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Abstract: This work proposes a Learning by Demonstration framework based on Dynamic Movement
Primitives (DMPs) that could be effectively adopted to plan complex activities in robotics such as the
ones to be performed in agricultural domains and avoid orientation discontinuity during motion
learning. The approach resorts to Lie theory and integrates into the DMP equations the exponential
and logarithmic map, which converts any element of the Lie group SO(3) into an element of the
tangent space so(3) and vice versa. Moreover, it includes a dynamic parameterization for the tangent
space elements to manage the discontinuity of the logarithmic map. The proposed approach was
tested on the Tiago robot during the fulfillment of four agricultural activities, such as digging, seeding,
irrigation and harvesting. The obtained results were compared to the one achieved by using the
original formulation of the DMPs and demonstrated the high capability of the proposed method to
manage orientation discontinuity (the success rate was 100 % for all the tested poses).

Keywords: robot-motion planning; robot learning; dynamic-motion primitives; human–robot
collaboration; agricultural robotics

1. Introduction

The automatization of agricultural activities could have an essential role in facing the
increasing food demand [1]; the decrease in human resources for manual labor [2]; and the
unsafe working conditions of farmers, who are routinely exposed to the potential risk of
ocular, dermal and inhalation toxicity from pesticides and to work-related disorders due to
biomechanical overload.

Farm robots can be efficiently employed for several agricultural applications, such as
crop harvesting [3], pruning, seeding, irrigation, pesticide spraying, etc., and can perform
their tasks autonomously or in collaboration with a human operator [4]. Robots could be
equipped with several sensors capable of assessing the crops’ state and early-detecting
stress conditions before visual symptoms are evident, making their intervention more
precise and prompt compared to the one of the human operator.

Agricultural environments place many challenges for robotics, especially for motion
planning, due to the complexity of the activities to be performed and the intricate nature
of the agricultural fields, which are highly unstructured and fickle compared to indoor
spaces. Indeed, the agricultural environment is generally subject to seasonal crop variations
that require a continuous readaptation of the robot behavior to new situations. Moreover,
the interaction with the human operator, i.e., the farmer, and the high variability in the tasks
to be performed in this domain make it necessary to develop advanced motion-planning
strategies that make the robot activities safer and easily programmable.

To make the robot activity safer during human–robot cooperation tasks, improving
the robot behavior predictability is paramount, and it is well known in the literature that
human-like robot motion can be more easily interpreted and perceived safer by humans [5].
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Indeed, if the robot moves in a human-like manner, the human subject, i.e., the farmer, can
conveniently predict the robot motion and accordingly adjust his/her activity to avoid
possible injuries.

On the other hand, to make the robot activities easily programmable and cope with
the great demand for new different tasks to be performed in mutable scenarios, a user-
friendly motion-planning interface that allows nonexpert users, like the farmers, to plan
new tasks and continuously customize them to the environment changes is highly necessary
for agriculture.

Most traditional techniques adopted in the literature for the motion planning of
agricultural robots are based on point-to-point motion planning and are not able to meet
these requirements, i.e., cannot deal with complex movements and require a human expert
to replan new tasks for the robot [6,7].

Other approaches able to generate complex and collision-free movements are grounded
on (i) grid-based [8] or interval-based [9] search methods, which find optimal obstacle-
free paths for both the manipulator and mobile base; (ii) reward-based algorithms, which
require the robot to try different paths, whereby it will be rewarded positively or neg-
atively if it is successful or not [10,11]; (iii) artificial potential-fields algorithms, which
generate attractive or repulsive paths for the manipulator joints and mobile base [12,13];
and (iv) sampling-based algorithms, which find an optimal path from roadmaps [14] or
probabilistic methods [15,16].

However, all of these approaches do not allow end users to operate the robot naturally
and easily, without the need for explicit coding. This could be a great limitation when
the robot shall operate in a mutable environment, such as the agricultural one, where a
continuous modification of the robot activities is demanded.

Moreover, the motion generated by these approaches is not legible to humans and
does not facilitate cooperation with or acceptance by their human counterparts. Instead,
proper interaction between farmers and agricultural robots is highly desirable to improve
productivity and prevent potential accidents.

One way to allow untrained users, i.e., farmers, to easily program and safely use
robots is to endow the latter with imitation learning capabilities [17]. Learning by imitation,
also referred to as Learning by Demonstration (LbD), is a suitable tool for nonexpert users
to easily teach new tasks to the robot [18]. It just requires a human subject, i.e., the farmer,
to be observed during the task execution and the robotic system to replicate the learned
movement [19,20]. Moreover, Learning by Demonstration significantly improves robot
behavior predictability and hence user safety since the planned human-like motion of
the robot is more easily interpreted by the human [5,21] who can adjust his/her activity
accordingly and avoid possible injuries.

An LbD approach that requires only one, or a few demonstrations at most, of the same
task and is able to generalize to different situations is the one based on Dynamic Move-
ment Primitives (DMPs), i.e., a set of nonlinear differential equations with a well-defined
landscape attractor [22–24]. The attractor landscape allows for replications of the recorded
trajectory by means of a weighted sum of equally spaced Gaussian Kernels. A generic
modeling approach to learning the landscape attractor is proposed in [25] and consists of
extracting the weight parameters (DMP parameters) from demonstrated movements, in a
single shot, by means of linear regression algorithms [26].

DMPs can be used to plan the robot motion by demonstration either in the joint
or in the task space. Usually, a set of independent variables, namely the joint angles or
the Cartesian coordinates, are used to encode the robot motion by means of the DMP
parameters. Hence, one DMP is computed for each of these variables.

When planning the robot motion in the operational space, resorting to a minimal
representation of the end-effector orientation, e.g., Euler angles, can lead to singularity
issues [27]. To solve this problem, one way that is adopted in the literature is to reduce the
end-effector orientation Range of Motion (RoM). Nevertheless, working in a limited range
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is quite restricting, especially for the motion planning of complex tasks such as the ones to
be adopted in the agricultural field that require a wide RoM to be accomplished [28,29].

Another option is to use a redundant representation of the orientation, e.g., rotation
matrices or unit Quaternions [30]. Orthogonality between the rotation matrix columns,
as well as the property to have a unitary norm for the unit Quaternions, are not kept
constant if DMPs are directly applied on the single elements of the rotation matrix and
Quaternions. Thus, a different formulation of the DMPs that could be applied to a nonmini-
mal representation of the orientation has been proposed in the literature [31]. The approach
integrates into the DMP equations two important operations related to Lie algebra, namely
the exponential and logarithmic map, which converts any element of the Lie group into
an element of the tangent space and vice versa. Hence, by means of this approach, one
can adopt the DMP equations directly in the tangent space of the Lie group (i.e., SO(3)
for rotation matrices and S(3) for Quaternions) with the main advantages of preserving
all the properties exhibited by the elements of this group, e.g., orthogonality conditions
between the columns for the rotation matrix or the property to have a unitary norm for the
unit Quaternions. However, when the argument of the logarithmic map, i.e., an element of
the tangent space, has a norm close to π, the logarithmic map switches from positive to
negative values, thus hindering the adoption of DMPs.

Therefore, the objective of this work is to propose a Learning by Demonstration
framework based on DMPs with a new formulation that could be efficiently applied to a
nonminimal representation of the orientation and is able to manage orientation discontinu-
ity when programming complex activities in robotics such as the ones to be performed in
agricultural domains. The proposed approach resorts to Lie theory, as presented in [31],
and integrates, as a main contribution, a dynamic parameterization of the element of the
tangent space, which allows for the avoidance of discontinuity in the logarithmic map.

The second contribution of this work is the application of the proposed approach to the
agricultural field, in which the adoption of Learning by Demonstration is very limited. The
proposed DMP motion planner was trained and tested on the Tiago robot (developed by
Pal Robotics) during the fulfillment of four agricultural activities, such as digging, seeding,
irrigation and harvesting, to investigate the suitability of LbD in planning complex activities
such as those to be performed in agriculture. The obtained results were compared to the
ones achieved by using the original formulation of the DMPs [22,31]. The comparative
analysis was performed by means of quantitative indices aimed at (i) evaluating the success
rate in managing orientation discontinuity and (ii) the accuracy of the motion reconstruction
(assessed in terms of position and orientation error).

The remainder of this paper is structured as follows. In Section 2.1, the proposed
DMP-based motion planner is presented. Section 2.2 reports the experimental validation of
the proposed approach with application to agricultural activities. Finally, conclusions and
future works are reported in Section 4.

2. Materials and Methods
2.1. The Proposed DMP-Based Robot-Motion Planner with Dynamic Parameterization of
the Orientation

A block scheme of the proposed DMP-based motion planner is shown in Figure 1.
As for typical approaches, LbD based on DMPs consists of two phases. In the first phase,
namely the offline task learning, trajectories executed by a demonstrator are recorded during
the execution of a task, i.e., the human demonstrator manually moves the robotic arm
by means of a hands-on approach and the position sensors embedded into the arm are
used to record the joint motion. Hence, robot forward kinematics is adopted to retrieve
the end-effector trajectory (position and orientation), and a dynamic parameterization
method is used to avoid discontinuity in the orientation. Then, distinctive features (called
DMP parameters) are subsequently extracted from these trajectories by using a Locally Weight
Regression algorithm (LWR) in order to encode the robot motion (DMP parameters extraction).
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In the second phase, i.e., the online task performing, depending on the task to be
performed and on the target position to be reached, an online extraction of the DMP
parameters from the dataset is performed by means of a lookup table method (DMP
parameters selection), and DMPs are subsequently computed for each Cartesian DoF, as a
sum of Gaussian kernels weighted by means of the previously computed DMP parameters
(DMP computation). Finally, the computed DMPs are given as input for the robot position
control, which provides the actuators commands to perform the desired task.

In Appendices A and B, theoretical details about DMPs and Lie groups are provided.
In the following, the new formulation of DMPs based on Lie theory and dynamic

parameterization for the orientation is presented. In particular, the modules of DMP compu-
tation, DMP parameters extraction and dynamic parameterization for orientation are described.

DMP parameters
Selection:

Lookup table

Database of 
DMP parameters 

DMP 
Computation

Robot Position 
Control

Object 
pose

Desired Task

Initial and 
target pose 

Actual Pose

DMP 
parameters

DMP
Desired

pose

Control 
commands

ONLINE TASK PERFORMING

OFFLINE TASK LEARNING

Joint Motion Recording

Database of
DMP parameters 

DMP parameters
extraction

Update

Dynamic 
Parameterization

Recorded
Position

Recorded
Orientation

Robot 
Forward

Kinematics

Joint 
motion

DMP-based Motion Planner

User 
Command: 

Motion Performing

Figure 1. Block scheme of the proposed DMP-based robot-motion planner with dynamic parameteri-
zation of the orientation.

2.1.1. DMP Computation for Orientation

A DMP formulation that could be extended to the orientation, expressed through
either the rotation matrix or the unit Quaternion, is defined as

τω̇ = αω

(
βωa log

(
ΦtΦ−1

)
−ω

)
+ fω (1)

where τ is a time constant; αω and βω are positive constants; Φt is the target orientation,
expressed as rotation matrix or unit Quaternion; Φ, ω and ω̇ are the orientation, angular
velocity and angular acceleration, respectively; a is a parameter that is 1 if Φt and Φ are
expressed as rotation matrices and 2 if they are expressed as unit Quaternions; and fω is
the forcing term that implements the landscape attractor. It can be written as

fω(x) =
∑N

i=1 Ψi(x)ψi

∑N
i=1 Ψi(x)

xa log
(

ΦtΦ−1
0

)
(2)

where Φ0 is the end-effector initial orientation; x is the state variable of the system, defined
in Equation (A4); and log(.) is the logarithmic function that maps an element, Φ, of the Lie
group, e.g., SO(3) or S3, to an element belonging to the tangent space of that group, φ. The
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solution of Equation (1), i.e., Φ, provides the orientation trajectory expressed by means of
rotation matrices or unit Quaternions that can be found as

Φ(t) = exp
(∫ t

t0

ω(s) ds +
1
2

∫∫ t

t0

ω̇(s) ds2
)

(3)

where t0 is the initial time and exp(.) is the exponential function that maps an element of
the tangent space, i.e., φ, to an element of the Lie group SO(3) or S3, i.e., Φ.

2.1.2. DMP Parameters Extraction for Orientation

A locally weighted regression (LWR) algorithm [25] is adopted to learn DMP parame-
ters Φ(t) in Equation (3).

Data on Φd, ωd and ω̇d, i.e., the recorded orientation, angular velocity and angular
acceleration, are inserted in the forcing term of Equation (2) as follows:

fωd = τω̇d − αω

(
βωa log

(
ΦtΦ−1

d

)
−ωd

)
. (4)

As for the position DMPs (see Appendix A), a function-approximation problem is formu-
lated in order to find ψi parameters that make fω as close as possible to fωd. The cost
function to be minimized is defined as

Ji =
P

∑
t=1

Ψi(t)( fω(t)− ψiεω(t))
2 (5)

where
εω(t) = xa log

(
Φ Φ−1

0

)
. (6)

2.1.3. Dynamic Parameterization for Orientation

The main drawback of the DMP formulation based on Lie theory and proposed in
Equations (1)–(4) is that the output of the logarithmic map has a gap of 2π when the
norm of its argument is close to π. To the best of the authors’ knowledge, Learning by
Demonstration approaches based on DMPs seem not to address this problem yet. Hence,
in order to avoid discontinuity in the logarithmic map, a dynamic parameterization was
introduced in Equations (1)–(4) as follows:

τω̇ = αω

(
βω vk a log

(
ΦtΦ−1

)
−ω

)
+ fω (7)

where
fωd = τω̇d − αω

(
βω vk a log

(
ΦtΦ−1

d

)
−ωd

)
(8)

and
vk = vk−1

1− 2kπ

‖vk−1φ‖ . k = 1 . . . n (9)

In Equations (7)–(9), Φ ∈ R3 is a 3 vector of coefficients such that ω = dΦ
dt . The rationale

behind Equations (7)–(9) is explained in the following with a practical example.
Let us suppose the robot end effector is required to perform a rotation of 4π about

the X, Y and Z axis, and let R4π be the rotation matrix that accounts for this rotation.
The logarithmic map applied to R4π , without dynamic parameterization (k = 0), will give
the solution Φ = [φ1, φ2, φ2], whose first element φ1 and norm ‖Φ‖ are shown in the blue
line of Figures 2 and 3. One can notice from these figures that φ1 is discontinuous when
‖Φ‖ reaches π or 0. For the sake of brevity, only φ1 is reported, but the same discontinuities
occur for φ2 and φ3.

Therefore, when LWR is adopted on these variables, the DMP parameters cannot be
properly computed. Hence, the introduction of Equation (9) allows for the avoidance of this
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discontinuity by increasing or decreasing the k parameter when the discontinuity occurs.
In Figures 2 and 3, the output of the logarithmic map for different values of k is reported.

It is worth underlining that these parameterizations chosen for Φ account for the
same rotation in SO(3). In order to have a continuous function for Φ, on which LWR
could be properly adopted, different values for k in Equation (9) should be set. Simply,
from Figures 2 and 3, it is evident that when ‖Φ‖ reaches (k + 1)π and d

dt‖Φ‖ > 0, the pa-
rameter k shall increase; conversely, when ‖Φ‖ reaches kπ and d

dt‖Φ‖ < 0, the parameter
k shall decrease. By doing this, one can obtain a continuous function of the element of Φ,
i.e., φ1, φ2 and φ3, as shown in the multicolored line of Figures 2 and 3.
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Figure 2. Parameterization of φ1 for k = 0, 1, 2.
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Figure 3. Parameterization of ‖φ‖ for k = 0, 1, 2.

2.2. Application of the Proposed DMP-Based Motion Planner to Agricultural Robotics

Existing techniques of LbD are effectively used in many application fields to perform
activities of daily living with robot aid. However, the adoption of DMPs for robot-motion
planning in the agricultural domain is very limited [32,33]. In order to take a step for-
ward with respect to the literature in this application domain and discuss the benefits
of the proposed approach in terms of the reliability and effectiveness of the task execu-
tion, this section shows the experimental validation of the proposed DMP-based motion
planner on agricultural activities. In the following, the (i) experimental robotic platform,
(ii) experimental protocol and (iii) results and discussions are reported.

2.2.1. Experimental Robotic Platform

The proposed DMP-based motion planning was tested on the Tiago robot developed
by Pal Robotics S.L. (Barcelona, Spain). The main robot components used to carry out the
experimental validation are shown in Figure 1. They are (i) the RGB-D camera, (ii) the
lifting torso, (iii) the 7 DoF arm and (iv) the Pal gripper. The RGB-D camera, i.e., the Astra
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S manufactured by Orbbec, is embedded in the Tiago’s head and is a short-range version of
the Orbbec Astra Pro camera. It has a range of [0.4; 2] m. Tiago’s torso is the structure that
supports the robot’s arm and head and is equipped with an internal lifter mechanism that
allows the user to change the height of the robot. The lifter is able to move at 50 mm/s and
has an RoM of 350 mm. The minimum and maximum height of the robot are 1.10 m and
1.45 m, respectively. Tiago’s arm is a 7 DoF anthropomorphic arm, composed of four M90
modules and one 3 DoF wrist. The Pal gripper contains two motors, each controlling one
of the fingers. Each finger has a linear range of 4 cm.

2.2.2. Experimental Protocol

The experimental validation consisted of two phases, named the following: (a) offline
task learning and (b) online task performing.

The 1st phase was aimed at recording the motion from a demonstrator during the
execution of four working activities, i.e., digging, seeding, irrigation and harvesting, and to
subsequently extract from this motion the set of DMP parameters to be stored in the
database. Since there were no publicly available datasets for the specific activities to be
carried out, an ad hoc database was built.

The 2nd phase was intended to validate the proposed approach and to assess its
capacity to manage orientation discontinuity. For this purpose, the proposed approach
grounded on Lie theory with dynamic parameterization, named proposed DMP planner,
was compared to the one based on Euler angles, named conventional DMP planner based on
Euler angles, and to the one based on Lie theory without dynamic parameterization, named
conventional DMP planner based on Lie theory.

Offline Task Learning

In the 1st phase of the experimental validation, a human subject was asked to teach
the robot how to perform the working activities, namely the digging, seeding, irrigation
and harvesting, by means of a hands-on approach. In other words, the subject was required
to passively move the robot arm in order to accomplish the task. During the task execution, the
robot was piloted by means of a zero-torque control, and the sensors embedded in the robot,
i.e., the encoders, were used to record the joints motion. The tasks are divided into several
elementary actions (corresponding to the subtasks listed in Table 1) and were performed for
nine different positions of the targets. These positions are reported in Figure 4 for the four tasks.

Table 1. Tasks description.

Task 1: Digging

Subtask 1-1 Tool reaching
Subtask 1-2 Digging
Subtask 1-3 Soil placing into the bucket
Subtask 1-4 Tool placing
Subtask 1-5 Homing

Task 2: Seeding

Subtask 2-1 Seed reaching
Subtask 2-2 Seed placing into the hall
Subtask 2-3 Homing

Task 3: Irrigation

Subtask 3-1 Reaching the watering can
Subtask 3-2 Irrigation
Subtask 3-3 Watering can placing
Subtask 3-4 Homing

Task 4: Harvesting

Subtask 4-1 Vegetable reaching
Subtask 4-2 Vegetable detaching from the plant
Subtask 4-3 Vegetable placing into the crate
Subtask 4-4 Homing
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Figure 4. A graphical illustration of the target positions for (a) digging, (b) seeding, (c) irrigation
and (d) harvesting. In particular, the 9 tested target positions for subtasks 1-2, 2-2, 3-2 and 4-1 are
shown in red. The first tested position (i.e., green point) with respect to the robot arm reference frame,
i.e., [Xb, Yb, Zb], is [20;−20;−40] cm for subtasks 1-2, 2-2 and 3-2. Conversely, for subtask 4-1, the
first tested position is [50;−20; 0] cm. The target positions for subtasks 1-1, 1-3, 1-4, 2-1, 3-1, 3-3 and
4-3 are shown in black. The latter positions are always the same for the 9 repetitions of each task. It
is worth pointing out that the tested scenario was structured in a way that no obstacles are on the
collision course with the robot arm while reaching all the target positions.

Subsequently, Cartesian trajectories were computed by means of robot forward kine-
matics (FK) by adopting two different representations for the orientation, i.e., Euler angles
(ZYZ) and unit Quaternion. Finally, a set of DMP parameters was computed for each
object position by using Equations (A6) and (A7) for the position and Equations (5) and (6)
for the orientation when the proposed DMP planner and the conventional DMP planner
based on Lie theory were adopted. Conversely, Equations (A6) and (A7) were used for both
the position and orientation when the conventional DMP planner based on Euler angles was
adopted. In Figure 5 and Supplementary Materials, pictures and video of a human demon-
strator teaching the robot how to perform digging, seeding, irrigation and harvesting tasks
are shown.
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Figure 5. A picture of the offline task learning for (a) digging, (b) seeding, (c) irrigation and (d) har-
vesting. The robot is manually moved by a human demonstrator through a hands-on approach, and
sensors embedded into the robotic arm are used to record the robot’s movements. Afterwards, DMP
parameters are extracted from the recorded motion and stored in a database.

Online Task Performing

The 2nd phase of the experimental validation was aimed at assessing the capability of
the proposed DMP planner to manage orientation discontinuity with respect to the conven-
tional DMP planner based on Euler angles and to the conventional DMP planner based on Lie
theory. DMPs were computed for each task and target position by using DMP parameters
stored in the database. The robot arm was operated to perform the four tasks, i.e., digging,
seeding, irrigation and harvesting, for the 9 different target positions shown in Figure 4 by
using the three methods. In Figure 6 and Supplementary Materials, pictures and video of
the robot while performing the learnt tasks, i.e., digging, seeding, irrigation and harvesting,
are shown.

Performance Indices

Three performance indices, namely (i) the Normalized Position Error (NPE), (ii) the
Normalized Orientation Error (NOE) and (iii) the success rate in managing orientation
discontinuity (SR-MOD), were computed to perform the comparative analysis among the
proposed DMP planner, the conventional DMP planner based on Euler angles and conventional
DMP planner based on Lie theory.
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• The NPE and the NOE assess the capability of the proposed approach to accurately
replicate the demonstrated motions. They are normalized with respect to the overall
displacement of the recorded motion and are computed as follows:

NPE =
1
N
· 1
‖g− y0‖

N

∑
i=1
‖p(i)− pm(i)‖ (10)

NOE =
1
N
· 1∥∥∥log

(
Φ−1

0 Φt

)∥∥∥
N

∑
i=1

∥∥∥log
(

Φ(i)−1Φm(i)
)∥∥∥ (11)

where N is the number of collected samples; p(i) and Φ(i) are the position and
orientation expressed in unit Quaternion of the computed DMP, respectively; and pm(i)
and Φm(i) are the recorded position and orientation at the i-th sample, respectively.
The lower the NPE and NOE, the higher the trajectory reconstruction accuracy.

• The success rate in managing orientation discontinuity (SR-MOD) of the task execution
is used to evaluate the capability of a given approach to accomplish the task and is
evaluated as

SR−MOD =
Nsucc

Ntot
· 100 (12)

where Nsucc is the number of trials successfully accomplished and Ntot is the number
of all the performed trials. A task is considered successfully accomplished if no
singularity or discontinuity issues occur.

Figure 6. A picture of the online task performance for (a) digging, (b) seeding, (c) irrigation and
(d) harvesting. Parameters are selected from the database and used to compute DMPs with the
3 methods (i.e., the proposed DMP planner, the conventional DMP planner based on Euler angles and the
conventional DMP planner based on Lie theory) for 9 different object positions.
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Statistical Analysis

The mean value and standard deviation (SD) of all the previously described indices
were computed on multiple tasks (i.e., for 9 different target positions) for each DMP method.
Each task was performed by the robot once. Since the data were not normally distributed,
a statistical analysis based on a Wilcoxon paired-sample test was performed in order to
carry out the comparative analysis among the different approaches, and a Bonferroni
correction was applied on multiple comparisons (p-value < 0.05/Nc, where Nc is the
number of comparisons).

3. Results and Discussions

The results of the comparative analysis among the three approaches are reported in
Figure 7. The mean value and SD of the NPE and NOE were calculated on the nine target
positions for each task and approach, i.e., the proposed DMP with dynamic parameterization,
conventional DMP based on Euler angles and conventional DMP based on Lie theory.

Figure 7. Experimental results obtained for the experimental session. Significantly different pairs of
comparisons (p-value < 0.01) are denoted by a black line with a star symbol above.

As shown in Figure 7, the proposed approach outperforms the literature ones since
it is able to better manage orientation-discontinuity issues compared to the two literature
approaches (statically significant differences in terms of the NOE, i.e., with p-value < 0.01,
are highlighted by the star symbol in the figure).

Moreover, the results obtained by the three approaches in terms of the NPE are
reported in Figure 7. They are the same for all the approaches since they differ from each
other only in the formulation of the DMP orientation.

To stress the impact of the achieved results with respect to the considered application
domain, i.e., the agricultural field, the SR-MOD of the task execution is also reported in
Figure 7. This figure highlights that the complexity of the agricultural activities to be
performed, which could require a high-orientation RoM to be performed, led very often
to orientation discontinuities and, hence, to an unsuccessful execution of the task when
the conventional DMP based on Euler angles and the conventional DMP based on Lie theory
were adopted (some tasks, i.e., harvesting and seeding for the conventional DMP based on
Euler angles and irrigation for the conventional DMP based on Lie theory, reported a very low
SR-MOD < 40%). Hence, from these results, it emerges that the adoption of the proposed
approach to planning complex activities in robotics, such as those to be performed in the
agricultural domain, could significantly take a step forward with respect to the literature in
terms of the reliability and effectiveness of the task execution.

Despite the proposed approach achieving a success rate of 100% for all the performed
tasks, which means that it was always able to manage orientation discontinuities, no
conclusion can be drawn about the performance of the overall system in difficult situations
other than the ones tested in this work (for instance, picking vegetables hidden behind
leaves, or moving the arm without colliding with surroundings and damaging crops).
Indeed, the successful functioning of the robot in these scenarios may be impacted also by
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the performance of other modules included in the overall platform, e.g., the ability of the
vision system to recognize and locate the fruits on the plants or the capability of the robotic
arm to avoid obstacles in the scene [21].

In Figures 8 and 9, two representative trajectories showing orientation-discontinuity
issues are reported during the fulfillment of subtask 4-4. It is worth noticing from Figure 8
that when the argument of the logarithmic map, i.e., an element of the tangent space, has
a norm close to π, the logarithmic map switches from positive to negative values, thus
causing an incorrect computation of the DMP parameters. As well, the same error occurs
in Figure 9 when the Pitch angle reaches π.
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Figure 8. End-effector orientation during the fulfillment of subtask 4-4 (conventional Lie theory approach).
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Figure 9. End-effector orientation during the fulfillment of subtask 4-4 (Euler angles approach).

To give an idea of how the computed motion differs from the desired one when the
three approaches are adopted, DMPs were computed on the orientation recorded during
the fulfillment of subtask 4-4 and are reported in the same graphs. Figure 10 shows how the
proposed DMP planner based on dynamic parameterization is able to overcome discontinuity in
the logarithmic map and correctly compute DMPs differently from the conventional DMP
based on Euler angles and the conventional DMP based on Lie theory.
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Figure 10. End-effector orientation during the fulfillment of subtask 4-4 (proposed Lie theory ap-
proach with dynamic parameterization).

Finally, for the sake of completeness, the proposed approach performance was also
evaluated in terms of the system-response time, which is very critical for practical applica-
tions in real-world scenarios. Specifically, both the offline learning and online performing
time were calculated. About the offline learning time, it is worth pointing out that the oper-
ator took 5 min, on average, to perform each demonstration with the robotic arm. Hence,
considering that a total of nine trajectories were collected to build the entire database, the
offline training phase lasted about 45 min, regardless of the specific representation used
for the orientation. About the online performing time, the proposed DMP-based motion
planner took (2.57± 0.27) · 10−3 s to generate the path of each subtask (a personal Com-
puter Dell G5 15 5500 with Ubuntu 16.04 Operating System equipped with an Intel® Core™

i7-10870H processor at 8 × 5 GHz and 16 GB of RAM was used during the experiments).
Moreover, the completion time needed to fulfill each subtask by the robot was a priori set
to 10 s (this time could be varied on the basis of the user’s preferences).

4. Conclusions

In this work, a DMP-based robot-motion planner with dynamic parameterization of
the orientation that could be effectively adopted for planning complex activities in robotics
is proposed. The approach resorts to Lie theory and integrates into the DMP equations two
important operations related to Lie algebra, namely the exponential and logarithmic map,
which converts any element of the Lie group SO(3) into an element of the tangent space
so(3) and vice versa. To manage orientation discontinuity, a dynamic parameterization for
the element of the tangent space is shown in this work.

The impact of using such an LbD approach based on dynamic parameterization of the
orientation to plan complex activities in the agricultural field was assessed; four agricultural
activities, namely digging, seeding, irrigation and harvesting, were successfully taught
to the Tiago robot, therefore taking a step forward with respect to the literature in this
application domain.

The results obtained with the proposed approach demonstrated a high capability to
manage orientation discontinuity (the mean NPE and NOE achieved by the proposed
approach on average of the performed activities were 0.05± 0.01 and 0.07± 0.11, respec-
tively); the success rate in managing orientation discontinuity was 100% for all the tested
target positions and activities and outperformed the ones obtained with the conventional
methods based on the Euler angles and Lie theory, with an improvement in the SR-MOD of
55.75% and 24.25%, respectively.



Robotics 2023, 12, 166 14 of 17

Moreover, from the achieved results, it emerged that the proposed method based on
dynamic parameterization is inherently adoptable for tasks of different difficulty levels,
as demonstrated in the experimental validation on different agricultural activities such as
digging, seeding, irrigation and harvesting.

Future works will be mainly addressed to (i) increase the number of activities in the
database, (ii) integrate into the framework an obstacle-avoidance module that enhances the
robustness of the motion planner to external perturbations and (iii) assess the impact of
using such an approach based on LbD with dynamic parameterization of the orientation
on other application domains.

Supplementary Materials: The following supporting information can be downloaded at: https://
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online task performance.
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Appendix A. Background on DMPs

A DMP is a nonlinear second-order system with a landscape attractor that accounts
for the desired kinematic state of the robot, i.e., position, velocity and acceleration. The
attractor landscape allows for replications of the recorded trajectory by means of a weighted
sum of equally spaced Gaussian kernels.

Appendix A.1. DMP Computation

A theoretical formulation for the DMPs, which could be adopted for robot Cartesian
motion planning, is given by the following equation:

τÿ = αy
(

βy(g− y)− ẏ
)
+ fy (A1)

where τ is a time constant; αy and βy are positive constants; y0 and g are the initial and final
point of the trajectory, respectively; and f is a forcing term that implements the landscape
attractor of the system. The solution of Equation (A1), i.e., y, provides the trajectory named
Dynamical Movement Primitive (DMP) for each robot Cartesian DoF. The forcing term is
expressed as

fy(x) =
∑N

i=1 Ψi(x)ψi

∑N
i=1 Ψi(x)

x(g− y0) (A2)

In Equation (A2), Ψi(x) are fixed basic functions written as Gaussian functions as

Ψi(x) = exp
(
− 1

2σ2 (x− ci)
2
)

(A3)

where σi, ci, N represent width, centers and number of Gaussian functions, respectively; ψi
are the weight parameters (i.e., the DMP parameters) used to fit the recorded trajectory;

https://www.mdpi.com/article/10.3390/robotics12060166/s1
https://www.mdpi.com/article/10.3390/robotics12060166/s1
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and x is a state variable introduced to delete the time dependency of the system. Indeed, it
is worth noticing that the time dependency of Equation (A1) is expressed as

τẋ = −αxx (A4)

which relates time and the state x of the whole system. In [22], the range of the variation
in the state x and centers ci is [0, 1], and ci is a monotonic linear function of x. Hence,
the Gaussian kernels are equally distributed over x.

Appendix A.2. DMP Parameters Extraction

A locally weighted regression (LWR) algorithm [25] is adopted to learn DMP parame-
ters ψi in Equation (A2). The position, velocity and acceleration of the recorded trajectory,
i.e., yd, ẏd and ÿd, respectively, are inserted in the forcing term of Equation (A1) as follows:

fyd = τÿd − αy
(

βy(g− yd)− ẏd
)
. (A5)

Hence, a function-approximation problem is formulated in order to find ψi parameters that
make fyt as close as possible to fy. For each kernel function Ψi(t), LWR searches for the
corresponding ψi that minimizes the locally weighted quadratic error through the following
cost function:

Ji =
P

∑
t=1

Ψi(t)( ft(t)− ψiε(t))
2 (A6)

where
ε(t) = x(g− y0). (A7)

Appendix B. Background on Lie Groups

In the following, theoretical details of Lie groups as well as mathematical conventions
and notations are provided [34]. This section does not try to give a rigorous introduction to
Lie groups but does attempt to provide the reader with the necessary information that is
useful to employ Lie groups in robotics. A Lie group is a topological group that is also a
smooth manifold. An N-dimensional manifold M is a space where every point p ∈M is
endowed with a local Euclidean structure. In other words, it means that in an infinitely
small vicinity of a point p, the space looks “flat”. Associated with every Lie group is a Lie
algebra, which is a vector space that is also called a tangent space and is denoted as Tx M,
which has a dimensionality of D (identical to that of the manifold) in nonsingular points.
Informally, a tangent space in p can be visualized as the vector space of the derivatives of
all possible smooth curves that pass through p. Associated with a Lie group M and its Lie
algebra m, there are two important functions:

• The exponential map, which maps elements from the algebra m to the manifold M:

exp : m→ M (A8)

• The logarithm map, which maps elements from the manifold M to the algebra m:

log : M→ m (A9)

Appendix B.1. Lie Algebra of SO(3)

The group SO(3), also called the special orthogonal group, is the group of 3× 3 rotation
matrices that has an associated Lie algebra so(3) whose base has three 3× 3 skew-symmetric
matrices, each corresponding to infinitesimal rotations along each axis:

G1 =

0 0 0
0 0 −1
0 1 0

, G2 =

 0 0 1
0 0 0
−1 0 0

, G3 =

0 −1 0
1 0 0
0 0 0

 (A10)
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An element of so(3) could therefore be expressed as a linear combination of the generators.
Let Φ ∈ R3 be a three vector of coefficients such that ω = dΦ

dt accounts for the robot
end-effector angular velocity. A generic element of so(3) is expressed as

[Φ]× = φ1G1 + φ2G2 + φ3G3 (A11)

where [Φ]× ∈ so(3) is the skew symmetric matrix of the three-vector Φ. The exponential
map that transforms one element from SO(3) to an element of so(3) is simply the matrix
exponential over a linear combination of the generators:

exp([Φ]×) = exp

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 (A12)

exp([Φ]×) = I3 +
sin(‖Φ‖)
‖Φ‖ [Φ]× +

1− cos(‖Φ‖)
‖Φ‖2 [Φ]2× (A13)

where (A13) is referred to as Rodrigues’ formula. Conversely, the logarithmic map that
transforms one element from so(3) to an element of SO(3) is the logarithm of the 3× 3
rotation matrices R ∈ SO(3) and is given by the well-known Rodrigues rotation formula

log(R) =
θ

2sin(θ)(R− RT)
(A14)

cos(θ) =
tr(R)− 1

2
(A15)

Φ = [log(R)]4 (A16)

where tr(.) is the trace of a matrix and [.]4 is the inverse operation of the skew-symmetric
matrix operator [.]×.

Lie Algebra of S3

The S3 group is the group of unit Quaternions. A unit Quaternion, Q = (q0, q), is
composed of a real part, q0 ∈ R, and an imaginary part, q ∈ R3, which meet q2

0 + ‖q‖2 = 1.
Also, for the S3 group, it is possible to define an associated Lie algebra, i.e., the tangent
space, with two operations that map any element of S3 into an element of the tangent space
and vice versa. They are defined as

exp(Φ) = (q0, q) =
(

cos
(
‖Φ‖

2

)
,

Φ
‖Φ‖ sin

(
‖Φ‖

2

))
(A17)

log(Q) = 2 atan2(‖q‖, q0)
q
q0

(A18)
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