
→
a
→
b∣∣∣→a ∣∣∣ ∣∣∣∣→b ∣∣∣∣ (26)

Vector
→
a and

→
b can be known from the corresponding nodes as they have xyz-value.

If θv is more than a specific threshold, i.e., 160◦, the corresponding node can be removed
and its connections should be updated.

3.2.3. Open Loop Connection

A perfect detection should have closed loop networks around the detected objects.
Hence, this method is performed to close the open loop networks. The probability of a
node v to be connected to the open loop nodes, Popen(v), is defined as follows:

Popen(v) = η1 θv + η2 dC (27)

dC =
∥∥v− wopeni

∥∥, i ∈ A (28)

where θv is the same as (26). By using a positive value of η1 and a negative value of η2, the
Popen(v) prioritizes nodes having a larger angle and shorter distance to be a closed loop.
Then, the node having the highest Popen(v) value is connected to the open loop nodes for
closing the network.

3.2.4. Node Evaluation

This method is applied to reduce noises and false detection problems. The node
evaluation Ne(v) is defined as follows:

Ne(v) =
{

µ = µ + 1 dNx ≤ nx ∧ dNy ≤ ny ∧ dNz ≤ nz
µ = µ otherwise

(29)

dNx = |vx − wix|, dNy =
∣∣vy − wiy

∣∣, dNz = |vz − wiz|, i ∈ D (30)

The counter µ is initialized as 0. The node v should be removed if the µ is less
than a specific threshold. This means that the node v does not have a sufficient number
of neighbors from the input data D. The thresholds nx, ny, and nz are set based on the
minimum distance between input nodes of the point cloud.

3.2.5. Connection Evaluation

A connection from a node k to l can be evaluated as follows:

Ce(k, l) =
{

1 dQx > qx ∧ dQy > qy ∧ dQz > qz
0 otherwise

(31)

dQx = |tx − wix|, dQy =
∣∣ty − wiy

∣∣, dQz = |tz − wiz|, i ∈ D (32)

tx =
kx + lx

2
, ty =

ky + ly
2

, tz =
kz + lz

2
(33)

The same as before, the thresholds qx, qy, and qz are set based on the minimum distance
between input nodes. This method compares the center point t of a connection to the input
reference D. Therefore, bad connections having Ce(k, l) = 0 are removed from the network.

Robotics 2023, 12, 157 12 of 28

The output of the 3D object extraction is clusters, consisting of nodes and connections,
as shown in Figure 10.

Robotics 2023, 12, x FOR PEER REVIEW 4 of 10

Figure 9. 3D object extraction flowchart.

connections, as shown in Figure 10.

Figure 10. Clusters of nodes and connections of 3D objects. Figure 10. Clusters of nodes and connections of 3D objects.

Every node and connection are then encoded to be sent from the mobile robot to the
PC controller. From more than 10,000 points in a point cloud to only less than 100 outputs
(nodes and connections), a high compression ratio can be achieved using this method,
which is especially useful for low-bandwidth communication.

FastGNG adds new nodes after mini-batch learning using weight parameters. Al-
though it improves the learning speed in comparison to the original GNG algorithm, this
also results in unnecessary nodes being added to the network, which requires an additional
node deletion process. Hence, the simplified FastGNG avoids that by improving the correct-
ness of the probability functions (Pedge(v), Pnode(v)), resulting in additional computational
cost savings (see the comparison in the experimental results). Furthermore, due to the
higher correctness of the probability functions, a new node and its connections can be added
to the network in each step without a node deletion process (steps 4 and 5). Moreover,
it also filters the point cloud data at the beginning of the algorithm by applying Pedge(v)
to improve the correctness of the sample nodes. Those are the main differences between
simplified FastGNG and the FastGNG algorithm. We simplified it from a general-purpose
algorithm to a specific purpose in this system.

3.3. 2D–3D Combination

The combination process between 2D SLAM and 3D objects is expressed in Figure 11.
It starts from rotation and translation with 2D SLAM as the reference. All 3D objects from
the simplified FastGNG algorithm are combined based on their clusters to create a new
3D map. Several clustering methods are also employed in the reconstruction process. The
following are the steps of the combination process:

Step 1. The pose graph map of 2D SLAM generates the orientations (θc
i) and 2D position

(txi, tyi) that are used for the input references of the rotation (34) and translation
(35), respectively. tzi are always zero as the mobile robot only moves on a 2D
slat surface. 

x′

y′

z′

1

 =


cos θc

i −sin θc
i 0 0

sin θc
i cos θc

i 0 0
0 0 1 0
0 0 0 1




x′

y′

z′

1

 (34)


x′′
y′′
z′′
1

 =


1 0 0 txi
0 1 0 tyi
0 0 1 tzi
0 0 0 1




x′

y′

z′

1

 (35)

Robotics 2023, 12, 157 13 of 28

In the equation, x, y, and z are the node coordinates of 3D objects. Meanwhile, the
double-apostrophe values are the results of this step. The rotation is completed
first, and then followed by the translation.

Robotics 2023, 12, x FOR PEER REVIEW 5 of 10

Figure 11. 2D–3D combination steps. Different colors indicate different clusters.

Figure 12. 2D map reference generated from the occupancy grid map of 2D SLAM.

Figure 11. 2D–3D combination steps. Different colors indicate different clusters.

Step 2. A density-based spatial clustering of application with noise (DBSCAN) is performed
to make a correction of the first rotation and translation results. From the top
point of view, a single 3D object may have an L-shape or a non-linear shape.
Therefore, a density-based clustering algorithm is needed, and DBSCAN is a pioneer
of density-based clustering algorithms [48]. DBSCAN is still being adopted in
modern techniques due to its simplicity and compactness for topological clustering
applications [49]. The DBSCAN clustering is explained in Algorithm 1. In this
method, we convert every 3D object into a 2D line from the top point of view. It
simplifies the clustering method since the z values are always correct. The mobile
robot never moves on the z-axes. Thus, only x and y values need to be corrected.
There are several parameters used in the DBSCAN clustering, such as minObj for
a minimum number of objects, dEps for minimum search radius, and thetaTh for
rotation threshold. The object rotation angle θo is calculated using its gradient value

Robotics 2023, 12, 157 14 of 28

(36), and the distance between objects ε is calculated using the Euclidean distance (37).

θo = tan−1 P2y− P1y
P2x− P1x

(36)

ε =

√
(P2x− P1x)2 + (P2y− P1y)2 (37)

where P1 and P2 are two points in a single object as an xy-line. The output of this
step is the clusterObj (colored lines in Figure 11 step 2) that will be used in the
next step, and noiseObj (black lines in Figure 11 step 2) that is removed from the
map result.

Step 3. The pose graph map of 2D SLAM only generates orientations and positions of
the individual map displacements. In other words, they are the mobile robot
orientations and positions when scanning the environment or capturing the data.
Therefore, to generate a 2D map reference, the occupancy grid map from 2D SLAM
is used, as shown in Figure 12. It is generated based on the values of the occupancy
grid map, where empty space is represented by low values (near 0), occupied space
has high values (near 1), and untraveled space is between 0 and 1 (0.5 initially).
We set 0.750 as the threshold to generate the 2D map reference. All nodes of the
2D map reference are then compared to the DBSCAN clustering result. By using
a specific threshold, i.e., the Euclidean distance, these nodes can all be known to
which DBSCAN cluster they belong. They are shown as black circles in Figure 11
step 3.

Random sample consensus (RANSAC) [50] is then performed to generate 2D
reference lines (black lines in Figure 11 step 3) based on the 2D map reference and
the cluster. The line equations used in the RANSAC are as follows;

yrsc = mrscxrsc + brsc (38)

mrsc =
y2 − y1

x2 − x1
(39)

θrsc = tan−1 mrsc (40)

The slope mrsc is calculated using the gradient value of two sample points, (x1, y1)
and (x2, y2). Then, its y-intercept brsc can be known from the sample point (xrsc, yrsc),
and its angle θrsc can be known from the mrsc value. This process is also explained
in Algorithm 2.

Step 4. In this step, DBSCAN clustering is performed to the RANSAC results of step 3.
It generates new clusters for the 2D map reference nodes as a correction of the
previous results. Next, RANSAC is applied to the new clusters to generate new 2D
reference lines (light blue lines in Figure 11 step 4). These 2D reference lines are
used as the final references to rotate and translate all 3D objects in the last step.

Step 5. All 3D objects are re-rotated and re-translated using the last references from step
4. It is a correction of the rotation and translation in the first step. Finally, ground
information from the occupancy grid map of 2D SLAM is combined with the result
of this step. This is the final rendering result of 3D surface reconstruction, as shown
in Figure 11.

Robotics 2023, 12, 157 15 of 28

Algorithm 1: DBSCAN Clustering

Input:sampleObj, thetaTh, dEps, minObj
Output:clusterObj, noiseObj
clusterObj← Null
noiseObj← Null
while True do

temp_clust← random(sampleObj)
isUpdate← True; l_start← 1; l_stop← 1
while isUpdate do

isUpdate← False
for i← l_start to l_stop do

core← temp_clusti
for j← 1 to numOf(sampleObj) do

if |sampleObjj.θ – core.θ| ≤ thetaTh and
distEuc(sampleObjj, core.xy) ≤ dEps then
temp_clust.add(sampleObjj)
isUpdate← True

end if
end for

end for
l_start← l_stop + 1
l_stop← numOf(temp_clust)

end while
if numOf(temp_clust) ≥ minObj then

clusterObj.add(temp_clust)
else

if numOf(temp_clust) = 1 then
noiseObj.add(temp_clust)

else
clusterObj.add(temp_clust)

end if
end if
if numOf(noiseObj) + numOf(clusterObj) = numOf(sampleObj) then

break
end if

end while
return clusterObj, noiseObj

Robotics 2023, 12, x FOR PEER REVIEW 5 of 10

Figure 11. 2D–3D combination steps. Different colors indicate different clusters.

Figure 12. 2D map reference generated from the occupancy grid map of 2D SLAM. Figure 12. 2D map reference generated from the occupancy grid map of 2D SLAM.

Robotics 2023, 12, 157 16 of 28

As described in Figure 6, the 2D–3D combination is run on the PC controller. Since the
2D SLAM tends to accumulate errors before a loop closure, this process is executed every
three time steps after the loop closure is detected. On the mobile robot, both 2D and 3D
data are captured at the same time, and thus they represent the same object. However, due
to sensors and the object extraction accuracy, they are not exactly aligned. Therefore, we
performed an alignment process in the 2D–3D combination method to improve the 3D map
accuracy.

3.4. Communication System

The combination of Wi-Fi and LoRa is configured based on each communication
protocol, i.e., transmission control protocol/internet protocol (TCP/IP) and serial protocol,
respectively. Figure 13 depicts the communication system architecture. The connection
manager algorithm manages all network switching processes using a cFlag parameter, as
explained in Algorithm 3.

Algorithm 2: RANSAC

Input:sampleData, maxIteration, inliersTh
Output:bestM, bestB, bestTheta
maxInliers← –1
fori← 1 to maxIteration do

rand1 ← random(sampleData)
rand2 ← random(sampleData)
while rand1 = rand2 do

rand2 ← random(sampleData)
end while
mrsc ← rand2.y−rand1.y

rand2.x−rand1.x
brsc ← rand1.y – mrsc rand1.x
θrsc ← tan−1 mrsc

countInliers← 0
for j← 1 to length(sampleData) do

if |θrsc| ≤ 45.0 then
newX← sampleDataj.x
newY← mrsc newX + brsc

else
newY← sampleDataj.y
newX← newY−brsc

mrsc

end if
dist← distEuc(new.XY, sampleDataj)
if dist ≤ inliersTh then

countInliers← countInliers + 1
end if

end for
if countInliers > maxInliers then

maxInliers← countInliers
bestM← mrsc

bestB← brsc

bestTheta← θrsc

end if
end for
return bestM, bestB, bestTheta

Robotics 2023, 12, 157 17 of 28Robotics 2023, 12, x FOR PEER REVIEW 6 of 10

Figure 13. Communication system architecture.

(a) (b) (c)

(d) (e) (f)

Figure 14. 3D object extraction results. White dots are the point cloud data. Colored dots and

colored lines are the nodes and connections, respectively. Different colors indicate different

clusters. (a–f) Point cloud 1–6 for experiments.

Figure 13. Communication system architecture.

In addition, different encoding and decoding strategies are applied to the system,
i.e., ASCII coding for Wi-Fi and binary coding for LoRa, which are not the focus of this
paper. The reason for using ASCII coding for Wi-Fi is that the 2D LiDAR output is al-
ready in ASCII format, and the data size can be compensated by the Wi-Fi bandwidth
(353 kbps–9 Mbps). On the other hand, binary coding is required for LoRa to compress all
data as it has low bandwidth (6.01 kbps–22 kbps). Therefore, real-time applications can be
performed by the system using both communication bandwidths.

Algorithm 3: Connection Manager

Input:IPaddr, tcpPort, tcpTimeout, comPort, serBaud, serTimeout
Output:cFlag
connTCP← tcpconfig(IPaddr, tcpPort, tcpTimeout)
connSer← serconfig(comPort, serBaud, serTimeout)
cFlag← 1
while True do

if cFlag = 1 then
try

funcTxRx(connTCP)
catch

cFlag← 0
end try

else
funcTxRx(connSer)

end if
end while

4. Results and Discussion
4.1. 3D Object Extraction Evaluation

First, the standard GNG algorithm, FastGNG, and simplified FastGNG were compared
for the same input dataset in our laboratory. All ran the object detection without post-
processing methods. Table 2 summarizes the results.

It is difficult to run for the same number of nodes in each trial, especially for FastGNG
and simplified FastGNG, since they use phase level (iP). Based on the results, the standard
GNG algorithm has the highest computational cost. It really depends on the number of
iterations. On the other hand, the FastGNG algorithm runs faster. It is roughly three
times faster than the standard GNG algorithm. The simplified FastGNG has a similar
performance as the FastGNG. It uses the same core as in the FastGNG algorithm, however,
in a simpler way, to achieve improved performance for the proposed system. In this case,
we set the max_phase = 3 as the limit.

Robotics 2023, 12, 157 18 of 28

Table 2. Comparison between standard GNG algorithm, FastGNG, and simplified FastGNG.

Standard GNG

No. No. of
Nodes

No. of
Connections Iteration/Phase Time [ms] Mean Time [ms]

1 150 159 3700 58.3

67.9

2 150 165 3780 61.8

3 150 171 4120 85.7

4 150 164 4070 68.3

5 150 166 3840 65.4

FastGNG

1 148 278 3 22.5

22.2

2 149 269 3 23.2

3 152 297 3 21.2

4 151 278 3 21.5

5 150 285 3 22.8

Simplified FastGNG

1 155 146 3 13.6

16.2

2 144 132 3 18.2

3 158 143 3 17.3

4 152 137 3 16.0

5 145 130 3 15.8

In order to evaluate the performance of the 3D object extraction method, 3D point
cloud datasets from our laboratory were used. The datasets, which have the same resolution
of 640 × 480 pixels, were previously recorded using the LiDAR camera as described in
Section 2.1. All parameter settings for the evaluation can be seen in Table 3. Figure 14 shows
the detection results, while the performance is summarized in Table 4. In the experiments,
all post-processing methods were also performed. Based on the results, the proposed
method can achieve the mean performance of 31.15 fps. That will be difficult to achieve
when using the standard GNG algorithm, which has the mean execution time of 67.9 ms
(14.73 fps) without any post-processing methods. This implementation is necessary, as
we need to maintain all algorithms to be real-time capable in order to realize the target of
this system.

Table 3. Parameter settings for 3D object extraction.

Parameter Value Definition

α 3.9 Constant for generating a set of sample nodes A

β 1.55 Constant for Pnode(v)

γi γ1 = 0.225 m, γ2 = 0.150 m, γ3 = 0.100 m Minimum length of a connection in the network for each phase level iP

δi δ1 = 0.300 m, δ2 = 0.225 m, δ3 = 0.175 m Maximum length of a connection in the network for each phase level iP

σi σ1 = 10, σ2 = 8, σ3 = 6 Internal loop parameter for mini-batch learning

gx , gy, gz gx = 0.080 m, gy = 0.035 m, gz = 0.080 m Thresholds for ground removal

η1, η2 η1 = 0.01, η2 = −0.95 Thresholds for open loop connection

nx , ny, nz nx = 0.2 m, ny = 0.2 m, nz = 0.2 m Thresholds for node evaluation

qx , qy, qz qx = 0.06 m, qy = 0.06 m, qz = 0.06 m Thresholds for connection evaluation

Robotics 2023, 12, 157 19 of 28

Robotics 2023, 12, x FOR PEER REVIEW 6 of 10

Figure 13. Communication system architecture.

(a) (b) (c)

(d) (e) (f)

Figure 14. 3D object extraction results. White dots are the point cloud data. Colored dots and

colored lines are the nodes and connections, respectively. Different colors indicate different

clusters. (a–f) Point cloud 1–6 for experiments.

Figure 14. 3D object extraction results. White dots are the point cloud data. Colored dots and colored
lines are the nodes and connections, respectively. Different colors indicate different clusters. (a–f) Point
cloud 1–6 for experiments.

Table 4. 3D object extraction performance.

No. Input
Image

No. of Points in
Point Cloud

No. of
Nodes

No. of
Connections

No. of
Clusters

Min Distance
between Nodes

Max Distance
between Nodes Time [ms]

1 Figure 14a 8586 77 80 8 0.100 m 2.430 m 32.7

2 Figure 14b 11,647 48 49 3 0.100 m 3.210 m 27.6

3 Figure 14c 10,455 61 67 5 0.100 m 3.180 m 34.6

4 Figure 14d 10,802 80 86 2 0.102 m 1.575 m 35.6

5 Figure 14e 13,948 54 60 1 0.102 m 1.217 m 32.1

6 Figure 14f 14,094 70 76 2 0.100 m 0.560 m 30.0

Frame Rate: Mean = 1 s
32.1 ms = 31.15 fps; Min = 1 s

35.6 ms = 28.09 fps; Max = 1 s
27.6 ms = 36.23 fps

Another important thing is the data compression. Remember that we need to send
all monitoring data using both Wi-Fi and LoRa networks. It is impossible to send all
raw-point cloud data using low-bandwidth communication. Due to bandwidth restrictions,
real-time performance will not be achieved, and there will be a data loss problem. Thus,
the simplified FastGNG solves the problem by compressing the data size while at the same
time maintaining its performance in real time. The trade-off is, of course, the map quality.
Higher compression results in faster data transmission time but lower map quality, and vice
versa. However, compared to our previous work using particle swarm optimization-seeded
region growing (PSO-RG) [51], which has a mean performance of 11.3 fps, the simplified
FastGNG offers a better balance between data compression, accuracy, and computational
cost. Furthermore, the PSO-RG limits each cluster to only eight nodes, which is much less
than the simplified FastGNG results (48–80 in Table 4), making it more accurate to represent
the detected objects. Even though the data size is approximately six to ten times larger, the
communication bandwidth can still handle it.

4.2. Real-Time Experimental Results

We performed fifteen trials to evaluate the proposed methods. All of them were run
on the proposed system in real time. There are configurations of Wi-Fi to LoRa, LoRa only,
and Wi-Fi only, each of which are conducted five times. The environmental condition for
experiments is shown in Figure 5. However, the placement of the objects in it may change.

Robotics 2023, 12, 157 20 of 28

The parameter settings for the experiments are shown in Table 5. These parameters are
used in the 2D–3D combination method to build a 3D map.

Table 5. Parameter settings for 2D–3D combination method.

Parameter Value Definition

thetaTh 10◦ DBSCAN clustering rotation threshold

dEps 0.10 m (step 2) 0.15 m (step 4) DBSCAN clustering minimum search radius

minObj 2 DBSCAN clustering minimum number of objects

maxIteration 1.5 n RANSAC maximum iteration. n is the number of
sample data

inliersTh 0.10 m (step 3, 4) RANSAC inlier threshold

Table 6 shows the computational costs of the experiments. The mobile robot observes
2D and 3D data in parallel, and hence the computational cost in it will be the longest time.
Figure 15 depicts the 3D map results (Figure S1). In Figure 15a, the mobile robot performed
both the observation task and the command task. Therefore, the mobile robot final position
is different from Figure 15b,c, which only performed the observation task. Similarly, the
map density is also different due to the difference in the amount of data sent by the mobile
robot to the PC controller. In the experiments, the mobile robot reached an average speed of
0.15 m/s (maximum 0.46 m/s), which depended on the track length and obstacles.

Table 6. Computational costs of real-time experiments.

PC Controller

No. Network Data Transmission Time [ms]
Mean of 50+ Data

Mean
[ms]

2D SLAM and 2D–3D
Combination [ms]
Mean of 50+ Data

Mean
[ms]

Data Size [KB]
Mean of 50+ Data

Mean
[KB]

1

Wi-Fi to
LoRa

273

274

93

98

0.727

0.734

2 266 92 0.740

3 277 106 0.735

4 272 96 0.718

5 280 106 0.752

6

LoRa

570

625

89

99

0.463

0.471

7 703 106 0.472

8 618 102 0.474

9 577 98 0.471

10 659 103 0.475

11

Wi-Fi

17

18

109

112

0.926

0.932

12 23 108 0.928

13 16 116 0.936

14 17 109 0.914

15 18 118 0.936

Mobile Robot

Hardware Sampling Rate Algorithm Encoding Total

2D Data 2D LiDAR 25 fps (40 ms) 3× Downsampling: 10 ms 5 ms 55 ms

3D Data LiDAR Camera 30 fps (33 ms) Simplified FastGNG: 32.1 ms (mean) 10 ms 75.1 ms

Total Computational Cost

Wi-Fi to LoRa 274 ms + 98 ms + 75.1 ms = 447.1 ms (2.24 Hz)

LoRa 625 ms + 99 ms + 75.1 ms = 799.1 ms (1.25 Hz) (main target)

Wi-Fi 18 ms + 112 ms + 75.1 ms = 205.1 ms (4.88 Hz)

Robotics 2023, 12, 157 21 of 28Robotics 2023, 12, x FOR PEER REVIEW 7 of 10

(a) (b)

(c) (d)

Figure 15. 3D map results from the experiments consisting of Wi‐Fi to LoRa, LoRa only, and Wi‐Fi

only configurations. Red lines indicate walls or large objects, blue lines indicate small objects, and

green objects are the mobile robot. White and gray floors are empty and occupy space from 2D

SLAM, respectively. (a) Wi‐Fi to LoRa configuration. (b) LoRa only configuration. (c) Wi‐Fi only

configuration. (d) The ground truth of the experiments.

To evaluate the map results, we combined all fifteen maps and plotted them in 2D

from the top point of view, as shown in Figure 17. Since the mobile robot only moves in

2D space, only the x and y‐axes need to be evaluated. Compared to the ground truth in

Figure 15d, they have about the same shape and size, which are 3.95 m in width and 4.2

m in length. At the same time, the results show that the proposed method has good

repeatability from all fifteen trials with different network configurations.

There is one more scenario for the system to perform real‐time observation and 3D

map building. Figure 18 depicts the map results. The environmental condition is the

same but with different object placements. The LoRa network was used and resulted in

similar performance as in Table 6. These results also confirm the feasibility of the

proposed method for performing real‐time 3D map building under the system

restrictions.

Figure 15. 3D map results from the experiments consisting of Wi-Fi to LoRa, LoRa only, and Wi-Fi
only configurations. Red lines indicate walls or large objects, blue lines indicate small objects, and
green objects are the mobile robot. White and gray floors are empty and occupy space from 2D
SLAM, respectively. (a) Wi-Fi to LoRa configuration. (b) LoRa only configuration. (c) Wi-Fi only
configuration. (d) The ground truth of the experiments.

Figure 16 explains the missions of Figure 15a step by step, where the system switched
the network automatically from Wi-Fi to LoRa in the middle of the observation task
(Video S1). Then, in the command task, the operator commanded the mobile robot to go to
a specific position in the map by using the command buttons on the GUI. Of course, there
are some delays for monitoring data when using the LoRa network compared with the
Wi-Fi network. This is caused by the low bandwidth of LoRa.

Robotics 2023, 12, 157 22 of 28
Robotics 2023, 12, x FOR PEER REVIEW 8 of 10

(a) (b)

(c) (d)

(e) (f)

Figure 16. An example of missions performed by the system. (a–d) are the observation task while

(e,f) are the commands task. The view showing the mobile robot is not part of the system. This is a

separate camera for recording the mobile robot movements. (a) Mobile robot started the missions

using the Wi‐Fi network. (b) In the middle of the missions, the Wi‐Fi network was turned off. (c)

Three seconds after the Wi‐Fi being turned off, the system switched to the LoRa network. (d) The

system used the LoRa network for the rest of the missions. (e) The operator commanded the mobile

robot to go to a specific location in the map. (f) Final results of the missions.

4.3. Discussion

In order to achieve real‐time application of the system, all implemented algorithms

need to have real‐time capabilities, as depicted in Figure 6. The more data for the

algorithms, the higher the accuracy of the results. However, the computational costs may

also increase. Therefore, it is very important in this system to maintain a balance between

the amount of data and its accuracy. In mobile robot operations, at least an operator is

needed not only to control, but also to monitor the mobile robot’s behaviors in

performing the missions. Hence, real‐time capabilities should be considered since they

enable not only direct results, but also real‐time responses between the operator and the

mobile robot. In [22], it defines a real‐time target for 3 s. This paper, however, is targeted

at 1 s (1 Hz). We considered it based on the implemented hardware in the system, and it

was confirmed by the experimental results.

Figure 16. An example of missions performed by the system. (a–d) are the observation task while
(e,f) are the commands task. The view showing the mobile robot is not part of the system. This is a
separate camera for recording the mobile robot movements. (a) Mobile robot started the missions
using the Wi-Fi network. (b) In the middle of the missions, the Wi-Fi network was turned off.
(c) Three seconds after the Wi-Fi being turned off, the system switched to the LoRa network. (d) The
system used the LoRa network for the rest of the missions. (e) The operator commanded the mobile
robot to go to a specific location in the map. (f) Final results of the missions.

Based on the results in Table 6, the data transmission time is different among different
network configurations, and obviously Wi-Fi is the fastest network. The 2D SLAM and
2D–3D combination are performed in the PC controller, and hence they all have similar
results. Lastly for data size, as mentioned earlier, we used different strategies for data
coding methods between Wi-Fi and LoRa networks. ASCII coding is used for Wi-Fi and
binary coding is used for LoRa. Therefore, the mean LoRa data size is smaller than the mean
Wi-Fi data size. When using the Wi-Fi to LoRa configuration, the data are coded either
using ASCII or using binary coding corresponding to the current network that the system
uses. On the mobile robot side, there are two kinds of data sent to the PC controller, i.e.,
2D and 3D data. A three-time downsampling is applied to the 2D data and the simplified
FastGNG is applied to the 3D data to extract 3D objects. These result in a total maximum
computational cost of 799.1 ms, which is 1.25 Hz. Thus, the operator can obtain the map
update for at least 1.25 Hz for monitoring data. Faster updates can, of course, be achieved
when the system uses the Wi-Fi network.

Robotics 2023, 12, 157 23 of 28

To evaluate the map results, we combined all fifteen maps and plotted them in 2D
from the top point of view, as shown in Figure 17. Since the mobile robot only moves
in 2D space, only the x and y-axes need to be evaluated. Compared to the ground truth
in Figure 15d, they have about the same shape and size, which are 3.95 m in width and
4.2 m in length. At the same time, the results show that the proposed method has good
repeatability from all fifteen trials with different network configurations.

Robotics 2023, 12, x FOR PEER REVIEW 9 of 10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Combination of all maps from the experiments. (a) Combination of five 2D maps from

Wi‐Fi to LoRa configuration. (b) Combination of five 2D maps from LoRa configuration. (c)

Combination of five 2D maps from Wi‐Fi configuration. (d) Combination of fifteen 2D maps from

all network configurations. (e) Combination of five 3D maps from Wi‐Fi to LoRa configuration. (f)

Combination of five 3D maps from LoRa configuration. (g) Combination of five 3D maps from

Wi‐Fi configuration. (h) Combination of fifteen 3D maps from all network configurations.

(a) (b) (c)

Figure 18. Experimental results with different object placements. (a) 3D map result. (b) 2D

occupancy grid map. (c) The ground truth of the experiment.

As depicted in Figure 4, there are several tasks running in parallel on the mobile

robot while observing the environment. The FLC wall path follower and obstacle

avoidance are running in the background to handle the mobile robot’s movements.

Regarding the mobile robot speed, we defined in the FLC controller that 0.2 m/s is the

medium speed, less than 0.1 m/s is the slow speed, and more than 0.4 m/s is the fast

speed. Based on the experimental results, the mobile robot is able to reach a maximum

speed of 0.46 m/s with an average speed of 0.15 m/s. This is a car‐like mobile robot, and

Figure 17. Combination of all maps from the experiments. (a) Combination of five 2D maps from Wi-
Fi to LoRa configuration. (b) Combination of five 2D maps from LoRa configuration. (c) Combination
of five 2D maps from Wi-Fi configuration. (d) Combination of fifteen 2D maps from all network
configurations. (e) Combination of five 3D maps from Wi-Fi to LoRa configuration. (f) Combination
of five 3D maps from LoRa configuration. (g) Combination of five 3D maps from Wi-Fi configuration.
(h) Combination of fifteen 3D maps from all network configurations.

There is one more scenario for the system to perform real-time observation and 3D
map building. Figure 18 depicts the map results. The environmental condition is the same
but with different object placements. The LoRa network was used and resulted in similar
performance as in Table 6. These results also confirm the feasibility of the proposed method
for performing real-time 3D map building under the system restrictions.

Robotics 2023, 12, x FOR PEER REVIEW 9 of 10

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. Combination of all maps from the experiments. (a) Combination of five 2D maps from

Wi‐Fi to LoRa configuration. (b) Combination of five 2D maps from LoRa configuration. (c)

Combination of five 2D maps from Wi‐Fi configuration. (d) Combination of fifteen 2D maps from

all network configurations. (e) Combination of five 3D maps from Wi‐Fi to LoRa configuration. (f)

Combination of five 3D maps from LoRa configuration. (g) Combination of five 3D maps from

Wi‐Fi configuration. (h) Combination of fifteen 3D maps from all network configurations.

(a) (b) (c)

Figure 18. Experimental results with different object placements. (a) 3D map result. (b) 2D

occupancy grid map. (c) The ground truth of the experiment.

As depicted in Figure 4, there are several tasks running in parallel on the mobile

robot while observing the environment. The FLC wall path follower and obstacle

avoidance are running in the background to handle the mobile robot’s movements.

Regarding the mobile robot speed, we defined in the FLC controller that 0.2 m/s is the

medium speed, less than 0.1 m/s is the slow speed, and more than 0.4 m/s is the fast

speed. Based on the experimental results, the mobile robot is able to reach a maximum

speed of 0.46 m/s with an average speed of 0.15 m/s. This is a car‐like mobile robot, and

Figure 18. Experimental results with different object placements. (a) 3D map result. (b) 2D occupancy
grid map. (c) The ground truth of the experiment.

Robotics 2023, 12, 157 24 of 28

4.3. Discussion

In order to achieve real-time application of the system, all implemented algorithms need
to have real-time capabilities, as depicted in Figure 6. The more data for the algorithms,
the higher the accuracy of the results. However, the computational costs may also increase.
Therefore, it is very important in this system to maintain a balance between the amount of
data and its accuracy. In mobile robot operations, at least an operator is needed not only to
control, but also to monitor the mobile robot’s behaviors in performing the missions. Hence,
real-time capabilities should be considered since they enable not only direct results, but also
real-time responses between the operator and the mobile robot. In [22], it defines a real-time
target for 3 s. This paper, however, is targeted at 1 s (1 Hz). We considered it based on the
implemented hardware in the system, and it was confirmed by the experimental results.

As depicted in Figure 4, there are several tasks running in parallel on the mobile robot
while observing the environment. The FLC wall path follower and obstacle avoidance
are running in the background to handle the mobile robot’s movements. Regarding the
mobile robot speed, we defined in the FLC controller that 0.2 m/s is the medium speed,
less than 0.1 m/s is the slow speed, and more than 0.4 m/s is the fast speed. Based on
the experimental results, the mobile robot is able to reach a maximum speed of 0.46 m/s
with an average speed of 0.15 m/s. This is a car-like mobile robot, and thus it also needs to
go backward to avoid the obstacles. All the above experiments, of course, run in parallel
with the background programs. In addition, we also installed an active cooling fan to
maintain the Raspberry Pi CPU temperature. Figure 19 shows the CPU performance when
running the missions. There are configurations of Wi-Fi to LoRa, LoRa only, and Wi-Fi only.
The missions were started at around 5 s, and then both CPU temperature and CPU usage
started to rise. When using the Wi-Fi network, the CPU usage is lower than when using the
LoRa network. This is caused by the program architecture. One additional thread is added
for the LoRa network to help the communication thread. It performs timeout recovery
algorithms to prevent data loss on the LoRa network [40], as all data are important for
the mapping process. It is worth noting that when the CPU temperature rises to 80–85
◦C, the CPU will start to slow down and reduce all clocks, as written in the Raspberry
Pi documentation. In the worst case, the simplified FastGNG algorithm may drop to 10
fps when the CPU throttling happens. Hence, the implementation of the active cooling is
very important.

Robotics 2023, 12, x FOR PEER REVIEW 10 of 10

thus it also needs to go backward to avoid the obstacles. All the above experiments, of

course, run in parallel with the background programs. In addition, we also installed an

active cooling fan to maintain the Raspberry Pi CPU temperature. Figure 19 shows the

CPU performance when running the missions. There are configurations of Wi‐Fi to LoRa,

LoRa only, and Wi‐Fi only. The missions were started at around 5 s, and then both CPU

temperature and CPU usage started to rise. When using the Wi‐Fi network, the CPU

usage is lower than when using the LoRa network. This is caused by the program

architecture. One additional thread is added for the LoRa network to help the

communication thread. It performs timeout recovery algorithms to prevent data loss on

the LoRa network [40], as all data are important for the mapping process. It is worth

noting that when the CPU temperature rises to 80–85 °C, the CPU will start to slow down

and reduce all clocks, as written in the Raspberry Pi documentation. In the worst case, the

simplified FastGNG algorithm may drop to 10 fps when the CPU throttling happens.

Hence, the implementation of the active cooling is very important.

(a) (b)

Figure 19. Raspberry Pi CPU performance when running the missions. (a) Raspberry Pi CPU and

memory usage. (b) Raspberry Pi CPU temperature.

Figure 19. Raspberry Pi CPU performance when running the missions. (a) Raspberry Pi CPU and
memory usage. (b) Raspberry Pi CPU temperature.

Robotics 2023, 12, 157 25 of 28

Modern SLAM algorithms, such as ORB-SLAMs [29–31], can also run in real time
on embedded systems [32,33]. Since they require three or more threads to achieve real-
time performance, it is difficult for this system to be implemented. Instead, we run the
mapping algorithms on the PC controller and focus the mobile robot on data observa-
tion. Under embedded systems, ORB-SLAMs can achieve a performance of 2.2–12.69 fps
(454–79 ms) [32]. If we only compare the mapping algorithms, the proposed method can
perform competitively, which is 8.9–10.2 fps (112–98 ms in Table 6).

In contrast to [28], which prioritizes quality and repeatability, this paper prioritizes
repeatability (Figure 17) and real-time performance under low-cost hardware limitations to
perform 3D mapping. This is one of our novelties, as most of the state-of-the-art focuses on
how to construct a 3D map for better quality but ignores real-time processing [23–25]. This
will make real-time control and observation difficult to realize, even more so for low-cost
devices. Of course, this is a trade-off between data size, accuracy, and computational cost.
In this paper, we balance all of them to achieve the target of the proposed system. Thus, the
drawback of this work is map quality, as it is nearly impossible to send the amount of data
under low-bandwidth communication in real time.

The advantage of our proposed approach is the use of low-bandwidth communication.
The combination of high and low-bandwidth networks is also developed in [2,32]. All of
them confess that the network combination improves the robustness of wireless commu-
nication for mobile robot applications. However, they still require the high-bandwidth
network to build a full 3D map and complete the missions. Our system, on the other hand,
enables complete network switching. This means that all observation data for 3D mapping
can be sent to the host using either the high or low-bandwidth network, even when the
main network is completely lost. This brings us to another novelty of this paper, as, to the
best of the authors’ knowledge, there are no similar works performing real-time 3D map
building under low-bandwidth networks.

The first step of the 2D–3D combination method, rotation and translation, is actually
sufficient to represent the environment as a 3D map. The reason for applying the other
processes is accuracy. Next, RANSAC is also a bit time consuming. In this case, we set the
maxIteration parameter to 1.5 n, where n is the number of sample data.

As explained in Section 2, C++ is used in the mobile robot and MATLAB is used in the
PC controller. MATLAB has a MATLAB Coder, which generates C/C++ code directly from
MATLAB code. This is very important to be implemented as it can run more than ten times
faster than native MATLAB code. Table 6 shows how fast the algorithms (2D SLAM and
2D–3D combination) can be executed by the PC controller.

The challenge of the proposed approach is the number of parameters. We found
that it is difficult to obtain appropriate results without understanding the input data
characteristics. We have to set the parameters step by step based on the purpose of each
algorithm. It is difficult to jump to the next parameters if the previous parameters are not
stable yet. For example, setting the parameters for six post-processing methods after the
simplified FastGNG algorithm. We must first successfully remove the ground nodes before
adjusting the second method, and so forth.

The compressed data size for LoRa is around 0.471 KB (mean). This enables a real-time
transmission time of 627 ms (625 ms in experiments) with a speed of 6.01 kbps. By using
the compression ratio for 2D and 3D data, the raw data size for LoRa can be estimated to be
11.492 KB. It will take around 15.29 s to send the uncompressed data using LoRa, making
the real-time target completely impossible when using the low-bandwidth communication.
The Wi-Fi transmission speed can also be estimated to be 414.22 kbps, where the data size
is 0.932 KB and the transmission time is 18 ms. However, Wi-Fi can certainly perform much
faster since it can stream videos in real-time.

There are two restrictions in the proposed system, i.e., limited onboard computing
resources and low-bandwidth communication. Compared with [2,22,23,28], it is difficult
to achieve the real-time target under those two restrictions. Therefore, we developed the
proposed method to address the problems. It proved the ability to achieve the target of

Robotics 2023, 12, 157 26 of 28

1 Hz refresh rate, which is our design system for enabling real-time control and monitoring
for the operator. The combination of Wi-Fi and LoRa makes the system robust against
network problems. The developed algorithms are lightweight and can be installed on
relatively low-cost hardware. Parallel computing is also performed as the system uses a
shared control method to run all the algorithms. Finally, real-time 3D map building can be
conducted using both high and low-bandwidth networks.

5. Conclusions

3D visualization of the real world is becoming increasingly important. In robotics,
it is not only required for intelligent control, but also necessary for operators to provide
intuitive visualization. However, due to the increase in the amount of data, real-time
processing is becoming a challenge, even more so for low-cost mobile devices. Therefore,
in order to address this problem, we propose a real-time 3D map building based on the
combination of 2D SLAM and 3D objects that can be applied to low-cost hardware.

Starting with 2D–3D data observation and 3D object extraction, all observation data
are sent wirelessly from the mobile robot to the PC controller to create a 3D map. First,
the 2D SLAM algorithm is run by the PC controller to build a 2D map based on the 2D
observation data. Then, the simplified FastGNG algorithm, which is run by the mobile
robot, compresses 3D point cloud data as 3D objects. It gives the system a balance between
data size, accuracy, and computational cost, and thus enables real-time data transmission
even though the low-bandwidth communication is used. Lastly, the 2D–3D combination
method is applied to create a 3D map in the PC controller. This combines the 2D data from
2D SLAM and 3D objects from the simplified FastGNG algorithm. The low-bandwidth
communication using the LoRa network is actually the main target, as it restricts not only
the data size, but also the data transmission speed.

The results show that the proposed method can perform a minimum 1.25 Hz refresh
rate, which is real-time capable. It means that the operator will obtain the map update for
at least 1.25 Hz for one monitoring data. This proves that the target of a 1 Hz refresh rate
can be achieved by the proposed method. Of course, a higher refresh rate can be achieved
when the system uses the Wi-Fi network.

In addition, the combination of high and low-bandwidth networks also enables the
system to maintain its client–server communication. Therefore, the missions can be con-
tinued, and real-time monitoring can still be performed even if the system loses the Wi-Fi
network completely.

In future work, we will improve the LoRa performance since it is still far from its
maximum bandwidth. The data may also need to be compressed using another compres-
sion technique that makes it smaller in size. In addition, we want to try more complex
environments to see what further improvements are needed for the algorithms.

Supplementary Materials: The following supporting information can be can be downloaded at:
https://www.mdpi.com/article/10.3390/robotics12060157/s1, Figure S1: 3Dmaps; Figure S2: GA;
Video S1: Demo.

Author Contributions: Conceptualization, A.J. and H.M.; methodology, A.J., H.M., K.S., T.M. and
N.T.; software, A.J.; validation, H.M.; formal analysis, A.J., H.M., K.S., T.M. and N.T.; investigation,
A.J.; resources, A.J. and H.M.; data curation, A.J. and H.M.; writing—original draft preparation, A.J.;
writing—review and editing, A.J. and H.M.; visualization, A.J.; supervision, A.J., H.M., K.S., T.M.
and N.T.; project administration, H.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author within a certain period of time.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/robotics12060157/s1

Robotics 2023, 12, 157 27 of 28

References
1. Guo, B.; Dai, H.; Li, Z.; Huang, W. Efficient planar surface-based 3D mapping method for mobile robots using stereo vision. IEEE

Access 2019, 7, 73593–73601. [CrossRef]
2. Schwarz, M.; Rodehutskors, T.; Droeschel, D.; Beul, M.; Schreiber, M.; Araslanov, N.; Ivanov, I.; Lenz, C.; Razlaw, J.; Schuller,

S.; et al. NimbRo rescue: Solving disaster-response tasks with the mobile manipulation robot momaro. J. Field Robot. 2016, 34,
400–425. [CrossRef]

3. Tian, Y.; Liu, K.; Ok, K.; Tran, L.; Allen, D.; Roy, N.; How, J.P. Search and rescue under the forest canopy using multiple UAVs. Int.
J. Robot. Res. 2020, 39, 1201–1221. [CrossRef]

4. Okada, K.; Kagami, S.; Inaba, M.; Inoue, H. Plane segment finder: Algorithm, implementation and applications. IEEE Int. Conf.
Robot. Autom. 2001, 2, 2120–2125.

5. Geromichalos, D.; Azkarate, M.; Tsardoulias, E.; Gerdes, L.; Petrou, L.; Pulgar, C.P.D. SLAM for autonomous planetary rovers
with global localization. J. Field Robot. 2019, 37, 830–847. [CrossRef]

6. Yin, H.; Wang, Y.; Tang, L.; Ding, X.; Huang, S.; Xiong, R. 3D LiDAR map compression for efficient localization on resource
constrained vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 837–852. [CrossRef]

7. Inaba, M.; Kagami, S.; Kanehiro, F.; Hoshino, Y.; Inoue, H. A platform for robotics research based on the remote-brained robot
approach. Int. J. Robot. Res. 2000, 19, 933–954. [CrossRef]

8. Ding, L.; Nagatani, K.; Sato, K.; Mora, A.; Yoshida, K.; Gao, H.; Deng, Z. Terramechanics-based high-fidelity dynamics simulation
for wheeled mobile robot on deformable rough terrain. In Proceedings of the 2010 IEEE International Conference on Robotics and
Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4922–4927.

9. Li, W.; Ding, L.; Gao, H.; Tavakoli, M. Haptic tele-driving of wheeled mobile robots under nonideal wheel rolling, kinematic
control and communication time delay. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 336–347. [CrossRef]

10. Li, Y.; Li, M.; Zhu, H.; Hu, E.; Tang, C.; Li, P.; You, S. Development and applications of rescue robots for explosion accidents in
coal mines. J. Field Robot. 2019, 37, 466–489. [CrossRef]

11. Takemori, T.; Miyake, M.; Hirai, T.; Wang, X.; Fukao, Y.; Adachi, M.; Yamaguchi, K.; Tanishige, S.; Nomura, Y.; Matsuno, F.;
et al. Development of the multifunctional rescue robot FUHGA2 and evaluation at the world summit 2018. Adv. Robot. 2019, 34,
119–131. [CrossRef]

12. Jeong, I.B.; Ko, W.R.; Park, G.M.; Kim, D.H.; Yoo, Y.H.; Kim, J.H. Task intelligence of robots: Neural model-based mechanism of
thought and online motion planning. IEEE Trans. Emerg. Topics Comput. Intell. 2017, 1, 41–50. [CrossRef]

13. Kamarudin, K.; Shakaff, A.Y.M.; Bennetts, V.H.; Mamduh, S.M.; Zakaria, A.; Visvanathan, R.; Yeon, A.S.A.; Kamarudin, L.M.
Integrating SLAM and gas distribution mapping (SLAM-GDM) for real-time gas source localization. Adv. Robot. 2018, 17, 903–917.
[CrossRef]

14. Aguiar, A.S.; Santos, F.N.d.; Cunha, J.B.; Sobreira, H.; Sousa, A.J. Localization and mapping for robots in agriculture and forestry:
A survey. Robotics 2020, 9, 97. [CrossRef]

15. Iqbal, J.; Xu, R.; Sun, S.; Li, C. Simulation of an autonomous mobile robot for LiDAR-based in-field phenotyping and navigation.
Robotics 2020, 9, 46. [CrossRef]

16. Balta, H.; Bedkowski, J.; Govindaraj, S.; Majek, K.; Musialik, P.; Serrano, D.; Alexis, K.; Siegwart, R.; Cubber, G.D. Integrated data
management for a fleet of search-and-rescue robots. J. Field Robot. 2016, 33, 539–582. [CrossRef]

17. Brooks, R.A. A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 1986, 2, 14–23. [CrossRef]
18. Jiang, C.; Ni, Z.; Guo, Y.; He, H. Pedestrian flow optimization to reduce the risk of crowd disasters through human-robot

interaction. IEEE Trans. Emerg. Topics Comput. Intell. 2020, 4, 298–311. [CrossRef]
19. Whyte, H.D.; Bailey, T. Simultaneous localization and mapping (SLAM): Part I the essential algorithms. IEEE Robot. Autom. Mag.

2006, 13, 99–110. [CrossRef]
20. Tsubouchi, T. Introduction to simultaneous localization and mapping. J. Robot. Mechatron. 2019, 31, 367–374. [CrossRef]
21. Huang, J.; Junginger, S.; Liu, H.; Thurow, K. Indoor positioning systems of mobile robots: A review. Robotics 2023, 12, 47.

[CrossRef]
22. Li, M.; Zhu, H.; You, S.; Wang, L.; Tang, C. Efficient laser-based 3D SLAM for coal mine rescue robots. IEEE Access 2018, 7,

14124–14138. [CrossRef]
23. Memon, E.A.A.; Jafri, S.R.U.N.; Ali, S.M.U. A rover team based 3D map building using low cost 2D laser scanners. IEEE Access

2021, 10, 1790–1801. [CrossRef]
24. Xie, Y.; Zhang, Y.; Chen, L.; Cheng, H.; Tu, W.; Cao, D.; Li, Q. RDC-SLAM: A real-time distributed cooperative SLAM system

based on 3D LiDAR. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14721–14730. [CrossRef]
25. Ding, X.; Wang, Y.; Li, D.; Tang, L.; Yin, H.; Xiong, R. Laser map aided visual inertial localization in changing environment. In

Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 4794–4801.

26. Mu, L.; Yao, P.; Zheng, Y.; Chen, K.; Wang, F.; Qi, N. Research on SLAM algorithm of mobile robot based on the fusion of 2D
LiDAR and depth camera. IEEE Access 2020, 8, 157628–157642. [CrossRef]

27. Jin, Z.; Shao, Y.; So, M.; Sable, C.; Shlayan, N.; Luchtenburg, D.M. A multisensor data fusion approach for simultaneous
localization and mapping. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New
Zealand, 27–30 October 2019; pp. 1317–1322.

https://doi.org/10.1109/ACCESS.2019.2920511
https://doi.org/10.1002/rob.21677
https://doi.org/10.1177/0278364920929398
https://doi.org/10.1002/rob.21943
https://doi.org/10.1109/TITS.2019.2961120
https://doi.org/10.1177/02783640022067878
https://doi.org/10.1109/TSMC.2017.2738670
https://doi.org/10.1002/rob.21920
https://doi.org/10.1080/01691864.2019.1697751
https://doi.org/10.1109/TETCI.2016.2645720
https://doi.org/10.1080/01691864.2018.1516568
https://doi.org/10.3390/robotics9040097
https://doi.org/10.3390/robotics9020046
https://doi.org/10.1002/rob.21651
https://doi.org/10.1109/JRA.1986.1087032
https://doi.org/10.1109/TETCI.2019.2930249
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.20965/jrm.2019.p0367
https://doi.org/10.3390/robotics12020047
https://doi.org/10.1109/ACCESS.2018.2889304
https://doi.org/10.1109/ACCESS.2021.3138836
https://doi.org/10.1109/TITS.2021.3132375
https://doi.org/10.1109/ACCESS.2020.3019659

Robotics 2023, 12, 157 28 of 28

28. Maset, E.; Scalera, L.; Beinat, A.; Visintini, D.; Gasparetto, A. Performance investigation and repeatability assessment of a mobile
robotic system for 3D mapping. Robotics 2022, 11, 54. [CrossRef]

29. Artal, R.M.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 2015,
31, 1147–1163. [CrossRef]

30. Artal, R.M.; Tardos, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

31. Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM3: An accurate open-source library for visual,
visual-inertial and multi-map SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [CrossRef]

32. Silveira, O.C.B.; de Melo, J.G.O.C.; Moreira, L.A.S.; Pinto, J.B.N.G.; Rodrigues, L.R.L.; Rosa, P.F.F. Evaluating a visual simultaneous
localization and mapping solution on embedded platforms. In Proceedings of the 2020 IEEE 29th International Symposium on
Industrial Electronics (ISIE), Delft, The Netherlands, 17–19 June 2020; pp. 530–535.

33. Peng, T.; Zhang, D.; Hettiarachchi, D.L.N.; Loomis, J. An evaluation of embedded GPU systems for visual SLAM algorithms. Intl.
Symp. Electron. Imaging 2020, 2020, 325-1. [CrossRef]

34. Sallum, E.; Pereira, N.; Alves, M.; Santos, M. Improving quality-of-service in LoRa low-power wide-area networks through
optimized radio resource management. J. Sens. Actuator Netw. 2020, 9, 10. [CrossRef]

35. Zhou, Q.; Zheng, K.; Hou, L.; Xing, J.; Xu, R. Design and implementation of open LoRa for IoT. IEEE Access 2019, 7, 100649–100657.
[CrossRef]

36. Mahmood, A.; Sisinni, E.; Guntupalli, L.; Rondon, R.; Hassan, S.A.; Gidlund, M. Scalability analysis of a LoRa network under
imperfect orthogonality. IEEE Trans. Ind. Informat. 2019, 15, 1425–1436. [CrossRef]

37. Lewis, J.; Lima, P.U.; Basiri, M. Collaborative 3D scene reconstruction in large outdoor environments using a fleet of mobile
ground robots. Sensors 2023, 23, 375. [CrossRef]

38. Kagawa, T.; Ono, F.; Shan, L.; Miura, R.; Nakadai, K.; Hoshiba, K.; Kumon, M.; Okuno, H.G.; Kato, S.; Kojima, F. Multi-hop
wireless command and telemetry communication system for remote operation of robots with extending operation area beyond
line-of-sight using 920 MHz/169 MHz. Adv. Robot. 2020, 34, 756–766. [CrossRef]

39. Mascarich, F.; Nguyen, H.; Dang, T.; Khattak, S.; Papachristos, C.; Alexis, K. A self-deployed multi-channel wireless communica-
tions system for subterranean robots. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020;
pp. 1–8.

40. Junaedy, A.; Masuta, H.; Sawai, K.; Motoyoshi, T.; Takagi, N. LPWAN-based real-time 2D SLAM and object localization for
teleoperation robot control. J. Robot. Mechatron. 2021, 33, 1326–1337. [CrossRef]

41. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LiDAR SLAM. In Proceedings of the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278.

42. Kaess, M.; Williams, S.; Indelman, V.; Roberts, R.; Leonardo, J.J.; Dellaert, F. Concurrent filtering and smoothing. In Proceedings
of the 2012 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 1300–1307.

43. Grisetti, G.; Kummerle, R.; Stachniss, C.; Burgard, W. A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2010, 2,
31–43. [CrossRef]

44. Junaedy, A.; Masuta, H.; Kubota, N.; Sawai, K.; Motoyoshi, T.; Takagi, N. Object extraction method for mobile robots using fast
growing neural gas. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 4–7
December 2022; pp. 962–969.

45. Fritzke, B. A growing neural gas network learns topologies. Intl. Conf. Neural Informat. Process. Syst. 1995, 7, 625–632.
46. Kubota, N. Multiscopic topological twin in robotics. In Proceedings of the 28th International Conference on Neural Information

Processing, Bali, Indonesia, 8–12 December 2021.
47. Iwasa, M.; Kubota, N.; Toda, Y. Multi-scale batch-learning growing neural gas for topological feature extraction in navigation

of mobility support robot. In Proceedings of the 7th International Workshop on Advanced Computational Intelligence and
Intelligent Informatics (IWACIII 2021), Beijing, China, 31 October–3 November 2021. [CrossRef]

48. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA,
2–4 August 1996; pp. 226–231.

49. Wang, W.; Zhang, Y.; Ge, G.; Yang, H.; Wang, Y. A new approach toward corner detection for use in point cloud registration.
Remote Sens. 2023, 15, 3375. [CrossRef]

50. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]

51. Junaedy, A.; Masuta, H.; Sawai, K.; Motoyoshi, T.; Takagi, N. A plane extraction method for embedded computers in mobile robots.
In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando, FL, USA, 5–7 December 2021;
pp. 1–8.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/robotics11030054
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.2352/ISSN.2470-1173.2020.6.IRIACV-325
https://doi.org/10.3390/jsan9010010
https://doi.org/10.1109/ACCESS.2019.2930243
https://doi.org/10.1109/TII.2018.2864681
https://doi.org/10.3390/s23010375
https://doi.org/10.1080/01691864.2020.1760934
https://doi.org/10.20965/jrm.2021.p1326
https://doi.org/10.1109/MITS.2010.939925
https://doi.org/10.20965/ijat.2023.p0206
https://doi.org/10.3390/rs15133375
https://doi.org/10.1145/358669.358692

	Introduction
	System Configuration
	Hardware Design
	Software Design
	Experimental Environment

	Proposed Approach
	2D Simultaneous Localization and Mapping (SLAM)
	3D Object Extraction
	Ground Removal
	Node Reduction
	Open Loop Connection
	Node Evaluation
	Connection Evaluation

	2D–3D Combination
	Communication System

	Results and Discussion
	3D Object Extraction Evaluation
	Real-Time Experimental Results
	Discussion

	Conclusions
	References

